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RAMP: RESEARCH ACCELERATOR FOR
MULTIPLE PROCESSORS
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THE RAMP PROJECT’S GOAL IS TO ENABLE THE INTENSIVE, MULTIDISCIPLINARY INNOVATION

THAT THE COMPUTING INDUSTRY WILL NEED TO TACKLE THE PROBLEMS OF PARALLEL

PROCESSING. RAMP ITSELF IS AN OPEN-SOURCE, COMMUNITY-DEVELOPED, FPGA-BASED

EMULATOR OF PARALLEL ARCHITECTURES. ITS DESIGN FRAMEWORK LETS A LARGE,

COLLABORATIVE COMMUNITY DEVELOP AND CONTRIBUTE REUSABLE, COMPOSABLE DESIGN

MODULES. THREE COMPLETE DESIGNS—FOR TRANSACTIONAL MEMORY, DISTRIBUTED

SYSTEMS, AND DISTRIBUTED-SHARED MEMORY—DEMONSTRATE THE PLATFORM’S POTENTIAL.

......In 2005, the computer hardware
industry took a historic change of direction:
The major microprocessor companies all an-
nounced that their future products would
be single-chip multiprocessors, and that
future performance improvements would
rely on software-specified parallelism rather
than additional software-transparent paral-
lelism extracted automatically by the micro-
architecture. Several of us discussed this mile-
stone at the International Symposium on
Computer Architecture (ISCA) in June
2005. We were struck that a multibillion-
dollar industry would bet its future on
solving the general-purpose parallel com-
puting problem, when so many have
previously attempted but failed to provide
a satisfactory approach.

To tackle the parallel processing prob-
lem, our industry urgently needs innovative
solutions, which in turn require extensive
codevelopment of hardware and software.
However, this type of innovation currently
gets bogged down in the traditional de-
velopment cycle:

N Prototyping a new architecture in
hardware takes approximately four
years and many millions of dollars,
even at only research quality.

N Software engineers are ineffective until
the new hardware actually shows up,
because simulators are too slow to
support serious software development
activities. Software engineers tend to
innovate only after hardware arrives.

N Feedback from software engineers on
the current production hardware can-
not help the immediate next genera-
tion because of overlapped hardware
development cycles. Instead, the feed-
back loop can take several hardware
generations to close fully.

Hence, we conspired on how to create an
inexpensive, reconfigurable, highly parallel
platform that would attract researchers from
many disciplines—architectures, compilers,
operating systems, applications, and others—
to work together on perhaps the greatest
challenge facing computing in the past
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50 years. Because our industry desperately
needs solutions, our goal is to develop a
platform that would allow far more rapid
evolution than traditional approaches.

RAMP vision
Our hallway conversations led us to the

idea of using field-programmable gate arrays
(FPGAs) to emulate highly parallel architec-
tures at hardware speeds. FPGAs enable very
rapid turnaround for new hardware. You can
tape out a FPGA design every day, and have
a new system fabricated overnight. Another
key advantage of FPGAs is that they easily
exploit Moore’s law. As the number of cores
per microprocessor die grows, FPGA density
will grow at about the same rate. Today we
can map about 16 simple processors onto a
single FPGA, which means we can construct
a 1,000-processor system in just 64 FPGAs.
Such a system is cheaper and consumes less
power than a custom multiprocessor, at
about $100 and 1 W per processor.

Because our goal is to ramp up the rate of
innovation in hardware and software multi-
processor research, we named this project
RAMP (Research Accelerator for Multiple
Processors). RAMP is an open-source project
to develop and share the hardware and
software necessary to create parallel architec-
tures. RAMP is not just a hardware architec-
ture project. Perhaps our most important
goal is to support the software community as
it struggles to take advantage of the potential
capabilities of parallel microprocessors, by
providing a malleable platform through
which the software community can collabo-
rate with the hardware community.

