
NeuroVectorizer: End-to-End Vectorization with Deep
Reinforcement Learning

Ameer Haj-Ali∗

ameerh@berkeley.edu

University of California, Berkeley

USA

Nesreen K. Ahmed
Ted Willke

nesreen.k.ahmed@intel.com

ted.willke@intel.com

Intel Labs

USA

Yakun Sophia Shao
Krste Asanovic

Ion Stoica
ysshao@berkeley.edu

krste@berkeley.edu

istoica@berkeley.edu

University of California, Berkeley

USA

Abstract

One of the key challenges arising when compilers vectorize

loops for today’s SIMD-compatible architectures is to decide

if vectorization or interleaving is beneficial. Then, the com-

piler has to determine the number of instructions to pack

together and the interleaving level (stride). Compilers are

designed today to use fixed-cost models that are based on

heuristics to make vectorization decisions on loops. How-

ever, these models are unable to capture the data dependency,

the computation graph, or the organization of instructions.

Alternatively, software engineers often hand-write the vec-

torization factors of every loop. This, however, places a huge

burden on them, since it requires prior experience and sig-

nificantly increases the development time.

In this work, we explore a novel approach for handling

loop vectorization and propose an end-to-end solution using

deep reinforcement learning (RL). We conjecture that deep

RL can capture different instructions, dependencies, and data

structures to enable learning a sophisticated model that can

better predict the actual performance cost and determine

the optimal vectorization factors. We develop an end-to-end

framework, from code to vectorization, that integrates deep

RL in the LLVM compiler. Our proposed framework takes

benchmark codes as input and extracts the loop codes. These

loop codes are then fed to a loop embedding generator that

learns an embedding for these loops. Finally, the learned

embeddings are used as input to a Deep RL agent, which

∗Part of this workwas donewhile AmeerHaj-Ali was in a summer internship

at Intel Labs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CGO ’20, February 22ś26, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7047-9/20/02.

https://doi.org/10.1145/3368826.3377928

dynamically determines the vectorization factors for all the

loops. We further extend our framework to support ran-

dom search, decision trees, supervised neural networks, and

nearest-neighbor search.We evaluate our approaches against

the currently used LLVM vectorizer and loop polyhedral op-

timization techniques. Our experiments show 1.29 × −4.73×

performance speedup compared to baseline and only 3%

worse than the brute-force search on a wide range of bench-

marks.

CCS Concepts · Software and its engineering→Com-

pilers.

Keywords Deep Reinforcement Learning, Code Optimiza-

tion, LLVM, Automatic Vectorization.

ACM Reference Format:

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao,

Krste Asanovic, and Ion Stoica. 2020. NeuroVectorizer: End-to-End

Vectorization with Deep Reinforcement Learning. In Proceedings

of the 18th ACM/IEEE International Symposium on Code Generation

and Optimization (CGO ’20), February 22ś26, 2020, San Diego, CA,

USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3368826.3377928

1 Introduction

Modern computers typically have vector instructions that

perform multiple basic operations simultaneously, such as

Intel Advanced Vector Extensions (AVX) [20]. Converting

a computer program from a scalar implementation, which

processes a single pair of operands at a time to a vector

implementation, which performs a single operation on mul-

tiple data (SIMD) items at once is called vectorization, and is

critical to enhancing the performance of compute-intensive

programs for modern computers.

Loops are among the most commonly vectorized parts

of code. Loop vectorization is done by defining the vector-

ization factor (VF) and the interleaving factor (IF) [25]. VF

determines how many instructions to pack together from

different iterations of the loop. IF determines the stride of

the memory accesses of the packed instructions. IF allows

242

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3368826.3377928


CGO ’20, February 22ś26, 2020, San Diego, CA, USA Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and Ion Stoica

vectorization to be performed on non-consecutive addresses,

which are generally referred to as non-unit stride accesses.

In most C and C++ compilers it is possible to use intrin-

sic pragmas or compiler passes to manually vectorize loops

by setting the VF and IF. However, manual vectorization is

labor-intensive, error-prone, and results in code that is dif-

ficult to maintain and port. Alternatively, several solutions

for automatic vectorization and loop optimization have been

proposed. The current vectorizer used in LLVM and proposed

improvements [37, 38], rely on linear and constant-cost mod-

els to predict the vectorization factors. Unfortunately, these

cost models do not consider the computation graph and

focus on estimating the cost of different instructions with

predefined heuristics. Another commonly used approach is

Polly [8]. Polly uses loop polyhedral analysis, which relies on

an abstract mathematical representation, namely equations

and matrices, to represent loops as polytopes. The polytope

representation simplifies the implementation of loop opti-

mizations, though to date the main optimizations in Polly

are tiling and loop fusion to improve data locality.

Machine learning is yet another recent approach that has

been proposed for automatic vectorization [35]. While this

approach improves the cost models implemented by existing

compilers, they use hand-engineered heuristics to extract

features from the assembly code, such as arithmetic inten-

sity. Unfortunately, these features are typically not sufficient

to fully capture the code functionality. To overcome this

challenge, [4] proposed an end-to-end solution that relies

on deep supervised learning. However, supervised learning

methods require labels to train. These labels are not always

available and it can be time-consuming to find them. Further-

more, optimizing for multiple objectives with large search

spaces can be challenging for supervised learning methods.

A human vectorization expert can determine the optimal

vectorization factors, i.e., VF and IF for a specific hardware

architecture by examining the computation graph, function-

ality, operations, and loop bodies in the text code. Similarly,

in this paper, we use a code embedding generator that reads

the text similar to a human expert, "understands" it and then

generates an embedding that represents it. We use the gen-

erated embedding as an input to another neural network

that can learn a mapping from this embedding to optimal

vectorization factors similar to those learned by a human

expert. This approach efficiently addresses the vectorization

challenge end-to-end: from code to optimal factors, enabling

the co-optimization of multiple objectives while preserving

code correctness.

This paper makes the following contributions:

• A comprehensive data set of more than 10,000 syn-

thetic loop examples.

• An end-to-end deep reinforcement learning (RL) [36]

based auto-vectorization method.

• An extensible, open-source1 framework that integrates

learning code embedding with multiple machine learn-

ingmethods tomake vectorization predictions on loops.

We explore using random search, supervised learning

methods, i.e., nearest-neighbor search (NNS) [32], deci-

sion trees [31], and supervised fully connected neural

network (FCNNs), and contextual bandits based on

deep RL.

• Rigorous evaluations across different learning hyper-

parameters and benchmark suites to show the effec-

tiveness of our approaches versus the currently used

cost model, as well as Polly. Our results show 1.29 ×

−4.73× average performance speedup and only 3%

worse than the brute-force solution.

