
A Speculative Control Scheme for an
Energy-Efficient Banked Register File
Jessica H. Tseng, Student Member, IEEE, and Krste Asanovi�cc, Member, IEEE

Abstract—Multiported register files are critical components of modern superscalar and simultaneously multithreaded (SMT)

processors, but conventional designs consume considerable die area and power as register counts and issue widths grow. Banked

multiported register files consisting of multiple interleaved banks of lesser ported cells can be used to reduce area, power, and access

time and previous work has shown that such designs can provide sufficient bandwidth for a superscalar machine. These previous

banked designs, however, have complex control structures to avoid bank conflicts or to buffer conflicting requests, which add to design

complexity and would likely limit cycle time. This paper presents a much simpler and faster control scheme that speculatively issues

potentially conflicting instructions, then quickly repairs the pipeline if conflicts occur. We show that, once optimizations to avoid regfile

reads are employed, the remaining read accesses observed in detailed simulations are close to randomly distributed and this

contributes to the effectiveness of our speculative control scheme. For a four-issue superscalar processor with 64 physical registers,

we show that we can reduce area by a factor of three, access time by 25 percent, and energy by 40 percent, while decreasing IPC by

less than 5 percent. For an eight-issue SMT processor with 512 physical registers, area is reduced by a factor of seven, access time by

30 percent, and energy by 60 percent, while decreasing IPC by less than 2 percent.

Index Terms—Low-power, register file, speculative control, superscalar, simultaneous multithreading.

�

1 INTRODUCTION

MULTIPORTED register files and bypass networks lie at the
heart of a superscalar microprocessor and provide

buffered communication of register values between produ-
cer and consumer instructions. With the deeper pipelines
and higher instruction-level parallelism (ILP) of next
generation out-of-order superscalar processor designs, both
the number of ports and the number of required registers
increase. These increased requirements cause the area of a
conventional multiported regfile to grow more than quad-
ratically with issue width [25]. The trend toward simulta-
neous multithreading (SMT) further increases register count
as separate architectural registers are needed for each
thread. For example, the proposed eight-issue Alpha 21464
design had a regfile that occupied over five times the area of
the 64 KB primary data cache [16].

Many techniques have been previously proposed to
reduce the area, energy, and delay of multiported register
files. Some approaches split the microarchitecture into
distributed clusters, each containing a subset of the register
file and functional units [19], [14], [9], [12], [26], [18]. These
schemes have the potential to scale to larger issuewidths, but
require complex control logic to map instructions to clusters
and to handle intercluster dependencies. Alternatively, other
approaches retain a centralizedmicroarchitecture, but divide
the physical register file into interleaved banks with fewer
ports per bank [23], [2], [15], [13]. Provided that the number of
simultaneous accesses to any bank is less than the number of

ports on each bank, this structure can provide the aggregate
bandwidth needs of a superscalarmachinewith significantly
reduced area compared to a fully multiported regfile. These
earlier banked schemes, however, require complex control
logic with datapath buffering and stalls across multiple
pipeline stages thatwould likely limit the cycle timeof a high-
frequency design.

In this paper, we present and analyze a banked multi-
ported register file design together with a control scheme
suitable for a deeply pipelined dynamically scheduled
processor. Our control scheme does not place any register
bank arbitration in the critical wakeup-select loop, but
instead speculatively issues potentially conflicting instruc-
tions. If any conflicts are found after issue, a pipelined
recovery scheme quickly repairs the issue window and
reissues conflicting instructions. In contrast to previous
work [23], [2], [15], [13], all conflicts are detected and
resolved in one pipeline stage so that no write buffering or
pipeline stalls are required. The main drawback of our
scheme is that both bank conflicts and the extra pipeline
stage used for port arbitration can impact processor
performance. Bank conflicts add penalty cycles to repair
the pipeline and delay the issuing of dependent instruc-
tions, while the additional pipeline stage causes an increase
in branch misprediction latency.

To evaluate the scalability of this work, we first examine
the performance of our proposed banked register file
scheme in superscalar processors and then extend it to
SMT processors. One might expect that the higher utiliza-
tion of an SMT processor would raise the number of bank
conflicts and, hence, reduce the applicability of our banked
regfile design. Surprisingly, our data instead reveals that
banking produces even better results for an SMT core
(< 2 percent IPC degradation) than a single thread

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005 741

. The authors are with the MIT Computer Science and Artificial Intelligence
Laboratory, 32 Vassar St., Cambridge, MA 02139.
E-mail: {jhtseng, krste}@csail.mit.edu.

Manuscript received 14 Mar. 2004; revised 16 Aug. 2004; accepted 8 Oct.
2004; published online 15 Apr. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0091-0304.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

superscalar core (< 5 percent IPC degradation). This result
is partly due to SMT’s ability to hide the increased branch
mispredict penalty as, when one thread experiences a
misprediction, other threads can continue to execute
instructions. Also, the larger number of registers required
by an SMT processor allows a larger number of regfile
banks, reducing conflicts significantly. Consequently, we
believe banked regfiles are a natural solution to the
increasing register file demands of SMT processors.

The paper is structured as follows: We first describe our
scheme in detail in Section 2, including the pipeline
structure and required control logic. We then present area,
energy, and delay numbers from detailed circuit layouts in
Section 3. We present an analytical model to determine the
expected probability of port conflicts in Section 4 and, in
Section 5, we show the performance simulation results and
compare these to the analytic model. We discuss the
relationship of our scheme to previous work in Section 6,
before concluding in Section 7.

2 BANKED REGFILE DESIGN

In this section, we first describe the structure of the banked
multiported register file datapaths. We then describe the
operation of the control logic, including the overall pipeline
design, the pipeline repair operation used after conflicts,
and the control for the two read port optimizations,
conservative bypass-skip and read sharing.