Unlike commercial multiprocessor hard-
ware, RAMP is designed as a research plat-
form. We plan to include research features
that are impossible to include in real hard-
ware systems owing to speed, cost, or prac-
ticality issues. For example, the FPGA design
can incorporate additional hardware to mon-
itor any event in the system. Being able to add
arbitrary event probes, including arbitrary
computation on those events, provides visi-
bility formerly only available in software sim-
ulators, but without the inevitable slowdown
faced by software simulators when introduc-
ing such visibility.

A second example of how RAMP differs
from real hardware is reproducibility. Using
the RAMP Description Language (RDL)
framework, different researchers can con-
struct the same deterministic parallel com-
puting system that will perform exactly the
same way every time, clock cycle for clock
cycle. By using processor designs donated by
industry, RAMP users will start with familiar
architectures and operating systems, which
will provide far more credibility than software
simulations that model idealized processors
or that ignore operating-system effects. RDL
is designed to make constructing a full com-
puter out of RDL-compatible modules easy.
Our target speeds of 100 to 200 MHz are
slower than real hardware but fast enough to
run standard operating systems and large-
scale applications that are orders of magni-
tude faster than software simulators. Finally,
because of the similarities in the design flow
of logic for FPGAs and custom hardware, we
believe RAMP is realistic enough to convince
software developers to start aggressive de-
velopment on innovative architectures and
programming models and to convince hard-
ware and software companies that RAMP
results are relevant.

This combination of cost, power, speed,
flexibility, observability, reproducibility, and
credibility will make the platform attractive
to software and hardware researchers in-
terested in the parallel challenge. In particu-
lar, it allows the research community to revive
the 1980s culture of building experimental
hardware and software systems, which today
has been almost entirely lost because of the
higher cost and difficulty of building hard-
ware.

Table 1 compares alternatives for pursuing
parallel-systems research in academia. The
four options are a conventional shared-
memory multiprocessor (SMP), a cluster, a
simulator, a custom-built chip and system,
and RAMP. The rows are the features of
interest, with a grade for each alternative and
quantification where appropriate. Cost rules
out a large SMP for most academics. The
costs of both purchase and ownership make a
large cluster too expensive for most academics
as well. Our only alternative thus far has been
software simulation, and indeed that has been
the vehicle for most architecture research in

........................................................................

MARCH–APRIL 2007 47



the past decade. As mentioned, software de-
velopers rarely use software simulators, be-
cause they run too slowly, and results might
not be credible. In particular, it’s unclear how
credible results will be to industry when they
are based on simulations of 1,000 processors
running small snippets of applications. The
RAMP option is a compromise among these
alternatives: It is so much cheaper than
custom hardware that it will make highly
scalable systems affordable to academics. It is
as flexible as simulators, allowing rapid
evolution of the state of the art in parallel
computing. And it is so much faster than
simulators that it could actually tempt
software people to try out a new hardware
idea.

This speed also lets architects explore a
much larger space in their research and thus
do a more thorough evaluation of their pro-
posals. Although architects can achieve high
batch simulation throughput using multiple
independent software simulations distribut-
ed over a large computing cluster, this does
not reduce the latency of obtaining a single
key result that can move the research for-
ward. Nor does it help an application devel-
oper trying to debug the port of an applica-
tion to the new target system (the emulated
machine is called the target, and underlying
FPGA hardware is the host). Worse, for
multiprocessor targets, simulation speed, in
both instructions per second per core and

total instructions per second, drops as more
cores are simulated and as operating-system
effects are included, and the amount of
memory required for each node in the host
compute cluster rises rapidly.

RAMP is obviously attractive to a broad set
of hardware and software researchers in paral-
lelism. Some representative research projects
that we believe could benefit from using
RAMP are

N testing the robustness of multiproces-
sor hardware and software under fault
insertion;

N developing thread scheduling and data
allocation and migration techniques for
large-scale multiprocessors;

N developing and evaluating ISAs for
large-scale multiprocessors;

N creating an environment to emulate a
geographically distributed computer,
with realistic delays, packet loss, and
so on (Internet in a box);

N evaluating the impact of 128-bit and
other floating-point representations on
convergence of parallel programs;

N developing and testing hardware and
software schemes for improved security;

N recording traces of complex programs
running on a large-scale multiprocessor;

N evaluating the design of multiprocessor
switches (serial point-to-point, distrib-
uted torus, fat trees);

Table 1. Relative comparison of four options for parallel research. From the architect’s perspective, the most

surprising aspect of this table is that not only is performance not the top concern, it is at the bottom of this

list. The platform just needs to be fast enough to run the entire software stack.