The rest of the paper is organized as follows. In Section 2

motivation and background for using deep RL to automati-

cally vectorize loops is given. The framework for automatic

vectorization with deep RL is proposed in Section 3 and eval-

uated on a wide range of benchmarks in Section 4. Future

directions and related work are given in Sections 5 and 6,

respectively. The paper is concluded in Section 7.

2 Motivation and Background

2.1 Vectorization Characterization

The vectorization is critical to enhancing the performance

of compute-intensive workloads in modern computers. All

the dedicated vector machines and modern CPUs that sup-

port vector instructions rely on vectorization to enhance the

performance of such workloads.

Loops are among the most commonly vectorized parts of

codes. Loop vectorization is done by setting the VF and the

IF, which respectively determine the number of instructions

to pack together and the stride. Appropriately setting the

values of VF and IF for loops is cumbersome as it depends

on many parameters, such as the instructions in the loop

body, the stride, the underlying hardware architecture, the

computations graph, and the functionality.

To understand this challenge and motivate this work we

take a simple vector dot product kernel function:

int vec[512] __attribute__((aligned(16)));

__attribute__((noinline))

int dot_product () {

int sum = 0;

for(int i = 0; i<512; i++){

sum += vec[i]*vec[i];

}

return sum;

}

To eliminate noise and variance in results we run this kernel

one million times and average the execution time. We run

the kernel on 16 GB 2133MHz LPDDR3memory and 2.7 GHz

(up to 4.5 GHz) Intel 4-Core i7-8559U [14], which supports

AVX. Figure 1 shows the performance of this kernel after a

1https://github.com/intel/neuro-vectorizer.

243

https://github.com/intel/neuro-vectorizer


NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning CGO ’20, February 22ś26, 2020, San Diego, CA, USA

Figure 1. Performance of the dot product kernel for different VFs and IFs, normalized to the baseline cost model implemented

in LLVM. The best VF and IF corresponding to the baseline cost model are (VF = 4, IF = 2).

Figure 2. Performance of brute-force search of LLVM’s vec-

torizer test suite, normalized to the baseline cost model im-

plemented in LLVM.

brute-force search for different VFs and IFs normalized to the

baseline cost model implemented in LLVM. The best VF and

IF corresponding to the baseline cost model are (VF = 4, IF =

2). While the baseline improved the performance by 2.6×

when compared to the unvectorized code (VF = 1, IF = 1),

we can still see that 26 out of 35 possible factors improve

over the baseline. This improvement is maximized by (VF =

64, IF = 8) which achieves up to 20% better performance

than the baseline.

To further motivate this work, we evaluate the vector-

ization test suite used in the LLVM base code2, which tests

the cost model of the baseline vectorizer in LLVM. We run

a brute-force search on all the possible VFs and IFs. The

performance of the optimal vectorization normalized to the

baseline is illustrated in Figure 2. In all the tests, the optimal

2The test suite is available on: https://github.com/llvm/llvm-test-

suite/tree/master/SingleSource/UnitTests/Vectorizer.

vectorization performed better than the baseline. This perfor-

mance gap increases with more complicated tests reaching

up to 1.5×. These abstract results on simple tests show that

there is room for improvement for the current baseline cost

model.

2.2 State-of-the-Art Auto-Vectorzation

Most C and C++ compilers allow the users to manually de-

termine the VF and the IF in their code. This, however, is

error-prone, time-consuming and often not optimal. Thus,

many works have been proposed in the past to address the

automatic vectorization challenge. For example, Polly [8]

uses an abstract mathematical representation based on inte-

ger polyhedra to analyze and optimize the memory access

pattern of a program. Polly performs classical loop transfor-

mations, especially tiling and loop fusion to improve data-

locality. These transformations also simplify vectorization

decisions for the compiler. Accordingly, to date, the main

optimizations in Polly are tiling and loop fusion to improve

data locality.

Prior work [35] represented the code characteristics, by us-

ing hand-engineered heuristics extracted from the assembly

code, such as arithmetic intensity and used it in conjunction

with supervised learning to predict the vectorization factors.

Unfortunately, these features are typically not sufficient to

fully capture the code functionality [5]. To overcome this

challenge, [4] proposed an end-to-end solution that relies

on deep supervised learning. However, supervised learning

methods require labels to train and finding these labels can

be time-consuming. Furthermore, optimizing for multiple

objectives with large search spaces can be challenging for

supervised learning methods.

To appropriately set the VF and IF for the loops, it is nec-

essary to fully learn the characteristics of the code and then

use these characteristics to predict the optimal VF and IF.

In other words, it is necessary to extract the loops from the

244

https://github.com/llvm/llvm-test-suite/tree/master/SingleSource/UnitTests/Vectorizer
https://github.com/llvm/llvm-test-suite/tree/master/SingleSource/UnitTests/Vectorizer


CGO ’20, February 22ś26, 2020, San Diego, CA, USA Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and Ion Stoica

Figure 3. The proposed framework for automatic vectorization with deep RL. The programs are read to extract the loops. The

loop texts are fed to the code embedding generator to generate an embedding. The embedding is fed to the RL agent. The RL

agent learns a policy that maps this embedding to optimal vectorization factors by injecting compiler pragmas and compiling

the programs with Clang/LLVM to gather the rewards: the execution time improvements.

Figure 4. An example of the automatically injected VF and IF pragmas by the RL agent.

code, characterize them, and use this characterization to pre-

dict the optimal factors. Therefore, we propose and develop

a framework that accomplishes this goal by extracting the

loops from the code, learning an embedding for these loops

and learning a mapping from this embedding to the optimal

VF and IF in an end-to-end fashion with RL. Unlike super-

vised learning methods, deep RL can be tuned to co-optimize

multiple objectives and does not require a brute-force search

and thus it can be more sample efficient.

2.3 Deep Reinforcement Learning for

Auto-Vectorization

One of the promising machine learning approaches is RL,

in which an agent learns by continually interacting with an

environment [15]. Using a neural network in conjunction

with RL is called deep RL. Deep models allow RL algorithms

to solve complex problems in an end-to-end fashion, han-

dle unstructured environments, learn complex functions, or

predict actions in states that have not been visited in the

past. Deep RL is gaining wide interest recently due to its

success in robotics, Atari gameplay, and superhuman capa-

bilities [6, 12, 16, 22, 26]. Deep RL was the key technique

behind defeating the human European champion in the game

of Go, which has long been viewed as the most challenging

of classic games for artificial intelligence [34].

In RL, the agent observes the state of the environment, and

based on this state/observation takes an action. The ultimate

goal is to compute a policy (π ∗)śa mapping between the

environment states and actionsśthat maximizes expected

reward:

π
∗
= argmax

π

Eτ∼π (τ ) [τ ] . (1)

where τ is a sequence of states and actions that define a

single episode.