2.1 Register Bank Structure

A banked register file consists of multiple interleaved banks
of non-fully-ported register cells. Fig. 1 shows one example
of our register banking scheme for a four-issue processor.
The regfile provides a total of eight global read ports and
four global write ports using four interleaved register
banks, each with two local read ports and two local write
ports. Compared to a conventional multiported structure,
each word of register storage has fewer ports and the
storage cell size is dramatically smaller. But, now, addi-
tional multiplexing circuitry is required to connect the local
port bitlines to the global port bitlines and the possibility of
bank conflicts arises when too many global ports attempt to
read or write the same bank.

As shown in Fig. 1, each functional unit needs two global
read ports, which we term the left and right ports, to
execute instructions with two register source operands. We
simplify the local-global port crossbar by connecting one
local port on each bank to only the global left operand buses
and the other to only the global right operand buses.
Therefore, all banks have at least two local read ports. This
enables any instruction to retrieve both operands from the
same bank in one cycle, but doesn’t allow the use of the
local left ports to fetch global right port operands. Apart
from the reduction in mux circuitry, this restriction
simplifies port arbitration logic by cutting in half the
number of possible contenders for a local read port.

In contrast, the design presented in [2] employed banks
with only a single read port. The single read port must
connect to all global ports and, hence, requires the same
local-global crossbar complexity as a dual read-port design
that connects each local port to half the global ports. Our

initial result reveals minimal area savings for the single

read port design versus the split dual port design once the

cost of the local-global crossbar is included. Moreover, the

single read port bank requires considerably more compli-

cated control logic to handle execution of an instruction that

fetches both operands from the same bank and each read

port arbiter has twice as many inputs.
Fig. 1 also shows a portion of the bypass network for

functional units with single cycle latency; critical multiple

cycle units, such as load units, will require additional bypass

paths. Register filewritebackmay require one ormore cycles,

in which case, additional bypass logic is required for results

that have completed but which are not yet available from the

register file. These delayed bypass paths are not latency

critical and can be supplied by an early stage mux that feeds

into the final latency-critical mux stage [10].

2.2 Control Logic

A banked multiported register file can provide sufficient

bandwidth for a superscalar processor at a lower cost than a

flat design. The main challenge is devising control logic that

can handle the inevitable bank conflicts without compro-

mising cycle time or adding excessive complexity.

742 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

Fig. 1. An eight-read, four-write port register file implemented using four
two-read, two-write port banks. The register file interconnect and bypass
network are shown as distributed muxes where each dotted crosspoint
represents a potential switched connection.

2.2.1 Pipeline Design

We propose a pipelined control scheme where the pipeline
first speculatively issues potentially conflicting instructions,
then performs port arbitration in a later pipeline stage. If
any conflicts are detected after issue, a pipelined recovery
scheme, described below, quickly repairs the issue window
and reissues conflicting instructions. Fig. 2 shows the
baseline processor pipeline for the flat register file structure
and the modified processor pipeline for the banked register
file structure. Previous work has either placed additional
arbitration logic in the select path to avoid conflicts or
required that multiple pipeline stages be stalled [23], [2],
[15], [13]. Both approaches complicate critical timing loops
[3]. In particular, stalling a deep pipeline is usually
prohibited in high-frequency designs due to the difficulty
of generating and routing a global stall signal to a large
number of pipeline registers.

For our baseline and modified processors, instructions
are first decoded and renamed and then placed into an
instruction window. Instructions wait in the instruction
window until both operands are available. The instruction
window pipeline stage contains the critical wakeup-select
loop [14], where the wakeup phase is used to update
operand readiness and the select phase picks a subset of the
ready instructions to issue. Once a single-cycle instruction is
selected, its result tag is immediately broadcast to the
instruction window in the next wakeup phase to allow
back-to-back issue of dependent instructions, even though
the selected instruction will not produce its result for
several cycles.

A conventional pipeline has a fixed mapping of issued
instruction operands to register file ports, so operands of an
instruction can be fetched from the regfile immediately after
issue. A banked regfile scheme, however, must first mux
operand addresses into the available register file ports. The

extra arbitration pipeline stage shown in Fig. 2 detects both
read and write regfile conflicts and muxes the winning
addresses into the address decoders. The arbitration stage
also manages requests to writeback results from long or
variable latency operations such as divides or cache misses.
These are given higher priority than newly issuing
instructions. In Fig. 2 and in our evaluation, we allocate a
whole pipeline stage to the arbitration and register address
mux, but we believe the actual penalty would be much
lower in practice.

All instructions that pass the arbitration phase can read
from and write back to the regfile with no conflicts. This
approach avoids register bank write buffers [2], which
increase the size of the bypass network and cause pipeline
stalls when full, but sufficient write ports must be provided
such that write bank conflicts do not cause a large
performance degradation. This approach is also much
simpler than schemes that delay physical register allocation
until writeback to avoid conflicts [15].

2.2.2 Repairing the Issue Window

The arbitration stage detects all bank conflicts, that is, when
too many reads try to access the left or right side of a single
bank or too many writes try to access the same bank. If such
conflicts are detected, the processor must repair the issue
window and reissue the conflicting instructions. Fig. 3
shows the method by which the pipeline state is restored
after a conflict. A second group of instructions following the
ones that encounter a conflict will have been speculatively
issued into the pipeline in parallel with the detection of the
conflict. This second group is killed, along with the
instructions in the first group that were not granted a read
or write port. The wakeup phase that would have been used
to broadcast the tags of the second group of instructions is
now used to repair the issue window by broadcasting the
tags and resetting the ready and issued bits for the

TSENG AND ASANOVI�CC: A SPECULATIVE CONTROL SCHEME FOR AN ENERGY-EFFICIENT BANKED REGISTER FILE 743

Fig. 2. Pipeline structures of processor with unified register file and processor with multibanked register file. An additional cycle is added for
multibanked register file for read port arbitration and muxing. Read bank and write bank conflicts are also detected in this cycle.