Feature SMP Cluster Simulator Custom RAMP

Scalability (1,000 CPUs) C A A A A

Cost (1,000 CPUs) F ($40M) C ($2M-$3M) A+ ($0M) F ($20M) A ($0.1M-$0.2M)

Cost of ownership A D A D A

Power/space (kW, racks) D (120, 12) D (120, 12) A+ (.1, 0.1) A B (1.5, 0.3)

Development community D A A F B

Observability D C A+ A B+
Reproducibility B D A+ A A+
Reconfigurability D C A+ C A+
Credibility of result A+ A+ D A+ B+/A

Performance (clock) A (2 GHz) A (3 GHz) F (0 GHz) B (0.4 GHz) C (0.1 GHz)

Modeling flexibility D D A B A

Overall grade C C+ B B2 A
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N developing data-flow architectures for
conventional programming languages;

N developing parallel file systems;
N testing dedicated enhancements to stan-

dard processors; and
N compiling software directly into FPGAs.

We believe that RAMP’s upside potential
is so compelling that the platform will create a
‘‘watering hole’’ effect in academic depart-
ments as people from many disciplines use
RAMP in their research. As researchers from
such diverse fields begin using RAMP, con-
versations between disciplines that rarely
communicate may result, ultimately, in
helping to more quickly develop multipro-
cessor systems that are easy to program
efficiently. Indeed, to help industry win its
bet on parallelism, we will need the help of
many people, for the parallel future is not just
an architecture change, but likely a change to
the entire software ecosystem.

RAMP design framework
From the earliest stages of the RAMP

project, it was clear that we needed a stan-
dardized design framework to enable a large
community of users to cooperate and build a
useful library of interoperable hardware
models. This design framework has several
challenging goals. It must support both cycle-
accurate emulation of detailed parameterized
machine models and rapid functional-only
emulations. The design framework should
hide the details in the underlying FPGA emu-
lation substrate from the module designer as
much as possible, so that groups with dif-
ferent FPGA emulation hardware can share
designs and RAMP modules for reuse after
FPGA emulation hardware upgrades. In ad-
dition, the design framework should not
dictate the hardware design language (HDL)
that the developers choose. Our approach was
to develop a decoupled machine model and
design discipline. This discipline is enforced
by the RDL and a compiler to automate the
difficult task of providing cycle-accurate em-
ulation of distributed communicating com-
ponents.1

The RAMP design framework is based on
a few central concepts. A RAMP target model
is a collection of loosely coupled target units
communicating with latency-insensitive pro-

tocols over well-defined target channels.
Figure 1 gives a simple schematic example
of two connected units. In practice, a unit will
be a large component corresponding to tens
of thousands of gates of emulated hard-
ware—for example, a processor with an L1
cache, a DRAM controller, or a network
router stage. All communication between
units is via messages sent over unidirectional
point-to-point interunit channels, where each
channel is buffered to allow units to execute
decoupled from one another.

Partitioning of target models is far simpler
than the classic circuit-partitioning problem
associated with traditional FPGA-based cir-
cuit emulation. Although units will be large,
we expect them to be relatively small com-
pared to the FPGA capacity, so they will
never be partitioned across multiple FPGAs.
A target model is only partitioned at the
channel interfaces, leaving units intact. Chan-
nels connecting units that map to separate
FPGAs are implemented using FPGA-to-
FPGA physical links. Currently, partitioning
is driven by user annotations in RDL, but
eventually we expect to build automatic
partitioning tools.