If the number of steps the RL agent has to take before

the environment terminates is one, the problem is called

Contextual Bandits. In Contextual Bandits the learner tries

to find a single best action in the current state. It involves

learning to search for best actions and trial-and-error.

One of the promising deep RL methods to derive a good,

stable, and easy to use policy is proximal policy optimization

245



NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning CGO ’20, February 22ś26, 2020, San Diego, CA, USA

(PPO) [33]. PPO computes a gradient update at each step that

minimizes the cost function while ensuring the deviation

from the previous policy is relatively small.

There are multiple ways to predict the VF and IF from the

code embedding. It is possible to use supervised learning

methods for example. This, however, would require know-

ing the labels, i.e., optimal VF and IF for every input loop

embedding. To find these labels, it is necessary to run a brute-

force search on all the possible VFs and IFs. This might work

but can be impractical for a large number of samples. To

overcome this challenge we use RL. What distinguishes RL

from other machine learning approaches is the presence of

self-exploration and exploitation, and the tradeoff between

them [36]. In our case, RL can learn with fewer samples than

that required in the supervised learning methods and can

co-optimize for multiple objectives such as compilation time,

code size, and execution time.

3 The Proposed Framework for Automatic
Vectorization

The proposed framework for automatic vectorization with

deep RL and its components are illustrated in Figure 3. The

directory of code files is fed to the framework as text code.

This code is fed to an automatic loop extractor. The extrac-

tor finds and outputs all the loops and their contexts in all

the source codes. These outputs are fed to a code embed-

ding generator to learn and generate an embedding. The

latter is fed to the deep RL agent to predict the vectoriza-

tion factors. The agent automatically injects vectorization

pragmas as shown in Figure 4. The agent then compiles the

program with clang/LLVM to gather the execution time im-

provements, which are used as rewards to the RL agent. Once

the model is trained it can be plugged in as-is for inference

without further retraining3. Note that our framework cannot

introduce new errors in the compiled code. Our framework

injects pragmas only. These pragmas are used as hints to

make vectorization decisions on the loops. However, some-

times the compiler can decide not to consider these pragmas

if it is not feasible. For example, predicates and memory de-

pendency can hinder reaching high VF and IF. In that case,

if the agent accidentally injected bad pragmas, the compiler

will ignore it.

It is also possible to vectorize from the command line by

giving the passes -force-vector-width=VF and -force-vector-

interleave=IF. However, we do not use this option as it re-

stricts us to use a single VF and IF pair for the entire code,

which is far from being optimal. Furthermore, the pragma is

injected for the most inner loop in the case of nested loops.

Next, we discuss the details of each component in the pro-

posed framework.

3It can still be beneficial to keep online training activated so that when

completely new loops are observed, the agent can learn how to optimize

them too.

3.1 Code Embedding

The ultimate goal of the code embedding generator is to

learn a function that maps the input loop codes to a point in

a latent multidimensional space where similar loop codes are

mapped to points close to each other in the latent multidi-

mensional space. This can allow the RL agent to make similar

vectorization decisions on similar codes using the learned

embedding. There are multiple ways to generate/learn an

embedding for the input code. One example is to use Polly’s

mathematical representation of loops as an embedding. We

see this as a potential future direction for this work. Another

example is to use a neural network model pretrained with

labels that describe the functionality, e.g., matrix multiplica-

tions, dot product, convolution, etc.

In this work we use code2vec [1]. Code2vec is a neural

network model that relies on natural language processing [3]

and attention [40] for representing snippets of code as con-

tinuously distributed vectors. Code2vec represents a code

snippet as a single fixed-length code vector, which can be

used to predict the semantic properties of the snippet. This

vector is composed of 340 features that embed the program

code based on the mapping the code2vec neural network

learned. This vector captures many characteristics of the

code, such as semantic similarities, combinations, and analo-

gies. The code is first decomposed to a collection of paths in

its abstract syntax tree. Then, the network simultaneously

learns the atomic representation of each path while learning

how to aggregate a set of them.

3.2 The RL Environment Definition

To learn a good policy, it is necessary to appropriately define

actions, rewards, and states. We define the agent’s reward

as follows:

reward = (tbaseline − tRL)/tbaseline , (2)

where tbaseline is the execution time when compiled with

the currently implemented baseline cost model in LLVM and

tRL is the execution time when compiled with the injected

pragmas by the RL agent.We normalize the execution time by

tbaseline so that our reward metric is robust to the variations

in the programs’ execution times. We also use tbaseline as

a bias in our reward so that a positive reward means the

current configuration improves over the baseline. This also

reduces the variance in the learned policy.

An action picks the VF and the IF, respectively, from the

following values:

VF ∈ [20, 21, 22, ...,MAX_VF],

IF ∈ [20, 21, 22, ...,MAX_IF],
(3)

where MAX_VF and MAX_IF are respectively the maximum

VF and IF supported by the underlying architecture. Note

that the actions for VF and IF can be defined to have val-

ues that are not powers of two. Here they were defined as

246



CGO ’20, February 22ś26, 2020, San Diego, CA, USA Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and Ion Stoica

powers of two only because this is what LLVM currently

supports. Initially, we trained two agents, one that predicts

VF and the other predicts IF independently. However, from

our experiment combining these two agents into one agent

with a single neural network that predicts the VF and IF

simultaneously performed better. This also aligns with the

fact that IF and VF are directly correlated, and in the LLVM

compiler code they are defined as a function of each other.

The states of the RL agent were defined as the vector out-

put embedding from the code embedding generator. For the

inputs of the code embedding generator, we experimented

with different snippets of the loop bodies and observed that

for nested loops, feeding the loop body of the outermost loop,

which also includes the bodies of the inner loops, performed

better than feeding the body of the most inner loop only.

This is mainly because the entire loop nest better captures

the functionally of the code, and reveals the access patterns

and strides.

3.3 Dataset Description

Neural networks require many samples for training. We first

tried to train our model with long-running benchmarks that

include code that is not restricted to loops only. It took a long

time to train since for every pragma injected for a loop the

whole program has to be recompiled and executed. Even if

we could overcome the challenge of long execution time with

enough resources, the number of open-source benchmarks

available for training is very small [5].

