
394 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 3, MAY 1993

The Design of a Neuro-Microprocessor
John Wawrzynek, Krste AsanoviC, and Nelson Morgan, Senior Member, IEEE

Abstract- This paper presents the architecture of a neuro-
microprocessor. This processor was designed using the results of
careful analysis of our set of applications and extensive simulation
of moderate-precision arithmetic for back-propagation networks.
We present simulated performance results and test-chip results
for the processor. This work is an important intermediate step in
the development of a connectionist network supercomputer.

I. INTRODUCTION

E are engaged in the development of a connectionist W network supercomputer. This computer is targeted for a
peak performance of 1011 connections per second for networks
with up to a million units and a billion connections. It will
include specialized sensor and actuator interfaces for interac-
tion with real-time processes. We feel that this combination
of large networks and real-world interaction is critical to the
development of large neural network applications and has the
potential of enabling new science.

Using implementation technologies available within the next
several years, a system of this capacity is by necessity a
multiprocessor. The design of such a machine is similar to that
of a general purpose parallel computer. Both share the same set
of issues relating to system partitioning and communication.
Today’s digital technology offers a mature implementation
strategy for such systems. Future systems may employ analog
or emerging new technologies, however, at this stage we are
taking advantage of many years of digital processor design
methodology and fabrication processes. We are focusing our
systems efforts on digital implementations.

As an intermediate step in the development of a connec-
tionist network supercomputer, we have designed a single
chip CMOS neuro-microprocessor that provides significant
improvements in cost/performance over earlier systems for
artificial neural network calculations. The architecture is fully
programmable, and efficiently executes a wide range of con-
nectionist computations. Special emphasis has been placed
on the support of variants of the commonly used back-
propagation training algorithm for multilayer feed-forward
networks [6], [7]. This class of networks is of interest in the

Manuscript received August 17, 1992; revised September 23, 1992. The
National Science Foundation provided support for the VLSI building blocks
and design tools under Grant MIP-8922354. B. Kingsbury was supported
by a Graduate Fellowship. J. Wawrzynek was supported by the National
Science Foundation through the Presidential Young Investigator (PYI) Award,
MIP-8958568. The larger project was supported by the ONR URI N00014-
92-5-1617 and the International Computer Science Institute.

J. Wawrzynek is with the Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA 94704.

K. AsanoviC and N. Morgan are with the University of California, Berkeley
and the International Computer Science Institute, Berkeley, CA 94704.

IEEE Log Number 9207193.

speech recognition task that is the focus of our applications
work [3].

An earlier system, the Ring Array Processor (RAP), was
a multiprocessor based on commercial DSP’s with a low-
latency ring interconnection scheme [4]. We have used the
RAP to simulate variable precision arithmetic and guide us
in the design of the neuro-microprocessor [l]. The RAP
system played a critical role in this study, enabling us to
experiment with much larger networks than would otherwise
be possible. Our study shows that, for the speech recognition
training problems we have examined, back-propagation train-
ing algorithms only require moderate precision. Specifically,
16 b weight values and 8 b output values were sufficient to
achieve training and classification results comparable to 32 b
floating point. Although these results were gathered for frame
classification in continuous speech, we expect that they will
extend to many other Connectionist calculations. We have
used these results as part of the design of a programmable
single chip microprocessor, SPERT. The reduced precision
arithmetic permits the use of multiple datapaths per processor.
Also, reduced precision operands make more efficient use of
valuable processor-memory bandwidth.

Our experience with the RAP has also shown us that
close interaction with real user applications is critical for
neurocomputer design. There is a strong push from users to
reduce the wall-clock time for their applications. Successful
neural system design must be sensitive to what could be
considered a “neural” corollary to Amdahl’s Law:

A connectionist accelerator can be best speed up an ap-
plication by a factor of l/(fraction of nonconnectionist
computation).
For the applications we have observed, this speedup is

in the range of 10 to 100. For this reason, we believe
that general computational support is required even in a
specialized connectionist machine, e.g., at least one general
purpose processor per 10- 100 neural multiply-accumulate
units. Furthermore, memory capacity and bandwidth must keep
pace with the rest of the machine to support real applications.
Finally, regardless of its potential for speedup, any machine
will go unused unless usable and efficient software is available.
The RAP was a successful compromise of these concerns; it is
used on a daily basis by a growing user’s group at a number of
research sites. SPERT is our first attempt to incorporate more
specialized VLSI into a system in a equally balanced way.