Each unit faithfully models the behavior of
each target clock cycle in the component. The
target unit models can be developed either as
register-transfer-level (RTL) code in a stan-
dard HDL (currently Verilog, VHDL, and
Bluespec are supported) for compilation onto
the FPGA fabric, or as software models that
execute either on attached workstations or on
hard or soft processor cores embedded within
the FPGA fabric. Many target units taken
from existing RTL code will execute a single
target clock cycle in one FPGA physical clock
cycle, giving a high simulation speed. How-
ever, to save FPGA resources, a unit model
can be designed to take multiple physical host

Figure 1. Basic RAMP communication model.
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clock cycles on the FPGA to emulate one
target clock cycle, or might even use a varying
number of physical clock cycles. Initially, the
whole RAMP host system uses the same
physical clock rate (nominally around
100 MHz), with some higher physical clock
rates in off-chip I/O drivers.

Unit models are synchronized only
through the point-to-point channels. The
basic principle is that a unit cannot advance
by a target clock cycle until it has received
a target clock cycle’s worth of activity on each
input channel, and until the output channels
are ready to receive another target cycle’s
worth of activity. This scheme forms a dis-
tributed concurrent-event simulator, where
the buffering in the channels lets units run at
various physical speeds on the host while
remaining logically synchronized in terms of
target clock cycles. Unit model designers
must produce the RTL code (or gateware) of
each unit in their chosen HDL, and specify
the range of message sizes that each input or
output channel can carry. For each supported
HDL, the RAMP design framework provides
tools to automatically generate a unit wrapper
that interfaces to the channels and provides
target cycle synchronization. The RTL code
for the channels is generated automatically by
the RDL compiler from an RDL description,
which includes a structural netlist specifying
the instances of each unit and how they are
connected by channels.

The benefit of enforcing a standard channel-
based communication strategy between units is
that many features can be provided automat-
ically by the RDL compiler and runtime

system. Users can vary the target latency, target
bandwidth, and target buffering on each
channel at configuration time. The RAMP
configuration tools will also provide the option
of having channels run as fast as the underlying
physical hardware will allow, thus supporting
fast, functional-only emulation. We are also
exploring the option of allowing these param-
eters to be changed dynamically at target system
boot time to avoid rerunning the FPGA syn-
thesis flow when varying parameters for per-
formance studies.

The configuration tool will include sup-
port for interunit channels to be tapped and
controlled to provide monitoring and debug-
ging facilities. For example, by controlling
stall signals from the channels, a unit can be
single stepped. Using a separate, automati-
cally inserted debugging network, invisible to
target system software, messages can be in-
serted and read out from the channels en-
tering and leaving any unit, and all significant
events can be logged. These monitoring and
debugging facilities will provide significant
advantages over running applications on
commercial hardware.

RAMP prototypes
Although most of the participants in the

project are volunteers, we are on a fairly ag-
gressive schedule. Table 2 shows the RAMP
project timeline. We began RAMP develop-
ment using preexisting FPGA boards—see
the ‘‘RAMP hardware’’ sidebar. To seed the
collaborative effort, we are developing three
prototype systems: RAMP Red, RAMP
Blue, and RAMP White. Each of our initial

Table 2. RAMP timeline.

Date Milestone

6 June 2005 Hallway discussions lead to RAMP vision

13 June 2005 The name ‘‘RAMP’’ coined; BEE22 selected as RAMP-1; a dozen people identified to develop RAMP

January 2006 RAMP retreat and RDL tutorial at Berkeley

March 2006 NSF infrastructure grant awarded

June 2006 RAMP retreat at Massachusetts Institute of Technology; RAMP Red running with eight processors on RAMP-1

boards

January 2007 RAMP Blue running with 256 processors on eight RAMP-1 boards

August 2007 RAMP Red, White, and Blue running with 128 to 256 processors on 16 RAMP-1 boards; accurate clock cycle

accounting and I/O model

December 2007 RAMP-2 boards redesigned based on Virtex-5 and available for purchase; RAMP Web site has downloadable

designs
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RAMP hardware

Rather than begin the RAMP project by designing yet another FPGA

board, for the RAMP-1 system we adopted the Berkeley Emulation

Engine.1 BEE2 boards serve as a platform of the first RAMP machine

prototypes and to help us understand our wish list of features for the

next-generation board. The next generation RAMP hardware platform,

currently in design, will be based on a new board design employing the

recently announced Virtex-5 FPGA architecture.