To speed up the training, and make it more efficient, we

built a dataset that includes loops only. We built genera-

tors that generate more than 10,000 synthetic loop examples

automatically from the LLVM vectorization test-suite. For

example, some new tests are made by changing the names of

the parameters, which was crucial for reducing noise in the

code embedding generator as often the names of the param-

eters might bias the embedding. Other examples included

the stride, the number of iterations, the functionality, the in-

structions, and the number of nested loops. Below are some

of the loop examples in the dataset and the (commented)

pragma line that the RL agent will inject:

/* Example #1 */

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (i = 0; i < N-1; i+=2) {

assign1[i] = (int) short_a[i];

assign1[i+1] = (int) short_a[i+1];

assign2[i] = (int) short_b[i];

assign2[i+1] = (int) short_b[i+1];

assign3[i] = (int) short_c[i];

assign3[i+1] = (int) short_c[i+1];

}

/* Example #2 */

for (i=0; i<M; i++) {

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (j=0; j<N; j++) {

G[i][j] = x;

}

Figure 5. The distribution of optimal VF and IF with brute-

force search for different programs in the dataset.

}

/* Example #3 */

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (i=0; i<N*2; i++){

int j = a[i];

b[i] = (j > MAX ? MAX : 0);

}

/* Example #4 */

for (i = 0; i < M; i++){

for (j = 0; j < L; j++){

float sum = 0;

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (k = 0; k < N; k++) {

sum += alpha*A[i][k] * B[k][j];

}

C[i][j] = sum;

}

}

/* Example #5 */

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (i = 0; i < N/2-1; i++){

a[i] = b[2*i+1] * c[2*i+1] - b[2*i] * c[2*i];

d[i] = b[2*i] * c[2*i+1] + b[2*i+1] * c[2*i];

}

Figure 5 shows the distribution of optimal vectorization fac-

tors when running a brute-force search with MAX_VF = 16

and MAX_IF = 8 on the dataset. While these loops do not

represent all the existing loops, the results show that differ-

ent loops have different optimal VF and IF and to guarantee

optimal performance, all combinations of VF and IF should

be considered. Interestingly, the factors with the highest

percentage of programs are (VF = 4, IF = 2). From our ex-

periments, these factors were the default values the baseline

cost model also outputted.

3.4 Handling Long Compilation Time

During training, some of the programs took a long time to

compile, mainly when the agent was trying to vectorize more

than plausible. Long compilation time with limited resources

247



NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning CGO ’20, February 22ś26, 2020, San Diego, CA, USA

can slow down the training. To overcome this, we limited

the compilation time to ten times the time it takes to compile

a program with the baseline cost model. If the program took

longer than that to compile, we gave a penalty reward of −9

(equivalent to assuming it takes ten times the execution time

of the baseline) so that the agent will learn not to overesti-

mate the vectorization and avoid it. From our experiments

on the programs that took a relatively long time to compile,

eventually after waiting the necessary time for them to com-

pile, the achieved performance was not better than that of

all the other possible vectorization configurations. In some

contexts, users might care about compile-time when evaluat-

ing the performance of programs. Our reward definition can

incorporate that too so that the agent can simultaneously

optimize for more than one objective. For example, one can

allow a long compilation time but penalize for it. The reward

can also be defined as a combination of the compilation time,

execution time, generated assembly code size, etc.

4 Evaluation

The proposed framework is evaluated following the method-

ology mentioned in Section 2. For code2vec we use the open-

source code and modify it to work with our RL agent imple-

mentation. To run our RL algorithms we use RLlib [18] and

Tune [19], open-source libraries for RL that offer, high scala-

bility, hyper-parameter tuning and a unified API for a variety

of applications. RLlib and Tune are built on top of Ray [23],

a high-performance distributed execution framework tar-

geted at large-scale machine learning and RL applications.

We first train the framework with the RL agent and code2vec

until convergence. Then we also run a brute-force search

on the dataset to find the best vectorization factors and use

them as labels for NNS, the decision tree and the supervised

FCNN. Since the brute-force search requires a long time to

run, we limit our training set to 5,000 samples and use this

set for the rest of our evaluation. To report performance we

take twelve completely different benchmarks from the test

set. These benchmarks combine completely different bench-

marks from the LLVM test-suite. These benchmarks include

loops with different functionality and access patterns. For

example, predicates, memory accesses with different strides,

bitwise operations, unknown loop bounds, if statements, un-

known misalignment, multidimensional arrays, summation

reduction, type conversions, different data types, etc. We

compare the performance of our framework versus Polly

and the baseline cost model.

We start with a 64 × 64 FCNN, with training batch size of

4,000, a learning rate of 5e-5 - a hyperparameter which deter-

mines to what extent newly acquired information overrides

old information - and discrete actions. We then experiment

with changing one parameter at a time. For discrete actions,

the neural network picks two integer numbers that index

into the arrays of possible VFs and IFs. We experiment with

different hyperparameters. Figure 6 shows a hyperparameter

sweep over different hyperparameters as function of number

of training steps, i.e., compilations. We train up to 500,000

steps to see whether more training can get to better rewards,

but it is clear the policy converges with much fewer steps.

These results show that the current framework is robust

to noise and different parameters. When the learning rate

was set to 5e-5 the reward mean reached the maximum the

fastest. For learning rate 5e-3 the reward mean never reached

a higher maximum than that of the smaller learning rates

and the training loss was the highest. Minor differences were

observed for the different FCNN architectures. We also tried

single hidden layer networks and deeper networks and the

results were similar so they were not included in the figures

for clarity. The policy converged with fewer samples as the

batch size was decreased. We also experimented with smaller

batch sizes and they resulted in unstable policies that did

not outperform the performance when the batch size was

set to 500.

The results also show that the policy converged and ar-

rived at a highly rewarding (higher than 0 means better

than the baseline on average based on the reward definition

described in Section 3.2) state with 5,000 samples (for the

lowest batch size); 35× less than that required for a brute-

force search or a supervised learning method. It is important

to point out that this training is performed once and later the

framework can be used for inference, which requires a single

step only, similar to the baseline cost model. By contrast, a

brute-force search would require searching again.

Figure 7 shows the reward mean and total training loss

as function of number of training steps for different action

space definitions. We experimented with three actions space

definitions: 1 discrete action space where the agent picks

two integer numbers that correspond to indices in the arrays

of VFs and IFs. 2 Continuous action space where the agent

picks one continuous number that encodes both the VF and

IF. 3 Continuous action space where the agent picks two

continuous numbers that encode both the VF and IF. The

numbers in the continuous action spaces are rounded to the

closest integers. The results show that the discrete action

space performs the best.

The performance on different benchmarks for the baseline,

random search, Polly, decision tree, NNS, supervised FCNN,

and RL and brute-force search are shown in Figure 8. RL out-

performed the baseline by 2.67× on average and achieved per-

formance only 3% worse than that of the brute-force search.

The performance differed between the different benchmarks

based on how much vectorization the program can absorb.

NNS and decision trees also performed well, achieving re-

spectively 2.65× and 2.47× better than the baseline. This

shows that the embedding learned by the code embedding

generator during the end-to-end training is good so that

other learning methods that cannot be trained end-to-end

can use this embedding and perform well.