Fig. 3. Pipeline diagram shows repair operation after conflicts are detected. The wakeup tag search path is used to clear ready bits of instructions

that had a conflict causing them to be reissued two cycles later. Any intervening instruction issues are killed.

destinations of the killed instructions in the first group.
Issue will now resume correctly in the select phase of this
pipeline stage. This approach adds only a mux into the tag
broadcast path of the critical wakeup phase.

2.2.3 Conservative Bypass-Skip

Previous work [21], [2], [15] indicates a great percentage of
operands are either the dedicated zero register (R0 on MIPS,
R31 on Alpha) or supplied from the bypass network. The
number of requisite read ports can be reduced significantly
if we have a separate zero input to the bypass mux and also
if operands that will be sourced from the bypass network
do not compete for access to the register file ports.

Avoiding read port contention for bypassed operands
would at first appear to require that the arbitration logic
wait until the bypass logic determines if operands will be
bypassed. To avoid this increase in pipeline latency, the
check can be folded into the wakeup phase. Previous work
has described an optimistic bypass hint scheme [15] where
an extra hint bit is added to each operand of instructions
waiting in the issue window. The hint bit is cleared if the
operand was ready before the instruction entered the issue
window; otherwise, it is set. When the instruction is
selected, an operand with the hint bit set will not contend
for a read port as it is likely to be sourced from the bypass
network. The disadvantage of this scheme is that it is only a
prediction, which, when incorrect, requires stalling earlier
pipeline stages to allow the instruction to access the read
ports. The mispredictions also reduce performance in cases
where the read could have been satisfied from a free read
port if only it had been in contention.

We instead adopt a conservative bypass bit scheme,
which is always correct but which only avoids contending
for read ports for values bypassed from the immediately
preceding cycle. Each operand in the instruction window
has multiple comparators, one per tag write back port, to
determine if the operand becomes ready in that cycle. We
store the bypass bit for each instruction window operand in
a latch that is loaded with the result of OR-ing together
comparator results every cycle. If an instruction is selected
in the same cycle where a tag match caused the instruction
to wake up, the bypass bit will be set, indicating that the
value is available from the bypass network. If the instruc-
tion is not selected for issue, the bypass bit latch will be
cleared by the failing tag matches on the next wakeup
phase. The bypass bit is conservative because it is only set
for values that will be ready in the cycle before the current
instruction executes, as shown in Fig. 4. Where there are
several pipeline stages feeding the bypass mux (e.g., when
register file access takes multiple cycles), this scheme will

still compete for read ports even though these operands will
be sourced from later pipeline stage bypasses. In practice,
we find this lost opportunity causes negligible performance
impact. To reduce datapath complexity, a microarchitecture
might not support bypass from every functional unit. In this
case, the wakeup tag search can be modified to broadcast a
signal indicating whether the operand can be bypassed.
This value can then be latched into the bypass bit on a
successful tag match. Any register operand of an issued
instruction which doesn’t have the bypass bit set must
contend for read ports.

2.2.4 Read Sharing

Read bank conflicts commonly occur when multiple
instructions in an issue group try to read the same physical
register [2]. Instructions that depend on the same register
become ready on the same cycle and are likely to be issued
together. The read port arbiter can detect this sharing and
remove the conflict by setting enable signals such that a
local port drives multiple global ports. Our register file
structure only allows read sharing on either the left ports or
the right ports and requires a second local port if a physical
register is read from both sides.

3 REGISTER FILE LAYOUTS

This section describes the layouts of various sized banked
register files we have undertaken to determine their area,
delay, and energy. All designs were laid out in a 0.25 �m
CMOS process from TSMC. The storage cells are a standard
six transistor SRAM design, with differential write ports
and single-ended read ports.

Metal 1 is used for local bitlines within a bank andmetal 2
forword lines. The local ports from each bank then connect to
the global bitlines running over the cells in metal 3. Most
previous work has assumed that a large conventional
multiported register file would have each port on a storage
cell connected directly to the global bitline. With more metal
layers, it isdesirable to employahierarchical bitline structure,
where each port on a cell connects to a local bitline which in
turn connects to the global bitline [1], [10]. On each access,
only one local bitline is connected to the global bitline. The
parasitic drain capacitances of the storage cells in other banks
are not driven, reducing delay and energy dissipation.
Another benefit is that signal-to-noise ratio improves in the
presence of leakage currents from off cells [1]. Adopting
hierarchical bitlines in our baseline flat design reduces the
relative energy and delay advantages of a multibanked
design. To save area, we employ a single-ended global write
bitlinewhich is converted to a differential local bitline using a
local inverter. To further save area, we pack two local storage
cells into one global bit column where possible. This has the
disadvantages that a 2:1 columnmux is required, which adds
area and delay, and that twice as many local bitlines are
discharged on each access, which increases energy usage.

Table 1 shows the relative area of a variety of 64� 32-bit
eight read-ports and four write-ports multibanked register
file designs in comparison to a unified design and Fig. 5
shows the detailed area breakdowns. Fig. 6 provides a
graphical comparison of the floorplan of a few representa-
tive register file designs.

744 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

Fig. 4. Conservative bypass skip only avoids read port contentions when

the value is bypassed from the immediately preceding cycle.