11. SPERT ARCHITECTURE

SPERT is a processor design that combines a general
purpose integer datapath, similar to those found in RISC
microprocessors, a vector unit comprising a SIMD array of

1045-9227/93$03.00 0 1993 IEEE

WAWRZYNEK et al.: DESIGN OF NEURO-MICROPROCESSOR 395

datapaths optimized for neural network computations, and a
wide connection to external memory. The RISC-like datapath
is used for general scalar computation, to provide loop and
branch control, and to generate memory addresses. It is the
moderate precision requirement of neural network calculations
that permits SIMD processing at the chip level.

SPERT has a single 128 b VLIW instruction format. The
instruction contains a number of orthogonal fields that control
different functional units. The fields in the VLIW instruction
are split into five major groups: host synchronization control,
scalar datapath control, SIMD datapath control, external mem-
ory control, and an immediate field. The immediate field is
used either as a value for the scalar datapath or as an absolute
branch address. The instruction pipeline has seven stages, and,
in the absence of instruction cache misses and host memory
accesses, one instruction can be completed every cycle.

The overall structure of SPERT is shown in Fig. 1. The
main components are a scalar 32 b integer datapath, a SIMD
array containing eight 32 b fixed point datapaths, an instruction
fetch unit with an instruction cache, the 128 b wide external
memory interface, and a JTAG' interface and control unit.

SPERT functions as an attached processor for a conventional
workstation host. The JTAG serial bus is used as the host-
SPERT interface. Chip and board testing, bootstrap, data I/O,
synchronization, and program debugging are all performed
over the JTAG link. Data 1/0 over JTAG can be overlapped
with SPERT computation. A minimal system configuration
will include a SPERT processor, a JTAG connection to a host
processor, and external SRAM. The initial implementation of
SPERT has a maximum clock frequency of 50 MHz. The
external memory interface supports up to 16 MB of single
cycle memory over a 128 b data bus. At the maximum 50 MHz
clock rate, memory bandwidth is 800 MB/s. The external
memory will typically be used to hold weight values and
program code. Input and output training patterns will be
supplied by the host from a large database held on disk. Even
with relatively small networks, the time spent training on one
pattern is sufficient to transfer training data for the next pattern
over the JTAG link.

The computation core of SPERT comprises the scalar unit
and the SIMD array. The scalar unit, shown in detail in Fig. 2
contains a triple-ported general purpose register file, a 32 b
adder (addo), a 32 b logical unit (lu), a branch comparator
(brc), a 32 b shifter, the SIMD shift amount register (sa),
and two address generation units (add1 and add2). These are
connected by three buses (wbus, xbus, and ybus) managed by
register bypassing hardware. The 32 b wide global scalar bus,
scbus, is used to transfer data between the scalar unit and the
rest of SPERT. It connects all SIMD datapaths to the scalar
unit. The bus transfer two values per cycle.

The scalar unit connects to the external memory data bus
through the memory latches in the SIMD datapaths. After an
external memory load operation, the 128 b of data are held in
latches in the SIMD array. A scalar load then selects one of
the datapaths to broadcast the value it received over the scbus.

'Initials of the Joint Test Action Group who helped formulate the
IEEE1149.1 boundary scan standard. For brevity, the term JTAG is used to
refer to the standard.

A4-A23 *

*

Fig. 1. SPERT structure.

This value can then be read by the scalar unit and/or all the
SIMD datapaths. The same circuitry is used when performing a
scalar unit load from SIMD register; the complete 256 b vector
register is read by all SIMD datapaths, and only the selected
datapath broadcasts the values to the rest of the system.

Fig. 3 shows the structure of one of the eight parallel
SIMD datapaths. Each SIMD datapath is similar to that of
a fixed-point DSP and contains 24 b x 8 b multiplier (mul),
a 32 b saturating adder (sadd), a 32 b shifter (shift), and a
32 b limiter (lim). All datapaths in the SIMD array execute
the same operation under control of a number of fields in
the current instruction. All of these functional units can be
active simultaneously, delivering up to 400 x lo6 fixed-point
multiply-accumulates per second. The multiplier produces a
full 32 b result, but can optionally round the result to 24 b,
16 b, or 8 b. Both inputs to the multiplier can be treated as
either signed or unsigned to support higher precision multiplies
in software.