248



CGO ’20, February 22ś26, 2020, San Diego, CA, USA Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and Ion Stoica
R

e
w

a
rd

 M
e

a
n

Lr=5e-3
Lr=5e-4
Lr=5e-5

T
ra

in
in

g
 L

o
ss

Reward Mean for Different Learning Rates Training Loss for Different Learning Rates

Lr=5e-3
Lr=5e-4
Lr=5e-5

R
e

w
a

rd
 M

e
a

n

T
ra

in
in

g
 L

o
ss

Reward Mean for Different FCNN Architectures Training Loss for Different FCNN Architectures

32x32
64x64
128x128

32x32
64x64
128x128

Number of Training Steps Number of Training Steps

Number of Training Steps Number of Training Steps

Reward Mean for Different Batch Sizes Training Loss for Different Batch Sizes

Number of Training Steps Number of Training Steps

R
e

w
a

rd
 M

e
a

n

T
ra

in
in

g
 L

o
ss

500
1000
2000
4000

500
1000
2000
4000

Figure 6. Reward mean and training loss for different learning rates, FCNN architectures, and batch sizes.

Random search performed much worse than the baseline.

This shows that the framework learned a structure in the

observations that manifested in the vectorization decisions it

made. Polly outperformed the baseline by 17% but performed

56% worse than the proposed RL solution. For benchmark

#10, Polly interestingly outperforms the brute-force search.

This is because Polly performs loop transformations that

optimize beyond vectorization. This shows the potential for

achieving better performance improvement when combining

Polly and deep RL. We plan to explore this in future work.

249



NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning CGO ’20, February 22ś26, 2020, San Diego, CA, USA

Reward Mean for Different Action Space Definitions Training Loss for Different Action Space Definitions

R
e

w
a

rd
 M

e
a

n

T
ra

in
in

g
 L

o
ss

discrete
continuous_1
continuous_2

discrete
continuous_1
continuous_2

Number of Training Steps Number of Training Steps

Figure 7. Reward mean and training loss for different action space definitions.

Figure 8. The performance of the proposed vectorizer that can be configured to use NNS, random search, decision trees, and

RL compared to brute-force search, Polly and the baseline cost model. The performance is normalized to the baseline.

While NNs and decision trees cannot be trained end-to-

end and require special handling, the supervised FCNN can

be trained end-to-end and achieves comparable performance

to deep RL. However, RL does not require labels and thus

can be trained without a brute-force search. To demonstrate

the advantage of deep RL, Figure 9 shows the normalized

average (geomean) performance of deep RL compared to su-

pervised FCNN as a function of the number of compilations

required (samples). Deep RL with as low as 5,000 compila-

tions already achieves high performance (only 5%worse than

the peak) and 1.26× better than the supervised FCNN. Su-

pervised FCNN achieved this only after 70,000 compilations

making it 14× less sample efficient than deep RL. Further-

more, in the long run we believe deep RL can better handle

large search spaces with multiple objectives to co-optimize.

4.1 Transfer Learning

The goal of this subsection is to see how well the framework

generalizes to a completely new code. To that end we eval-

uate the trained model on two benchmarks: MiBench [10]

where the loops constitute a minor portion of the code and

PolyBench [30] where the loops constitute a major portion

of the code. MiBench is a set of free and commercially rep-

resentative embedded benchmarks such as telecommunica-

tion, networking, security, office, and automation. Note that

vectorization for some of the MiBench benchmarks is not

250



CGO ’20, February 22ś26, 2020, San Diego, CA, USA Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and Ion Stoica

Figure 9. Normalized average performance of supervised

FCNN and deep RL as a function of the number of compila-

tions used (samples) for training.

Figure 10. The performance of the proposed vectorizer on

Polybench compared to Polly and the baseline cost model.

The performance is normalized to the baseline.

possible. For example, due to memory dependencies, control-

flow or lack of loops, it was not possible to vectorize adpcm,

dijkstra, basicmath, blowfish, etc. PolyBench includes bench-

marks that perform matrix operations, decomposition, and

linear algebra for which Polly is optimized to run on.

Figure 10 shows the performance of deep RL, Polly and the

baseline on PolyBench. Deep RL achieves on average 3.42×4

better performance than the baseline and 1.33× better than

Polly. Polly was optimized to run on PolyBench, yet deep

RL outperformed Polly on three out of the six benchmarks.

The ability to perform loop transformations that optimize

beyond vectorization, the lack of enough benchmarks in the

dataset, and the high penalty we give to long compilation

4Note that we take the average performance improvement over multiple in-

ferences. If instead we take the best performance, the deep RL improvement

reaches 4.77× on average: 3.71×, 6.74×, 6.92×, 5.21×, 1.61×, and 8.16×

for 2mm, bicg, ajax, gemm, gemver, and cholesky, respectively.

Figure 11. The performance of the proposed vectorizer on

Mibench compared to Polly and the baseline cost model. The

performance is normalized to the baseline.

times allowed Polly to perform better on some benchmarks.

When the deep RL agent tried to give high VF and IF, the

reward sometimes decreased due to the high penalty we give

to long compilation times. In such cases, the agent learns

to avoid being over-optimistic about increasing the VF and

IF. With more training data the agent can generalize better

to larger loop bounds on new examples. When combining

Polly and deep RL the average performance improvement

that can be achieved (potentially) is 4.35×.

Figure 11 shows the performance of deep RL, Polly and the

baseline on MiBench. Deep RL outperforms both Polly and

the baseline in all the benchmarks. The average performance

improvement was 1.1× over the baseline. While this might

not seem considerable, we believe that it can be sufficient

since the benchmarks did not rely heavily on loops, and the

measured execution time was for all the code not restricted

to loops.

4.2 Discussion: Deployability

In general, vendors and commercial companies are reluctant

to adopt machine learning and deep learning methods in

compiler optimization. The main reason behind this is the

need for methods that are deterministic, simple, easy to ex-

plain, and performant on a large scale of applications. This

also explains why most of the optimizations and implemen-

tation in compilers are based on manual engineering and

heuristics. With that being said, we believe that the grow-

ing complexity in systems and workloads, and availability

of data demands learning-based approaches. Deep RL and

other deep learning methods present a unique opportunity to

address these compiler challenges end-to-end and improve

upon manual engineering. In our evaluation, we showed that

deep RL can generalize to new benchmarks. With enough

training data, deep RL can be deterministic and performant

on a large scale of applications. Since the use of deep RL will

mainly be for inference it will also be simple to use and de-

ploy. The main challenge will remain in interpretability. This

251



NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning CGO ’20, February 22ś26, 2020, San Diego, CA, USA

challenge is not only a limitation of deep RL in vectorization,

it is also a limitation of neural networks in general. Many

recent works are being conducted on explaining neural net-

work decisions [9] and their application in code optimization

will also benefit from that. Besides, neural networks have

been adopted to solve many advanced real-world challenges

regardless of the interpretability limitation. We believe that

compilers and code optimization should also follow.