For the designs with eight read ports and four write
ports per storage cell, moving to hierarchical bitlines adds
area because of the interconnection overhead. An additional
11 percent area overhead is incurred when there are
16 words per local bitline and an additional 23 percent
moving to eight words per local bitline. Bank conflicts do
not occur in these designs.

As the number of local ports per bank is reduced, area
drops dramatically. Compared to the baseline design, the
designs with four banks are around one quarter the size and
the designs with eight banks are around one third the size.
Apart from the reduction in storage cell size, designs with
smaller numbers of ports per bank have significantly less
address decoder area than the highly multiported designs.
Each bank has fewer decoders with narrower addresses.
The design with four banks, each with one read port, cannot
sustain eight global read port accesses and relies on the
bypass network to supply the missing read operands.

Both Fig. 5 and Fig. 6 also show that multiplexing
overhead dominates when there are only a few ports per
cell. Designs with two read ports per bank are only a few
percent larger than designs with a single read port per bank
given that the single read port must connect to all global
read ports, whereas each of the two read ports only
connects to half of the global read ports. Also, increasing
the number of write ports from one to two adds only 16-
20 percent in area.

Table 1 also lists normalized delay and energy measures
for the different multibanked register file designs compared
to the unified design. Fig. 5 also shows the detailed delay
and energy breakdowns of these designs. Delay and energy
numbers were obtained from HSPICE simulations of an
extracted layout with a 2.5 V supply voltage. For the fully

ported storage cell designs, using hierarchical bitlines
reduces energy by almost 40 percent and cuts delay by
8-17 percent. The lesser-ported bank designs are slightly
faster, up to around 20 percent faster for the two read, two
write port case. The energy reduction is also slightly greater

TSENG AND ASANOVI�CC: A SPECULATIVE CONTROL SCHEME FOR AN ENERGY-EFFICIENT BANKED REGISTER FILE 745

TABLE 1
Relative Area, Delay, Energy, and Leakage Numbers of

Different 64� 32-Bit Eight Global Read Port and
Four Global Write Port Register File Designs

Packing is the number of local bit cells packed per global bit column.

Fig. 5. Detail breakdown of various 64� 32b eight read-ports and four
write-ports register file designs in terms of its (a) area, (b) read access
delay, and (c) read energy consumption. For example, 1b8r4w refers to
the baseline implementation—using one bank with eight read ports and
four write ports.

Fig. 6. Area comparison of four different 64� 32b regfiles for a quad-
issue processor. The clear regions represent the storage cells, while the
lighter shaded regions represent the overhead circuitry in each bank.
The black shading at the bottom is the area required for the global bitline
column circuitry. The medium-dark shading to the side is the area for
address decoders.

for the lesser-ported cells compared with just using hier-

archical bitlines on the fully ported cells. The delay and

energy reductions are not as great as might be expected from

the area reduction as the packing of two local storage cells per

global bit column slows the wordline drive and adds a

column mux stage and also causes twice as many bitlines to

discharge on a read. It might be possible to reoptimize the

smaller ported cells for even smaller delay and energy, but

this would add considerable additional area.
The primary source of energy dissipation for the 0.25 �m

CMOS process is dynamic switching of load capacitance.

Within a few process generations, it is expected that static

leakage current will be responsible for a large fraction of

total power dissipation [5]. Table 1 also shows the relative

size of leakage energy across the three designs. The relative

leakage energy numbers were obtained by calculating the

total width of leaking transistors, assuming that 80 percent

of stored values are zero and that the bit cell ports were

optimized to reduce read energy for zero values [21].

Banking reduces leakage power by at least 60 percent over

the baseline case and, so, we expect even greater relative

power savings as leakage currents grow.

4 MODELING LOCAL PORT CONTENTION

In this section, we develop an analytic model of register file

bank conflicts under the assumption that register file

accesses are uniformly randomly distributed across banks.

We later use this model to help understand the results

obtained by detailed microarchitectural simulation.
Bank conflicts occur when too many instructions

compete for the same bank port during the same cycle.

The port conflict probability (PCP) is the probability of

having any conflicts in any regfile bank within a cycle. We

can compute the expected PCP for a cycle based on the

number of simultaneous accesses attempted by the proces-

sor and on the number and structure of banks in the design.

The PCP is always zero for a regfile with fully ported

storage cells.
For a two-banked regfile structure with Bank0 and

Bank1, PCP can be expressed as (1). P ðConflictBank0 [
ConflictBank1Þ is the probability of either Bank0 or Bank1

encountering conflicts. P ðConflictBank0Þ is the probability

of Bank0 having conflicts, P ðConflictBank1Þ is the prob-

ability of Bank1 having conflicts, and P ðConflictBank0 \
ConflictBank1Þ is the probability of both banks having

conflicts in the same cycle.

PCP ¼ P ðConflictBank0 [ConflictBank1Þ
¼ P ðConflictBank0Þ þ P ðConflictBank1Þ�

P ðConflictBank0 \ ConflictBank1Þ:
ð1Þ

To calculate the PCP, we first need to determine M (2),

which is the maximum number of banks that could

encounter conflicts in a cycle given A accesses to a regfile

with B banks of N ported storage cells. When M is zero, we

have a conflict-free cycle. When M is one, we have the

possibility of conflicts in only a single bank (e.g.,

P ðConflictBank0 \ ConflictBank1Þ is zero). WhenM is greater

than one, we could have conflicts across multiple banks in

the same cycle. Depending on the value of M, we calculate

PCP differently (3). Since there are only two possible states,

conflict and nonconflict, for each regfile bank, we use

binomial coefficients to find conflicting sets (4). ACx

determines the number of instances that x out of A regfile

accesses fetch values from the same bank regardless of the

ordering and ðB�1ÞA�x

BA�1 is its event probability. OðA;B;NÞ
adjusts for duplicate cases where multiple banks encounter

bank conflicts in the same cycle.