The functional units are connected to each other, the register
file, and memory by three buses (a, b, and c). The buses
transfer two operands per clock, to allow up to six values
to be transferred per instruction. In addition, there are four
sneak paths between physically adjacent functional units. In
this manner, up to 10 values can be moved between functional
units in every datapath each cycle. Over all eight datapaths,
this is an operand bandwidth of up to 16 GB/s.

Each of the functional units has a register associated with
each input. The input registers can be loaded with values
from the register file, the output of other functional units,
or can be left unchanged. They allow multiple operands to
be transferred between functional units less expensively than
providing multiple ports into a single shared register file.
The registers can retain values across multiple instructions,

396 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 3, MAY 1993

add1 sddresr

add2addrrsr-

XbUS ybus wbur

Fig. 2. Scalar unit datapath.

I RegisterFile
vo-v15

scalar unit/
Memory Interface

U d scbus

Fig. 3. SIMD datapath.

allowing constants to be held in the datapath with no further
datapath bus traffic.

SPERT is a pure loadhtore architecture; all memory trans-
fers are to/from registers, and all functional unit operations
take register operands. All address generation is performed
by the scalar unit. Memory transfers for the SIMD array can
either move a vector of four or eight operands, or load a single
scalar operand.

The scalar unit can directly load/store into a SIMD register,
treating each one as a small 8 x 32 b on-chip memory.
This capability is used to allow eight scalar operands to be
transferred between registers and memory in one cycle, and to
allow a tight coupling between the scalar unit and the SIMD
units for cases where operations cannot be parallelized across
the SIMD datapaths. SPERT is capable of performing a scalar
unit load from a SIMD register, a scalar unit store to a SIMD
register, and an external memory SIMD vector access in a
single cycle.

SPERT instructions are stored in external memory and
cached on chip. The instruction fetch unit manages a small
instruction case that provides nearly 800 MB/s of instruction
bandwidth. Typical applications are dominated by small loops
and will experience high hit rates. Also, the large external
memory bandwidth ensures that performance can never be
more than halved as a result of instruction cache misses.

111. SPERT PERFORMANCE ANALYSIS

During the architectural design process, a number of appli-
cations were considered and used to evaluate design alterna-
tives. The primary envisaged application is back-propagation
training. In this section we present detailed performance results
for forward propagation and back-propagation training on
SPERT.

These results have been obtained by careful analysis of
assembly code routines. The results take into account all loop
overhead, blocking overhead, and instruction cache miss cy-
cles. The routines are fully parameterized, with all parameters
passed in scalar registers. For these timings, all input data
resides in memory, and all output data is placed back into
memory in a form that will allow these routines to be chained
with no penalty for data rearrangement. The only restriction
imposed by these routines is that the number of units in a layer
be a multiple of eight. This is not an important restriction,
because dummy units can be inserted to pad smaller layers if
necessary. For these results, weights are 16 b, inputs are 8 b,
and activations are 8 b sigmoids looked up in a 64 K entry
table. Most intermediate values are calculated to 24-32 b
precision.

A single data structure is used to store the weight matrix
for both forward propagation and back-propagation. Weights
are stored as a two-dimensional array with all the weights
corresponding to a particular neural unit in a column and the
weights corresponding to a particular input in a row. Layer
input and output values are arranged in linear arrays.

Forward propagation for a multilayered network is com-
puted one layer at a time. The basic operation is a vector-
matrix multiplication with a vector of input values used to
form the inner-product with each column of the weight matrix.
Within the layer, the output of eight units at a time are
calculated-one unit per SIMD datapath. The first step is a
vector-read of eight input values. One input is stored in each
of the SIMD datapaths and subsequently broadcast to all the
other datapaths. One by one each input value is broadcast and
multiplied by a vector of eight weights read from memory; the
results are accumulated, one per datapath. After all eight inputs

WAWRZYNEK et al.: DESIGN OF NEURO-MICROPROCESSOR 397

have been processed another set of inputs are read. The process
is continued until the entire inner-product is computed for a
set of eight units. Finally, the appropriate nonlinear function
for each unit is computed with a table lookup operation using
the scalar unit. The process is then repeated for another set of
units until all units in the layer have been computed.

Fig. 4 plots the performance of SPERT on forward propaga-
tion. The graph plots a number of curves for a fully connected
pair of layers, varying the number of units in the input and
output layers. Peak performance is around 350 MCPS. By
using reduced precision, SPERT makes better use of processor-
memory bandwidth, and can sustain 89% of its theoretical peak
performance even when all operands are stored in external
memory. The fast on-chip scalar unit helps SPERT attain high
performance even with smaller nets. Nets must be smaller than
32 x 32 to drop below half peak performance.