5 Future Directions

We see multiple future directions for this work. It is possible

to use loop polyhedral analysis, which is dedicated to the

loop snippets of codes for the code embedding. This will also

be less expensive in terms of computations. Combining deep

RL and Polly can further boost the performance and the RL

agent can also be trained to predict whether to use Polly or

not. The deep RL vectorizer can also be employed at the in-

termediate representation level, which can better reflect the

effects of the vectorization on the code and thus could enable

learning better predictions. For different target architectures,

it is necessary to add features that represent the underlying

architecture or to train separate models that are fitted to

the used architecture as different architectures behave differ-

ently and have different VF and IF action spaces. In this work,

we showed the potential of the deep RL vectorizer as the

first step toward end-to-end code optimization with machine

learning and deep RL. It is, however, necessary to train on a

wide range of applications, and target architectures for the

deep RL vectorizer to be a standardized optimization stage

in the LLVM compilation stack.

In our approach, we assumed the agent makes a single

decision per loop nest (i.e., episode). However, with new

compiler features such as the support of vectorization at dif-

ferent levels of a nested loop, deep RL will be more attractive.

This is mainly because the deep RL agent is not restricted to

make a single decision per loop nest. Instead, it can perform

multiple sequential decisions that collectively form a single

episode of multiple actions and states.

Pragmas such as loop unrolling, distribution, and vector

predication can also be tuned in a similar manner. The user

only needs to define an appropriate action space and a re-

ward function that depends on the desired objective. Many

of the optimizations done today in the compiler are global

rather than local. For example, the phase ordering of com-

piler passes is applied drastically to all the functions in the

code. It can be possible to automatically determine different

phase orderings and optimizations to different sections of

the code.

Our framework can also support vanilla deep neural net-

works methods instead of deep RL. One direction we are

exploring is to use a neural network that learns a ranking

scheme on the VF and IF. For example, it can learn that given

an embedding, and pragmas, what will the execution time

normalized to the non-vectorized code be. This is equivalent

to learning a new cost model for the different VFs and IFs,

which could potentially replace the baseline cost model used

today. This method - unlike NNs and decision trees - can be

trained end-to-end.

6 Related Work

Previous work has utilizedmachine learning in compiler opti-

mization [2, 39]. For example, thework in [7, 11, 13] proposed

deep supervised and RL methods to overcome the phase or-

dering challenge. In [35], multiple machine learning methods

for automatic vectorization have been proposed. Our work

is different from these prior works in that it is the first to

propose a solution based on deep RL to explore the vectoriza-

tion space and compiler optimization in general. Second, all

these works primarily rely on extracted/engineered (hand-

crafted) features from the program, e.g., arithmetic intensity,

memory operations, number of different instruction, dis-

tance between producer and consumer, etc. These features

however do not fully represent the original code. By contrast,

our work addresses the automatic vectorization by learning

useful features in an end-to-end fashion, from the text code

itself to the optimal factors without any loss of information.

In [4] end-to-end supervised deep learning is used to learn

compiler heuristics. While such approach can achieve com-

parable performance, finding the labels for training can be

time consuming, and optimizing for multiple objectives with

large search spaces can be challenging.

Automatic vectorization with other methods was also pro-

posed. For example, the currently implemented cost model

in LLVM and recently proposed cost models in [24, 37, 38]

rely on predefined cost functions that calculate the expected

execution time of a vectorized loop based on a linear formula

from the instruction distribution. [28] improves super-word

level parallelism (SLP) [17] to limit the automatic vectoriza-

tion. This work does not address loop vectorization and relies

on the baseline cost model to predict when some portions of

code are better off not vectorized. Also, [21] relies on heuris-

tics to automatically vectorize. Finally, [27, 29] improve SLP

and rely on fixed cost models such as weighted instruction

count or the current LLVM cost models.

7 Conclusion

In this work, we proposed and developed an end-to-end vec-

torization framework that automatically detects loops, learns

their structures and applies deep RL to inject vectorization

pragmas to the compiler. Our results demonstrated an aver-

age performance improvement 1.29 × −4.73× compared to

the baseline cost model implemented in LLVM and on av-

erage only 3% worse than the brute-force solution. Looking

forward, we foresee a potential opportunity for automatic

end-to-end code tuning and optimizationwithmachine learn-

ing techniques, such as deep RL.

252



CGO ’20, February 22ś26, 2020, San Diego, CA, USA Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and Ion Stoica

A Artifact Description

Our artifact provides C and Python codes for all our evalu-

ated benchmarks, along with scripts to reproduce the results

and experiments automatically. For best results it is best

to evaluate on Mac OS and use 16 GB 2133 MHz LPDDR3

memory and Intel 4-Core i7-8559U (for the Intel AVX2). The

results will be different if you run it on another machine

because it uses the vectorization capability of the machine.

Since the artifact runs in a virtual machine and requires deep

RL training the results might also vary due to virtualization

and stochastic nature of training. You might get slightly bet-

ter results or worse. Our results average out multiple runs.

We included all the dependencies, i.e., ray[rllib], Tensorflow

1, TensorFlow 2, code2vec, Clang and LLVM.

A.1 Artifact Check-List (Meta-Information)

• Algorithm: Deep RL framework for auto-vectorization.

• Program: Programs from the dataset (based on llvm test

suite, Mibench and Pollybench).

• Compilation: Available in the virtual machine.

• Transformations:Deep RL agent injects vectorization prag-

mas to the code.

• Binary: The original code is included.

• Dataset: Synthetic dataset.

• Hardware:Mac OS, 16 GB 2133 MHz LPDDR3 memory and

Intel 4-Core i7-8559U.

• Metrics: Average performance improvement.

• Output: Performance numbers.

• Experiments: Training RL model using end-to-end training

or precollected data. Running inference on benchmarks.

• How much time is needed to prepare workflow (ap-

proximately)?: The workflow is implemented for the user.

• How much time is needed to complete experiments

(approximately)?: Hours to weeks.

• Publicly available?: Yes, code and data. See:

https://github.com/intel/neuro-vectorizer.

• Workflow framework used?: Python scripts.

A.2 Description

A.2.1 How Delivered

The source code is delivered as a virtual machine with all

scripts and dependencies.

A.2.2 Hardware Dependencies

For best results it is best to evaluate on Mac OS and use 16

GB 2133 MHz LPDDR3 memory and Intel 4-Core i7-8559U

(mainly for the Intel AVX2).