M ¼ min B;
A

N þ 1

� �� �
; ð2Þ

PCP ¼

0 if M < 1XA
x¼Nþ1

ACx �
ðB� 1ÞA�x

BA�1
if M ¼ 1

XA
x¼Nþ1

ACx �
ðB� 1ÞA�x

BA�1
�OðA;B;NÞ

if M > 1;

8>>>>>>>><
>>>>>>>>:

ð3Þ

ACx ¼ A!

x!ðA� xÞ! : ð4Þ

Analyzing the conflict overlap, OðA;B;NÞ, between

multiple banks, we have two sets of binomial coefficients

to find the two orthogonal sets of combination. One is for

the bank numbers, while the other is for the accesses. In

(5), BCd � F ðd; A;B;NÞ determines the number of instances

where at least d out of B banks encounter conflicts and 1
BA

is its event probability. Table 2 shows how F ðd;A;B;NÞ
can be calculated for different numbers of overlapping

conflict banks.

746 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

TABLE 2
F ðd;A;B;NÞ for Various d Values

OðA;B;NÞ ¼
XM
d¼2

ð�1Þd � 1

BA
� BCd � F ðd;A;B;NÞ: ð5Þ

Using (3), we plot the PCP for designs with 16 banks

(varying the number of local ports) and designs with two

local ports (varying the number of banks) for different

numbers of accesses. Fig. 7 shows that having the additional

second local port decreases conflicts by at least a factor of

four and having a sufficient number of banks is crucial

toward keeping the number of conflicts low.

5 PERFORMANCE EVALUATION

In this section,we evaluate theperformance of our scheme for

both superscalar and SMT processors. We describe the

common methodology in Section 5.1. In Section 5.2, we

report on simulations of four and eight bank configurations

for a four-issuemachine on Simplescalar [4] to determine the

effects of different optimization techniques. Then, we extend

our experiment to eight-issue SMT processors in Section 5.3

by simulating threedifferentworkloads on SMTSIM [22]. The

1-thread workload models the behavior of superscalar

processors, while 2-thread and 4-thread workloads account

for the multithreading environment of SMTs. We compare

our simulated results against the predicted results assuming

uniform random regfile accesses in Section 5.4.

5.1 Methodology

We modified both Simplescalar and SMTSIM simulators to
keep track of a unified physical register file organized into
banks. We did not modify the register renaming strategy,
simply taking the next available registers off a single FIFO
free list regardless of bank allocation. The machine
configurations are shown in Table 3. For designs with
multibanked register files, we modeled the additional cycles
required for read and write bank conflicts and pipeline
repair. To account for the extra arbitration cycle, we
increased branch misprediction latency by one cycle. The
baseline design has a three-cycle latency for branch
mispredictions, while other designs with multibanked
register files have a four-cycle latency. The monolithic
register file takes only one cycle to access, representing the
most optimistic assumption.

For the Simplescalar simulations, we chose a subset of
the SPEC CINT2000 and Mediabench benchmarks compiled
with optimization for the PISA instruction set. The
Mediabench benchmarks were used to provide some higher
IPC codes that we would expect to cause greater register file
traffic. For the SMTSIM simulations, we chose a complete
set of SPEC CINT2000 benchmarks compiled with optimi-
zation for the Alpha instruction set. For 2-thread and 4-thread
workloads, we randomly paired different combinations, as
listed in Table 4. The Mediabench codes were run to
completion. For the SPEC CINT2000 numbers, we used the
methodology described in [17] to select a fast-forward
period and sample length. We first simulate the baseline
case, which uses a unified register file design and does not
cause any register file port conflicts. Then, we analyze the
performance of various multibanked register file schemes.
By comparing the IPC between the monolithic and multi-
banked regfile simulations, we can determine the processor
performance impact of using our banked regfile structure.

5.2 Performance Sensitivity

Fig. 8 and Table 5 show the resulting absolute and relative
IPC numbers obtained for the four-issue machine with a
64-element register file. We label each configuration as
(#banks)B(#reads)R(#writes)W(bypass?)(sharing?), where
(#banks) is the number of banks, (#reads) is the number of
local read ports, (#writes) is the number of local write ports,

TSENG AND ASANOVI�CC: A SPECULATIVE CONTROL SCHEME FOR AN ENERGY-EFFICIENT BANKED REGISTER FILE 747

Fig. 7. PCP for designs with (a) 16 banks and (b) two local ports.

TABLE 3
Simplescalar and SMTSIM Configurations

(bypass?) indicates if values bypassed from the last execu-

tion cycle avoid competing for register ports, and (sharing?)

indicates if local read ports can drive multiple global read

ports to implement read sharing.
We have also included a configuration labeled issue

change which shows the results if the select logic were

changed to avoid register bank conflicts at issue time and

where both bypassing and port sharing are used to reduce

conflicts in a system with eight 2r2w banks. In this case,

performance degradation was less than 1 percent compared

to the baseline. In practice, this scheme would have a much

slower wakeup-select loop, which would likely limit clock

frequency and reduce total performance. The row labeled

8B2R2WYY shows the performance drop when we instead

issue instructions without considering conflicts and kill

conflicting instructions. Performance drops another

4-6 percent, but it is possible that this configuration could

have a lower cycle time to make up for this difference.
Overall, we found the 8B2R2WYY configuration to

perform well for this design point and we chose this as

our center point in perturbing other parameters. Reducing

the number of banks to four (4B2R2WYY) lowers perfor-
mance by another 3-4 percent. We can also see that moving
from one to two write ports (8B2R1WYY, 8B2R2WYY)
improves performance by more than 4 percent, but having
more than two write ports per bank (8B2R4WYY) only
improves performance by another 0.3 percent. This is
expected given that average IPCs are rarely above 2 and
some instructions do not write to registers.