The back-propagation training algorithm uses a forward
propagation step to compute the error at the network outputs,
followed by an error back-propagation step, and finally a
weight update step. The forward propagation step is the
standard method described above. The weight update step
is simply a matter of accessing the weights and augmenting
them with the appropriate error. The difficult part of back-
propagation algorithm is the error back-propagation phase.
This part is essentially a vector-matrix product between a
vector of errors and the transpose of the weight matrix.

On SPERT, the weight matrix is not transposed in mem-
ory to better align with the SIMD datapaths; instead, inner-
products are computed eight at a time, with each inner-product
accumulated in eight partial sums, one per datapath. These
64 values are held in 8 of the SIMD general purpose registers.
The inner loop of the back-propagation code reads in one
group of 8 error terms, then reuses this value 8 times to
multiply 8 vectors of 8 weights each, one vector per inner-
product. The results are accumulated in the partial sums.
Computation proceeds in these 8 by 8 blocks across the weight
matrix until each of the 8 inner-products is available in the
form of 8 partial sums that must be reduced to a single value.
One SIMD operation can reduce the 8 elements to 4 which are
then reduced to a single value using the scalar unit. This entire
process is repeated for the next set of eight weight matrix rows.

Fig. 5 shows the training performance on a 3 layer feed-
forward network with equal numbers of units on the in-
put, hidden, and output layers. Peak performance is around
100 MCUPS.

In comparing these performance figures with other imple-
mentations, it must be stressed that the figures for SPERT
represent training with no pooling of weight updates. The
training is entirely on-line with weight updates occurring
after every pattern presentation. Some parallel systems train
multiple copies of a network, then periodically pool the
weight updates. This can lead to reduced training performance,
counteracting the benefits of increased parallelism.

IV. SPERT VLSI IMPLEMENTATION

The SPERT design is being implemented in MOSIS CMOS
scalable design rules, with a target 50 MHz clock rate. The

1 20
n

8
B
.- = loo
v

.
................
..

(.........)........I,........ +,....

.
..................... ”

...................................).. ?..

........ :i L.

.
*+ ,,.

.

1 2 4 8 16 32 64 128 256 512 1024 2048
Input units

Fig. 4. SPERT forward propagation performance.

1 2 4 8 16 32 64 128 256 512 1024 2048
Units per Layer

Fig. 5. SPERT training Performance. Three layers, with equal number of
units per layer.

design uses a mixture of full-custom cells for the datapaths and
pads, and standard cells for control and other random logic.

A number of scaled SPERT components have been success-
fully fabricated and tested, including the critical multiplier and
adder components. We have recently completed the design,
layout, and verification of a test chip containing the datapath
for the SIMD array. A microphotograph of the test chip is
shown in Fig. 6. This datapath will be repeated eight times in
the SPERT design. It measures 3,490 x 9,132 X (A = 0.6).
Tests results for the fabricated chip indicate that the datapath
is functional and operational above 50 MHz. Dynamic power
consumption for the test datapath is 0.4 W at 50 MHz. Based
on this measurement we expect the power consumption for
SPERT to be around 5.0 W at 50 MHz. Fabrication of an entire
neuro-microprocessor is planned for summer 1993.

V. RELATED WORK

Several related efforts are underway to construct pro-
grammable digital neurocomputers, most notably the CNAPS
chip from Adaptive Solutions [2] and the MA-16 chip from
Siemens [5] .

Adaptive Solutions provides a SIMD array with 64 pro-
cessing elements per chip, in a system with four chips on a

398 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 3, MAY 1993

Fig. 6. Photomicrograph of SPERT test-chip.

board controlled by a common microcode sequencer. As with
SPERT, processing elements are similar to general purpose
DSP’s with reduced precision multipliers. Unlike SPERT,
this chip provides on-chip SRAM sufficient to hold 128 K
16 b weights but has no support for off-chip memory. Larger
networks require additional processor chips, even if the extra
processing power cannot be efficiently employed.

Like SPERT, the MA-16 leverage the high density and low
cost of commercial memory parts. This chip is designed to
be most efficient for three general network formulae that are
intended to summarize many connectionist computations. One
realization will consist of a two-dimensional array containing

256 of these chips, and the resulting system will provide im-
pressive raw peak throughput. This purely systolic approach,
using deep pipelines and a specialized instruction set (at the
chip level) will be appropriate for some network applications
with little nonconnectionist code.