Figure A shows the BEE2 compute module. Each compute module

consists of five Xilinx Virtex-2 Pro-70 FPGA chips, each directly connected

to four DDR2 240-pin DRAM dual in-line memory modules (DIMMs), with

a maximum capacity of 4 Gbytes per FPGA. The four DIMMs are

organized into four independent DRAM channels, each running at

200 MHz (400 DDR) with a 72-bit data interface. Therefore, peak

aggregate memory bandwidth is 12.8 Gbytes per second for each FPGA.

The five FPGAs on the same module are organized into four compute

FPGAs and one control FPGA. The control FPGA has additional global

interconnect interfaces and control signals to the secondary system

components. The connectivity on the compute module falls into two

classes: on-board LVCMOS connections and off-board multigigabit

transceiver (MGT) connections. The local mesh connects the four

compute FPGAs on a 2 3 2 2D grid. Each link between the adjacent

FPGAs on the grid provides over 40 Gbps of data throughput per link. The

four down links from the control FPGA to each of the computing FPGAs

provide up to 20 Gbps per link. These direct FPGA-to-FPGA mesh links

form a high-bandwidth, low-latency mesh network for the FPGAs on the

same compute module, so all five FPGAs can be aggregated to form

a virtual FPGA with five times the capacity.

All off-module connections use the MGTs on the FPGA. Each individual

MGT channel is configured in software to run at 2.5 Gbps or 3.125 Gbps

using 8B/10B encoding. Every four MGTs are channel bonded into

a physical Infiniband 4X (IB4X) electrical connector to form a 10-Gbps,

full-duplex (20 Gbps total) interface. The IB4X connections are AC

coupled on the receiving end to comply with the Infiniband and 10GBase-

CX4 specification.

Using the 4X Infiniband physical connections, the compute modules

can be wired into many network topologies, such as a 3D mesh. For

applications requiring high-bisection-bandwidth random communication

among many compute modules, the BEE2 system is designed to take

advantage of commercial network switch technology, such as Infiniband

or 10G Ethernet. The regular 10/100Base-T Ethernet connection,

available on the control FPGA, provides an out-of-band communication

network for user interface, low-speed system control, monitoring, and

data archival. The compute module runs the Linux OS on the control FPGA

with a full IP network stack.

In our preliminary work developing the first RAMP prototypes, we have

made extensive use of the Xilinx University Program (XUP) Virtex-II Pro

Development System (http://www.xilinx.com/univ/xupv2p.html). As with

the BEE2 board, the XUP board uses Xilinx Virtex-II Pro FPGA

technology—in this case, a single XC2VP30 instead of five XC2VP70s.

The XUP board also includes an FPGA-SDRAM interface (DDR instead of

DDR2) and several I/O interfaces, such as video, USB2, and Ethernet.

Despite its reduced capacity, the XUP board has been a convenient

development platform for key gateware blocks before moving them to the

BEE2 system.

References

1. C. Chang, J. Wawrzynek, and R.W. Brodersen, ‘‘BEE2: A High-

End Reconfigurable Computing System,’’ IEEE Design & Test,

vol. 22, no. 2, Mar.-Apr. 2005, pp. 114-125.

Figure A. BEE2 module photograph (a) and architecture diagram (b).
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prototypes contains a complete gateware and
software configuration of a scalable multi-
processor populated with standard processor
cores, switches, and operating systems. Once
the base system is assembled and software
installed, users will be able to easily run com-
plex system benchmarks and then modify this
working system as desired. Or they can start
from the ground up, using the basic compo-
nents to build a new system. We expect users
to release back to the community any en-
hancements and new gateware and software
modules. A similar usage model has led to the
proliferation of the SimpleScalar framework,
which now covers a range of instruction sets
and processor designs.