Omitting the bypass optimization (8B2R2WNY) de-
grades performance by over 3 percent. Omitting the sharing
optimization degrades performance by around 7 percent.
We confirmed the observation in [2] that groups of load and
store instructions dependent on the stack pointer tend to
issue together, probably at procedure call/return points.
We also noticed that branch instructions dependent on the
same register issuing together were another common source
of read sharing. Omitting both bypassing and read sharing
(8B2R2WNN) lowers performance by 12-14 percent.

5.3 Superscalar versus SMT

Fig. 9 shows the resulting absolute IPC obtained for
1-thread, 2-thread, and 4-thread workloads. We found that

748 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

TABLE 4
Heterogeneous Multithreaded Workloads

Fig. 8. IPCs for the 4-issue pipeline with register file of size 64.

TABLE 5
Normalized IPC Percent for a Quad-Issue Machine with 64 Physical Registers

Configurations are labeled as (#banks)B(#local read ports)R(#local write ports)W(bypass skipped?)(read sharing?). Results are normaized to the
IPC of the baseline case (unified with eight read and four write ports). Results for a configuation with bank arbitration in the issue logic (issue
8B2R2WYY) are also shown.

the average performance degradation of the 16B2R2WYY
design increases from 5 percent, 8 percent, to 12 percent as
we increase the workload from one, two, to four threads,
respectively. This indicates that the register file does not
provide sufficient throughput by having only two local read
ports. After adding another pair of local read ports to the
register file banks (16B4R2WYY), performance is restored to
just a 2 percent IPC degradation in all three workload
categories. In fact, the average IPC increases as we increase
the workload, but the percentage of IPC degradation
decreases. This is because the multithreading environment
of SMT helps to hide the branch misprediction penalty as,
when one thread experiences a misprediction, the other
threads can continue to execute instructions. In comparison
to a fully multiported design, our study shows that we can
reduce regfile area by a factor of seven, access time by
30 percent, and energy by 60 percent if the 16B4R2WYY
structure is used in an eight-issue SMT machine.

5.4 Correlation among Accesses

We now compare the observed conflicts against those
predicted by the model developed in Section 4. We use the
simulator to determine A, the number of accesses to the
regfile in each cycle, then calculate the PCP, and sum over
the whole run. We then compare the numbers against our
SMTSIM simulation results for 4-thread workloads on
16B4R2W regfiles with different combinations of optimiza-
tion techniques in Fig. 10. We observe that, without the read
port optimizations, there are many correlated accesses
leading to a much higher conflict rate than that predicted
by uniform random accesses. Applying bypass-skipped
reduces the number of correlated accesses somewhat, but

applying read-sharing causes fewer conflicts than a random
distribution. We also achieve a slightly lower percentage of
conflicting cycles than purely random accesses by applying
both optimization techniques. However, for write port
conflicts, the simulation numbers indicate that the write port
allocation is less than uniformly distributed at randomacross
all thebanks.Unlike for reads, nooptimization techniques are
applied to remove or prevent write correlations.

We also investigated other register renaming policies,
including LIFO and Random, to determine if different
algorithms would have some impact on the correlations, but
our results were unchanged for all cases.

6 RELATED WORK

Monolithic regfile designs are known to scale poorly with
increasing numbers of ports and registers. Many architects
have explored alternative designs for implementing a large
and fast multiported register file. One approach, used in the
Alpha 21264 [12] and 21464 [16] designs, consists of
dividing the functional units among two clusters and
providing a copy of all registers in each cluster. This
approach halves the number of read ports required on each
copy of the regfile, but requires the same number of write
ports on both regfiles to allow values produced in one
cluster to be made available in the second cluster. An
extension of this approach is to develop a clustered
microachitecture that divides the registers among a number
of clusters [19], [14], [9], [26], [18]. Clustered microarchi-
tectures also allow the instruction window to be divided
among clusters and have the potential to scale to larger
issue widths at high clock frequencies. Clustering reduces
the number of ports on each partition of the register file, but
requires intercluster communication when a value is
needed from a different cluster. The primary disadvantages
of a clustered microarchitecture are the complexity of the
intercluster control logic and the additional area required to
achieve performance similar to a centralized architecture.

Other approaches retain a centralized and nonduplicated
regfile structure, but explore different types of locality in
regfile accesses. Locality of access has been used to design
regfile structures that are similar to multilevel caches [7], [3],
one-level less-ported [15], [13], and one-level multibanked
[23], [2]. In [7], [3], registers are cached to reduce average
access latency. Register caching can add considerable control

TSENG AND ASANOVI�CC: A SPECULATIVE CONTROL SCHEME FOR AN ENERGY-EFFICIENT BANKED REGISTER FILE 749

Fig. 10. Conflict cycle comparison for (a) reads and (b) writes.

Fig. 9. IPCs for (a) 1-Thread, (b) 2-Thread, and (c) 4-thread workloads.

complexity to an architecture as register caches have much
worse locality than conventional data caches and determin-
ing the appropriate values to cache is nontrivial.