A.2.3 Software Dependencies

We included all the dependencies, i.e., ray[rllib], Tensorflow

1, TensorFlow 2, code2vec, Clang and LLVM.

A.2.4 Datasets

Provided in the code under training_data.

A.3 Installation

The installation scripts are provided in the virtual machine.

A.4 Experiment Workflow

• The password for the VM is cgo2020.

• Once the virtual machine is loaded open a terminal and

run cd ~/Desktop/rlvectorizer/llvm-project/

build/NeuroVectorizer

• Run source ./preprocess/configure.sh

• Run conda deactivate

• Run cd cgo_results

• Run python distribution.py // Figure 5

• Two options are available for running the framework:

(1) train code2vec and the RL end-to-end or (2) using a

pretrained code2vec model and training the RL model

separately. The first option gives the best results but

takes weeks to finish and the virtual machine might

run out of memory. You can experiment with this op-

tion as follows:

ś Run cd preprocess

ś Run source ./configure.sh

ś Run source ./preprocess.sh // this will gener-

ate the bag of words of the training set for code2vec

ś Run python autovec.py // this will run training

for one configuration (hyperparameters) specified

in autovec.py. First it will run all the programs with

-O3 to get the baseline runtimes.

• The second option gives slightly worse results but

requires roughly a day. To further reduce the training

time for the second option we prepared data files that

include the execution times and embeddings of the

different samples in the dataset. Since it will roughly

take a day to run all the experiments, we made shorter

versions that you can run instead and the trend will

be the same. If you decide to run the shorter versions

then run lr_short.py, arc_short.py, batch_short.py, and

action_short.py. The shorter versions will finish in

about 5 hours. The reward means are shown in page 1

of the tensorboard page and the total loss is in page 3.

The variance is also shown as a shadow in the plots.

• Run python lr.py

ś Run tensorboard --logdir ~/ray_results/lr

ś Click on the link tensorboard outputs //figure 6

• Run python arc.py

ś Run tensorboard --logdir ~/ray_results/

arc

ś Click on the link tensorboard outputs //figure 6

• Run python batch.py

ś Run tensorboard --logdir ~/ray_results/

batch

253

https://github.com/intel/neuro-vectorizer


NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning CGO ’20, February 22ś26, 2020, San Diego, CA, USA

ś Click on the link tensorboard outputs //figure 6

• Run python action.py

ś Run tensorboard --logdir ~/ray_results/

action

ś Click on the link tensorboard outputs //figure 7

• Run python fig9.py

• Run python rollout.py ~/ray_results/fig9/

PPO_*/checkpoint_(number)/checkpoint-

(number) //figures 8 and 9

ś Every checkpoint corresponds to 500 samples. So

checkpoint_10 is after 5K samples, etc. After running

rollout.py for different checkpoints we stop after the

performance starts to degrade (due to over fitting).

• Run conda activate

• Run python transfer_polly.py ~/ray_results

/fig9/PPO_*/checkpoint_(number)/checkpoint-

(number)

ś Experiment with the different checkpoints. At about

checkpoint 100 you should start to see good average

performance.

ś You can go to vectorized_pollybench directory to

see the code with the injected pragmas.

• Run python transfer_mibench.py ~/ray_results

/fig9/PPO/checkpoint_number/checkpoint-

(number) --benchmark mibench/(name of

benchmark)

ś Note that this will not compile the programs as they

have a make file, you need to follow the instructions

of each benchmark to compile. In most cases, you

just have to open the file, run make and then "time

./runeme_x". You can also open the C files to see the

injected pragmas.

A.5 Evaluation and Expected Result

The scripts will output the execution time improvement

over the baseline, which is used in the plots. Many factors

can affect the performance. First, it can be hard to run full

end to end training which delivers the best performance

but requires weeks to train on the virtual machine. Second,

expect some variance in the results; RL is stochastic and

we use a sampler that samples from the distribution of the

output probabilities and therefore the variance is almost

guaranteed. We could set the random seed but it is unfair. It

is thus best to average the results. It is also best to run on the

hardware we defined without other applications running in

the background or virtualization. Note that since the virtual

machine runs compilation in parallel with training/inference

the execution times can increase. All the steps provided were

tested on the real and virtual machine with 100% success

rate. If one of the steps fails in the virtual machine it is due to

running out of memory or exhausting the machine. Killing

the background jobs and rerunning it can solve the problem.

If that does not work then add more memory and cores in

the VirtualBox.

Acknowledgments

The authors would like to thank Ronny Ronen, Ayal Zaks,

Gadi Haber, Hideki Saito, Pankaj Chawla, Andrew Kaylor

and anonymous reviewers for their insightful feedback and

suggestions.

References
[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019.

code2vec: Learning distributed representations of code. Proceedings of

the ACM on Programming Languages 3, POPL (2019), 40.

[2] Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo,

and Cristina Silvano. 2018. A survey on compiler autotuning using

machine learning. ACM Computing Surveys (CSUR) 51, 5 (2018), 96.

[3] Ronan Collobert and Jason Weston. 2008. A unified architecture for

natural language processing: Deep neural networks with multitask

learning. In Proceedings of the 25th international conference on Machine

learning. ACM, 160ś167.

[4] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

2017. End-to-end deep learning of optimization heuristics. In 2017

26th International Conference on Parallel Architectures and Compilation

Techniques (PACT). IEEE, 219ś232.

[5] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

2017. Synthesizing benchmarks for predictive modeling. In 2017

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion (CGO). IEEE, 86ś99.

[6] Kenji Doya. 2000. Reinforcement learning in continuous time and

space. Neural computation 12, 1 (2000), 219ś245.

[7] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew

Chamski, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha

Mendelson, Ayal Zaks, Eric Courtois, et al. 2011. Milepost gcc: Ma-

chine learning enabled self-tuning compiler. International journal of

parallel programming 39, 3 (2011), 296ś327.

[8] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012.

Polly: performing polyhedral optimizations on a low-level intermedi-

ate representation. Parallel Processing Letters 22, 04 (2012), 1250010.

[9] David Gunning. 2017. Explainable artificial intelligence (xai). Defense

Advanced Research Projects Agency (DARPA) (2017).

[10] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,

Trevor Mudge, and Richard B Brown. 2001. MiBench: A free, commer-

cially representative embedded benchmark suite. In Proceedings of the

Fourth Annual IEEE International Workshop on Workload Characteriza-

tion. WWC-4 (Cat. No. 01EX538). IEEE, 3ś14.

[11] Ameer Haj-Ali, Qijing Huang, William Moses, John Xiang, John

Wawrzynek, Krste Asanovic, and Ion Stoica. 2020. AutoPhase: Juggling

HLS Phase Orderings in Random Forests with Deep Reinforcement

Learning. In Third Conference on Machine Learning and Systems (ML-

Sys).