RAMP Red
RAMP Red is the first multiprocessor

system with hardware support for transac-
tional memory. Transactional memory trans-
fers the responsibility for concurrency control
from the programmer to the system.3 It
introduces database semantics to the shared
memory in a parallel system, which allows
software tasks (transactions) to execute atom-
ically and in isolation without the use of locks.
Hardware support for transactional memory
reduces the overhead of detecting and enfor-
cing atomicity violations between concur-
rently executing transactions and guarantees
correct execution under all cases.

RAMP Red implements the Stanford
Transactional Coherence and Consistency
(TCC) architecture for transactional memo-
ry.4 The design uses nine PowerPC 405 hard
cores (embedded in the Xilinx Virtex-II-Pro
FPGAs) connected to a shared main memory
system through a packet-switched network.
The built-in data cache in each PowerPC 405
core is disabled and replaced by a custom
cache (emulated in FPGA) with transactional
memory support. Each 32-Kbyte cache buf-
fers the memory locations that are read and
written by a transaction during its execution
and detects atomicity violations with other
ongoing transactions. An interesting feature
of RAMP Red is the use of a transaction com-
pletion mechanism that eliminates the need
for a conventional cache coherence protocol.

From an application’s perspective, RAMP
Red is a fully featured Linux workstation.
The operating system actually runs on just

one of the cores, while the remaining eight
cores execute applications. A light-weight ker-
nel in each application core forwards excep-
tions and system calls to the operating system
core. The programming model is multi-
threaded C or Java with locks replaced by
transactional constructs. RAMP Red includes
an extensive hardware and software frame-
work for debugging, bottleneck identifica-
tion, and performance tuning.

The RAMP Red design has been fully
operational since June 2006. It runs at
100 MHz on RAMP-1, which is 100 times
faster than the same architecture simulated
in software on a 2-GHz workstation. Wee et
al. provide more details of the RAMP Red
design.5 Early experiments with enterprise,
scientific, and artificial-intelligence applica-
tions have demonstrated the simplicity of
parallel programming with transactional
memory, and that RAMP Red achieves
scalable performance. In the future, RAMP
Red will be the basis for further research in
transactional memory, focusing mostly on
software productivity and system software
support.6

RAMP Blue
RAMP Blue is a family of emulated

message-passing machines that can run par-
allel applications written for the Message-
Passing Interface (MPI) standard, or for
partitioned global-address-space languages
such as Unified Parallel C (UPC). RAMP
Blue can also model a networked server
cluster.

The first RAMP Blue prototype was devel-
oped at the University of California, Berke-
ley; Figure 2 shows its hardware platform.
It comprises a collection of BEE2 boards
housed in 2 U chassis and assembled in a
standard 19-inch rack. Physical connection
among the eight boards is through 10-Gbps
Infiniband cables (light-colored cables in
Figure 2). The BEE2 boards are wired in an
all-to-all configuration with a direct connec-
tion from each board to all others through
10-Gbps links. System configuration, debug-
ging, and monitoring take place through
a 100-Mbps Ethernet switch with connection
to each board’s control FPGA (dark wires at
the top of Figure 2). For system management
and control, each board runs a full-featured
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Linux kernel on one PowerPC 405 hardcore
embedded in the control FPGA. Our initial
target applications are the UPC versions of
the NASA Advanced Supercomputing (NAS)
Parallel Benchmarks.