Using a less-ported structure and only allowing neces-
sary regfile read accesses reduce the register file’s area,
energy, and access time. The designs in [15], [13] do not use
banked reads to avoid increasing the complexity of the
select logic. However, the select logic still has to select no
more instructions than the number of available read ports
after considering the bypass hint bits [15] or the prefetch
flags [13]. Conversely, our scheme issues instructions
without considering bypassability or conflicts and relies
on rapid port arbitration and a nonstalling pipeline repair to
reduce the pipeline latency impact. This enables the use of
read banking to further reduce cell size.

The multibanking approach adopted in this paper and in
previous work [23], [2] constructs a regfile from multiple
interleaved register banks. The challenge is managing the
complexity and added latency of the control logic needed to
handle read and write bank conflicts and the mapping of
register ports to functional units. A banking scheme that
uses the bypass network to reduce unnecessary read port
contention and usage is described in [23], but no description
of the bypass check or read conflict resolution logic is given.
Write conflicts are handled by delaying physical register
allocation until writeback, at which point registers are
mapped to nonconflicting banks. The primary motivation
for this delayed allocation was to limit the size of the
physical register file, but this can lead to a deadlock
situation requiring a complex recovery scheme.

The scheme presented in [2] handles read bank conflicts
by only scheduling groups of instructions without conflicts.
This reduces the IPC penalty, but adds significant logic into
the critical wakeup-select loop. A design with single-ported
read banks is evaluated; however, this requires complex
issue logic and functional unit datapaths to allow instruc-
tions where both operands originate from the same bank to
be issued across two successive bank read cycles. As we
found in our initial study, multiplexing circuits dominate
the area of few-ported multibanked designs. Moving from a
single read port to split dual read ports per bank has
minimal area impact. In [2], write port conflicts are handled
by buffering conflicting writes, which increases the size of
the bypass network. Functional unit pipelines must also be
stalled when conflicting writes queue up. In comparison,
our scheme never has any write stalls because write bank
conflicts are detected after issue and conflicting instructions
are killed. By adding enough read and write ports per bank
in our design, we are able to maintain acceptable
performance. We justify the slight increase in the overall
register file area in our scheme by its reduction in control
logic complexity and bypass mux size.

The aforementioned work has focused on the design of
high-bandwidth register files for dynamically scheduled
superscalar processors with a single logical register file.
Other work has examined the use of partitioned register
files made visible to software. The SPARC architecture [24]
has overlapping register windows where software explicitly
switches between sets of registers. In-order superscalar
implementations of the UltraSPARC exploit the fact that

only one register window is visible to implement a dense
multiported structure [20]. Clustered VLIW machines make
the presence of multiple register file banks visible to
software and the compiler is responsible for mapping
instructions to clusters [11]. Vector machines have also long
been designed with interleaved register file banks that
exploit the regular access patterns of vector instructions to
provide high bandwidth with few conflicts [6], [8].

7 CONCLUSION

We have presented an energy efficient banked multiported
regfile design together with a speculative control scheme
suitable for a high-performance dynamically scheduled
processor. To prevent increases in cycle time, our control
scheme avoids register bank arbitration in the already
timing-critical issue logic, but instead adds an extra pipeline
stage to detect and resolve any conflicts. Since bank
conflicts can degrade performance, we keep the number
of conflicts low without buffering by using a sufficient
number of banks and ports and by removing the correlation
between accesses to the same bank. Through layout studies,
we show that, in comparison to the minimally ported
design, adding a few ports to each bank only slightly
diminishes the area, delay, and energy savings because the
layout is dominated by bank interconnect for a small
number of ports per bank. For a four-issue superscalar
processor, we reduce the 64-entry regfile size by over a
factor of three, access time by 25 percent, and access
energy by 40 percent, while reducing IPC by under
5 percent with the 8B2R2WYY configuration. For an eight-
issue SMT processor, the area of the 512-entry regfile is
reduced by a factor of seven, access time by 30 percent, and
energy by 60 percent, while IPC is degradated by less than
2 percent with the 16B4R2WYY configuration. We expect
the power savings of using smaller and less ported storage
cells to increase as leakage rises with decreasing feature
size. Even though this banked regfile design exhibits a small
performance penalty, the reductions in register file delay
and power can potentially be used to increase the clock rate
and lead to a more complexity-effective design. The ability
to reduce area and power significantly with minimal
performance degradation should also make this approach
attractive for multiprocessor chips which are designed to
provide the highest possible thread throughput at low cost.

ACKNOWLEDGMENTS

The authors thank Dean Tullsen for providing and helping
them with SMTSIM. This work was funded in part by a US
National Science Foundation (NSF) graduate fellowship, an
NSF CAREER award, grants from the US Defense Ad-
vanced Research Projects Agency (DARPA) PAC/C pro-
gram and the DARPA HPCS project with IBM, and an
equipment donation from Intel.

REFERENCES

[1] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar,
“A Low-Leakage Dynamic Multi-Ported Register File in 0.13 �m
CMOS,” Proc. Int’l Symp. Low Power Electronics and Design
(ISLPED), pp. 68-71, 2001.

750 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

[2] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Redu-
cing the Complexity of the Register File in Dynamic Superscalar
Processors,” Proc. 34th Ann. IEEE/ACM Int’l Symp. Microarchitec-
ture (MICRO-34), Dec. 2001.

[3] E. Borch, E. Tune, S. Manne, and J.S. Emer, “Loose Loops Sink
Chips,” Proc. High Performance Computer Architecture (HPCA),
pp. 299-310, Feb. 2002.

[4] D. Burger and T. Austin, “The Simplescalar Toolset, Version 2.0,”
technical report, Univ. of Wisconsin-Madison, June 1997.

[5] A. Chandrakasan, W.J. Bowhill, and F. Fox, Design of High
Performance Microprocessor Circuits. IEEE Press, 2000.