SPERT will provide the large off-chip memory bandwidth
of the Siemens chip along with the general programmability
of the Adaptive Solutions chip. In addition, SPERT provides
high scalar performance and performs well on smaller layers.
These capabilities are important for our application, as we
are interested in experimenting with larger, sparser network
structures that are organized as collections of smaller, highly
interconnected, sub-networks. Both the CNAF’S and the MA-
16 are designed to be cascaded into larger SIMD processor
arrays. An important goal in the SPERT design is to prototype
ideas for a parallel processing node that will be used in a
future, scalable, MIMD multiprocessor system. Such a system
would target large, irregular network structures.

ACKNOWLEDGMENT

Brian Kingsbury has designed most of the fundamental
circuit blocks that are being used in SPERT. Bertrand Irissou
and James Beck have also been critical contributors to the
VLSI design. Phil Kohn provided RAP software support for
simulation studies. Thanks to John Lazzaro for sharing his
expertise in chip design.

REFERENCES

[l] K. AsanoviC, N. Morgan, and J. Wawrzynek, “Using simulations of
reduced precision arithmetic to design a neuro-microprocessor,” J . VLSI
Signal Processing, 1993, to be published.

[2] D. Hammerstrom, “A %SI architecture for high-performance, low-
cost, on-chip Learning,” in Proc. Int. Joint Con$ Neural Networks, 1990,

[3] N. Morgan and H. Bourlard, “Continuous speech recognition using
multilayer perceptrons with hidden Markov models,” in Proc. IEEE Int.
Conf Acoustics, Speech, Signal Processing, Albuquerque, NM, 1990,

[4] N. Morgan, J. Beck, P. Kohn, and J. Bilmes, “Neurocomputing on the
RAP,” in Digital Parallel Implementations of Neural Networks, K. W.
Przytula and V. K. Prasanna, Eds. Englewood Cliffs, NJ: Prentice Hall,
1992.

[SI U. Ramacher, J. BIechter, W. Raab, J. Anlauf, N. Bruls, M. Hackmann,
and M. Wesseling, “Design of a 1st generation neurocomputer,” in VLSI
Design of Neural Networks.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representation by error propagation,” in Parallel Distributed Processing.
Exploration of the Microstructure of Cognition, vol 1. Cambridge, MA:
MIT Press, 1986.

[7] P. J. Werbos, “Beyond regression: New tools for prediction and anal-
ysis in the behavioral sciences,” Ph.D. dissertation, Dept. of Applied
Mathematics, Harvard University, Cambridge, MA, 1974.

pp. 11-537-543.

pp. 413-416.

New York: Kluwer Academic, 1991.

John Wawrzynek received the M.S. degree in electrical engineering from
the University of Illinois, UrbanaKhampaign. He received the Ph.D. degree
in 1987 from the California Institute of Technology where he worked under
Carver Mead.

Currently he is an Assistant Professor of electrical engineering and computer
science at the University of California, Berkeley, where he teaches courses
in VLSI design and computer architecture. His current research interests
include VLSI circuits and systems, neurocomputing, and parallel computer
architectures.

Dr. Wawrzynek received the National Science Foundation Presidential
Young Investigator Award.

WAWRZYNEK er al.: DESIGN OF NEURO-MICROPROCESSOR

Krste Asanovik received the B. A. degree in electrical and information
sciences tripos from Cambridge University in 1987. He is currently working
towards the Ph.D. degree in computer science at the University of California,
Berkeley.

From 1983 through 1989 he was with the GEC Hirst Research Centre,
London. His research interests are in VLSI, massively parallel computer
architectures, and object oriented programming languages.

399

Nelson Morgan (SM’86) received the Ph.D. degree
in electrical engineering and computer science from
the University of California, Berkeley.

He leads the Realization Group (a computer en-
gineering department) at the International Computer
Science Institute (ICSI), a nonprofit research lab-
oratory closely associated with the Department of
Electrical Engineering and Computer Sciences at
the University of California, Berkeley. He is also
an Adjunct Professor in the same department at
the University of California. He is the author of

Talking Chips, a book about speech synthesis with integrated circuits. His
current interests include the design of algorithms, architectures, and systems
for parallel signal processing and pattern recognition systems, particularly
using connectionist paradigms.