The four user FPGAs per BEE2 board are
configured to hold a collection of 100-MHz
Xilinx MicroBlaze soft processor cores run-
ning uCLinux. We have mapped eight pro-
cessor cores per FPGA. The first prototype,
with 32 user FPGAs, emulates a 256-way
cluster system. In the future, the number of
processor cores can be scaled up through
several means. We will add more BEE2
boards—the simple all-to-all wiring configu-
ration will accommodate up to 17 boards.
We will also add more cores per FPGA—the
current configuration of eight processor cores
per FPGA only consumes 40 percent of the
FPGA’s logic resources. RAMP Blue imple-
ments all necessary multiprocessor compo-
nents within the user FPGAs. In addition to
the soft processor cores, each FPGA holds
a packet network switch (one per core) for
connection to cores on the same and other
FPGAs, shared memory controllers, shared
double-precision floating-point units, and a
shared ‘‘console’’ switch for connection to the
control FPGA.

In RAMP Blue, each processor is assigned
its own DRAM memory space (at least 250
Mbytes per processor). The external memory
interface of the MicroBlaze L1 cache con-
nects to external DDR2 (double-data-rate 2)
DRAM through a memory arbiter, as each
DRAM channel is shared among a set of
MicroBlaze cores. Because each BEE2 user
FPGA has four independent DRAM mem-
ory channels, four processor cores would
share one channel in the maximum-sized
configuration (16 processor cores per
FPGA). With each processor running at
100 MHz and each memory channel run-
ning a 200-MHz DDR 72-bit data interface,
each processor can transfer 72 bits of data at
100 MHz, which is more than each processor
core can consume even in our maximum-
sized configuration. A simple round-robin
scheme is used to arbitrate among the cores.

The processor-processor network switch
currently uses a simple interrupt-driven pro-
grammed I/O approach. A Linux driver pro-
vides an Ethernet interface so that applica-

tions can access the processor network via tra-
ditional socket interfaces. We are planning a
next-generation network interface with direct
memory access through special ports in the
memory controller.

A 256-core (eight per FPGA) version of
the RAMP Blue prototype has been fully
operational, running the NAS Parallel
Benchmark suite, since December 2006.
This initial prototype was not implemented
using RDL, but a newer version based on
RDL has been operational since February
2007. We are currently measuring and
tuning the prototype’s performance.

RAMP White
RAMP White is a distributed-shared-

memory machine that will demonstrate
RAMP’s open-component nature by in-
tegrating modules from RAMP Red, RAMP
Blue, and contributions from other RAMP
participants. The initial version is being
designed and integrated at the University of

Figure 2. Photograph of RAMP Blue prototype.
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Texas at Austin. The RAMP White effort
began in the summer of 2006, somewhat
after Red and Blue, and will be implemen-
ted in the following phases.

1. Global distributed-shared memory with-
out caches. All requests to remote global
memory will be serviced directly from
remote memory. Communication will
take place over a ring network.

2. Ring-based snoopy coherency. The basic
infrastructure of the cache-less system
will be expanded to include a snoopy
cache that will snoop the ring.

3. Directory-based coherency. A directory-
based coherence engine eliminates the
need for each cache to snoop all transac-
tions but will use the same snoopy cache.

RAMP White will eventually be composed
of processor units from the University of
Washington and RAMP Blue teams that will
be connected through a simple ring network
(Figure 3). For expediency, the initial RAMP
White will use embedded PowerPC proces-
sors. Each processor unit will contain one
processor connected to an intersection unit
that provides connections to a memory con-
troller (MCU), a network interface unit
(NIU), and I/O if the processor unit supports
it. The NIU will be connected to a simple
ring network.

The intersection unit switches requests and
replies between the processor, local memory,
I/O units, and the network. The initial inter-

section unit is very simple. Memory requests
from the processor are divided into local
memory requests, global memory requests
(both handled by memory), I/O requests
(handled by the I/O module), and remote
requests (handled by the NIU). Remote re-
quests from the NIU are forwarded to the
memory. Because the initial version of
RAMP White does not cache global loca-
tions, incoming remote requests need not be
snooped by the processor.