[6] Unisys Corp., “Scientific Processor Vector File Organization,” US
patent 4,875,161, Oct. 1989.

[7] J.-L. Cruz, A. Gonzalez, M. Valero, and N.P. Topham, “Multiple-
Banked Register File Architectures,” Proc. Int’l Symp. Computer
Architecture (ISCA-27), pp. 316-325, 2000.

[8] DEC, “Vector Register System for Executing Plural Read/Write
Commands Concurrently and Independently Routing Data to
Plural Read/Write Ports,” US patent 4,980,817, Dec. 1990.

[9] K.I. Farkas, P. Chow, N.P. Jouppi, and Z.G. Vranesic, “The
Multicluster Architecture: Reducing Cycle Time through Parti-
tioning,” Proc. 30th Ann. IEEE/ACM Int’l Symp. Microarchitecture
(MICRO-30), pp. 149-159, 1997.

[10] E.S. Fetzer et al., “A Fully-Bypassed 6-Issue Integer Datapath and
Register File on an Itanium Microprocessor,” IEEE J. Solid-State
Circuits, vol. 37, no. 11, pp. 1433-1440, Nov. 2002.

[11] J.A. Fisher, “Very Long Instruction Word Architectures and the
ELI-512,” Proc. 10th Int’l Symp. Computer Architecture (ISCA-10),
pp. 140-150, 1983.

[12] R.E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
vol. 19, no. 2, pp. 24-36, Mar./Apr. 1999.

[13] N.S. Kim and T. Mudge, “Reducing Register Ports Using Delayed
Write-Back Queues and Operand Pre-Fetch,” Proc. 17th Ann. ACM
Int’l Conf. Supercomputing (ICS), pp. 172-182, 2003.

[14] S. Palacharla, N. Jouppi, and J.E. Smith, “Complexity-Effective
Superscalar Processors,” Proc. 24th Int’l Symp. Computer Architec-
ture (ISCA-24), pp. 206-218, June 1997.

[15] I. Park, M.D. Powell, and T.N. Vijaykumar, “Reducing Register
Ports for Higher Speed and Lower Energy,” Proc. 35th Ann. IEEE/
ACM Int’l Symp. Microarchitecture (MICRO-35), Nov. 2002.

[16] R.P. Preston et al., “Design of an 8-Wide Superscalar RISC
Microprocessor with Simultaneous Multithreading,” Int’l Solid-
State Circuits Conf. (ISSCC) Digest and Visuals Supplement, Feb.
2002.

[17] S. Sair and M. Charney, “Memory Behavior of the SPEC2000
Benchmark Suite,” technical report, IBM Research Report, York-
town Heights, N.Y., Oct. 2000.

[18] A. Seznec, E. Toullec, and O. Rochecouste, “Register Write
Specialization Register Read Specialization: A Path to Complex-
ity-Effective Wide-Issue Superscalar Processors,” Proc. 35th Ann.
IEEE/ACM Int’l Symp. Microarchitecture (MICRO-35), Nov. 2002.

[19] G.S. Sohi, S. Breach, and T.N. Vijaykumar, “Multiscalar Proces-
sors,” Proc. 22nd Int’l Symp. Computer Architecture (ISCA-22), 1995.

[20] M. Tremblay, B. Joy, and K. Shin, “A Three Dimensional Register
File for Superscalar Processors,” Proc. Hawaii Intl Conf. System
Sciences (HICSS), Jan. 1995.

[21] J. Tseng and K. Asanovi�cc, “Energy-Efficient Register Access,”
Proc. 13th Symp. Integrated Circuits and Systems Design, Sept. 2000.

[22] D.M. Tullsen, S. Eggers, and H.M. Levy, “Simultaneous Multi-
threading: Maximizing On-Chip Parallelism,” Proc. 22nd Int’l
Symp. Computer Architecture (ISCA-22), 1995.

[23] S. Wallace and N. Bagherzadeh, “A Scalable Register File
Architecture for Dynamically Scheduled Processors,” Proc. Int’l
Conf. Parallel Architectures and Compilation (PACT), Oct. 1996.

[24] D.L. Weaver and T. Germond, The SPARC Architecture Manual/
Version 9. Prentice Hall, Feb. 1994.

[25] V. Zyuban and P. Kogge, “The Energy Complexity of Register
Files,” Proc. 1998 Int’l Symp. Low Power Electronics and Design
(ISLPED), pp. 305-310, Aug. 1998.

[26] V.V. Zyuban and P.M. Kogge, “Inherently Lower-Power High-
Performance Superscalar Architectures,” IEEE Trans. Computers,
vol. 50, no. 3, pp. 268-285, Mar. 2001.

Jessica H. Tseng received the SM degree in
electrical engineering and computer science
from the Massachusetts Institute of Technology
and the BS degree in electrical engineering from
the University of Florida. She is pursuing the
PhD degree in electrical engineering and com-
puter science at the Massachusetts Institute of
Technology. Her research interests include low-
power computer architecture and VLSI design.
She is a US National Science Foundation

Graduate Fellowship recipient and a student member of the IEEE.

Krste Asanovi�cc received the BA degree in
electrical and information sciences from Cam-
bridge University in 1987 and the PhD degree in
computer science from the University of Califor-
nia at Berkeley in 1998. He is an associate
professor in the Department of Electrical En-
gineering and Computer Science at the Massa-
chusetts Institue of Technology (MIT) and a
member of the MIT Computer Science and
Artificial Intelligence Laboratory. His research

interests are computer architecture and VLSI design. He is a member of
the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TSENG AND ASANOVI�CC: A SPECULATIVE CONTROL SCHEME FOR AN ENERGY-EFFICIENT BANKED REGISTER FILE 751