[12] Ameer Haj-Ali, Nesreen K. Ahmed, TedWillke, Joseph Gonzalez, Krste

Asanovic, and Ion Stoica. 2019. A View on Deep Reinforcement Learn-

ing in System Optimization. arXiv preprint arXiv:1908.01275 (2019).

[13] Qijing Huang, Ameer Haj-Ali, William Moses, John Xiang, Ion Stoica,

Krste Asanovic, and John Wawrzynek. 2019. AutoPhase: Compiler

Phase-Ordering for HLS with Deep Reinforcement Learning. In 2019

IEEE 27th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM). IEEE, 308ś308.

[14] Intel Inc. 2018. Intel Core i7-8559U Processor Specifica-

tion. https://ark.intel.com/content/www/us/en/ark/products/137979/

254

https://ark.intel.com/content/www/us/en/ark/products/137979/intel-core-i7-8559u-processor-8m-\ cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/137979/intel-core-i7-8559u-processor-8m-\ cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/137979/intel-core-i7-8559u-processor-8m-\ cache-up-to-4-50-ghz.html


CGO ’20, February 22ś26, 2020, San Diego, CA, USA Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and Ion Stoica

intel-core-i7-8559u-processor-8m-\cache-up-to-4-50-ghz.html

[15] Leslie Pack Kaelbling, Michael L Littman, and Andrew WMoore. 1996.

Reinforcement learning: A survey. Journal of artificial intelligence

research 4, 237ś285.

[16] Jens Kober, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement

learning in robotics: A survey. The International Journal of Robotics

Research 32, 11 (2013), 1238ś1274.

[17] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting superword

level parallelism with multimedia instruction sets. Vol. 35. ACM.

[18] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,

Joseph Gonzalez, Ken Goldberg, and Ion Stoica. 2017. Ray rllib: A

composable and scalable reinforcement learning library. arXiv preprint

arXiv:1712.09381 (2017).

[19] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E

Gonzalez, and Ion Stoica. 2018. Tune: A Research Platform for Dis-

tributed Model Selection and Training. arXiv preprint arXiv:1807.05118

(2018).

[20] Chris Lomont. 2011. Introduction to intel advanced vector extensions.

Intel White Paper (2011), 1ś21.

[21] Daniel S McFarlin, Volodymyr Arbatov, Franz Franchetti, and Markus

Püschel. 2011. Automatic SIMD vectorization of fast fourier trans-

forms for the larrabee and AVX instruction sets. In Proceedings of the

international conference on Supercomputing. ACM, 265ś274.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-

nis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing

atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602

(2013).

[23] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,

Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,

Michael I Jordan, et al. 2018. Ray: A Distributed Framework for Emerg-

ing AI Applications. In 13th {USENIX} Symposium on Operating Sys-

tems Design and Implementation ({OSDI} 18). 561ś577.

[24] Dorit Nuzman, Sergei Dyshel, Erven Rohou, Ira Rosen, KevinWilliams,

David Yuste, Albert Cohen, and Ayal Zaks. 2011. Vapor SIMD: Auto-

vectorize once, run everywhere. In Proceedings of the 9th Annual

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion. IEEE Computer Society, 151ś160.

[25] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization

of interleaved data for SIMD. ACM SIGPLAN Notices 41, 6 (2006),

132ś143.

[26] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. 2003. Reinforcement

learning for humanoid robotics. In Proceedings of the third IEEE-RAS

international conference on humanoid robots. 1ś20.

[27] Vasileios Porpodas. 2017. SuperGraph-SLP Auto-Vectorization. In 2017

26th International Conference on Parallel Architectures and Compilation

Techniques (PACT). IEEE, 330ś342.

[28] Vasileios Porpodas and Timothy M Jones. 2015. Throttling automatic

vectorization: When less is more. In 2015 International Conference on

Parallel Architecture and Compilation (PACT). IEEE, 432ś444.

[29] Vasileios Porpodas, Alberto Magni, and Timothy M Jones. 2015. PSLP:

Padded SLP automatic vectorization. In Proceedings of the 13th Annual

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion. IEEE Computer Society, 190ś201.

[30] Louis-Noel Pouchet. 2012. Polybench: The polyhedral benchmark suite.

URL: http://www. cs. ucla. edu/pouchet/software/polybench (2012).

[31] J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1,

1 (1986), 81ś106.

[32] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. 1995. Near-

est neighbor queries. In ACM sigmod record, Vol. 24. ACM, 71ś79.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv

preprint arXiv:1707.06347 (2017).

[34] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,

Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game

of Go with deep neural networks and tree search. nature 529, 7587

(2016), 484.

[35] Kevin Stock, Louis-Noël Pouchet, and P Sadayappan. 2012. Using ma-

chine learning to improve automatic vectorization. ACM Transactions

on Architecture and Code Optimization (TACO) 8, 4 (2012), 50.

[36] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning:

An introduction. MIT press.

[37] Xinmin Tian, Hideki Saito, Ernesto Su, Abhinav Gaba, Matt Masten,

Eric Garcia, and Ayal Zaks. 2016. LLVM framework and IR extensions

for parallelization, SIMD vectorization and offloading. In 2016 Third

Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC).

IEEE, 21ś31.

[38] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira

Rosen. 2009. Polyhedral-model guided loop-nest auto-vectorization.

In 2009 18th International Conference on Parallel Architectures and

Compilation Techniques. IEEE, 327ś337.

[39] ZhengWang and Michael O’Boyle. 2018. Machine learning in compiler

optimization. Proc. IEEE 106, 11 (2018), 1879ś1901.

[40] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,

Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show,

attend and tell: Neural image caption generation with visual attention.

In International conference on machine learning. 2048ś2057.

255

https://ark.intel.com/content/www/us/en/ark/products/137979/intel-core-i7-8559u-processor-8m-\ cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/137979/intel-core-i7-8559u-processor-8m-\ cache-up-to-4-50-ghz.html

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Vectorization Characterization
	2.2 State-of-the-Art Auto-Vectorzation
	2.3 Deep Reinforcement Learning for Auto-Vectorization

	3 The Proposed Framework for Automatic Vectorization
	3.1 Code Embedding
	3.2 The RL Environment Definition
	3.3 Dataset Description
	3.4 Handling Long Compilation Time

	4 Evaluation
	4.1 Transfer Learning
	4.2 Discussion: Deployability

	5 Future Directions
	6 Related Work
	7 Conclusion
	A Artifact Description
	A.1 Artifact Check-List (Meta-Information)
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Result

	Acknowledgments
	References