I/O will be handled by a centralized I/O
subsystem mapped into the global address
space. Each processor will run a separate
SMP-capable Linux that will take locks to
access I/O. The global memory support
then transparently handles shared I/O. Later
versions will add a coherency support using
a soft cache (emulated in FPGA). RAMP
White’s first snoopy cache will be based on
RAMP Red’s snoopy cache. It is possible
that some or all of the data in the emulated
cache will actually reside in DRAM if there
is not sufficient space in the FPGA itself. In
the coherent versions of RAMP White, the
intersection unit passes all incoming remote
requests to the coherent cache for snooping
before allowing the remote request to pro-
ceed to the next stage.

RAMP represents the research commu-
nity’s return to building hardware-

software systems. RAMP is designed to em-
body the right trade-offs of cost, perfor-
mance, density, and visibility for system

Figure 3. High-level view of RAMP White.
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research. Moreover, since the system is not
frozen, we can use it to both rapidly evolve
and spread successful ideas across the
community. Research in hardware architec-

ture, operating systems, compilers, applica-
tions, and programming models will all
benefit. We are planning a full public release
of the RAMP infrastructure in 2007. MICRO

............................................................................................................................................................................................................................................................................

Simulation and emulation technologies

Early computer architecture research relied on convincing argument or

simple analytical models to justify design decisions. Beginning in the

early 1980s, computers became fast enough that simple simulations of

architectural ideas could be performed. By the 1990s, and onward,

computer architecture research relied extensively on software simulation.

Many sophisticated software simulation frameworks exist, including

SimpleScalar,1 SimOS,2 RSIM,3 Simics (http://www.virtutech.com),

ASIM,4 and M5.5 As our field’s research focus shifts to multicore,

multithreading systems, a new crop of multiprocessor full-system

simulators with accurate operating-system and I/O support (for example,

see http://www.ece.cmu.edu/simflex/flexus.html) have more recently

emerged.6,7 Software simulation has significantly changed the com-

puter architecture research field because it is comparably easy to

use, and it can be parallelized effectively by using separate program

instances to simultaneously explore the design space of architectural

choices.

Nevertheless, even for studying single-core architectures, software

simulation is slow to generate a single data point. Detailed simulations of

out-of-order microprocessors typically execute in thousands of instruc-

tions per second. Multiprocessor simulation tightens the performance

bottleneck because the simulators slow down commensurably as the

number of studied cores continues to rise. Several researchers have

explored mechanisms to speed up simulation. The first of these

techniques relied on modifying the inputs to benchmarks used, to reduce

their total running time.8 Later, researchers recognized that the repetitive

nature of program execution could be exploited to reduce the amount of

time on which a detailed microarchitectural model is exercised. The first

technique to exploit this was basic block vectors.9 Later researchers

proposed techniques that continuously sample program execution to find

demonstrably accurate subsets.10

But the challenges facing our field will find solutions only by

innovating both hardware and software. To engage software researchers,

proposed new architectures must be usable for real software

development. The possibility of FPGA prototyping and simulation

acceleration has garnered the interest of computer architects for as

long as the technology has existed. Unfortunately, until recently, this

avenue has met only limited success, because of the restrictive capacity

of earlier-generation FPGAs and the relative ease of simulating

uniprocessor systems in software. An example of a large-scale FPGA

prototyping effort is the Rapid Prototype Engine for Multiprocessors

(RPM).11 The RPM system enabled flexible evaluation of the memory

subsystem, but it was limited in scalability (eight processors) and did not

execute operating system code. With current FPGA capacity, RAMP and

similar efforts stand to provide a much needed, scalable research vehicle

for full-system multiprocessor research.
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design. Asanović has a BA in electrical and
information sciences from the University of
Cambridge and a PhD in computer science
from the University of California, Berkeley.
He is a member of the IEEE and the ACM.

Direct questions and comments about
this article to John Wawrzynek, 631 Soda
Hall, Computer Science Division, Univer-
sity of California, Berkeley, CA 94720-
1776; johnw@eecs.berkeley.edu.

For further information on this or any

other computing topic, please visit our

Digital Library at http://www.computer.

org/publications/dlib.

........................................................................

MARCH–APRIL 2007 57


