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The Design of a Neuro-Microprocessor 
John Wawrzynek, Krste AsanoviC, and Nelson Morgan, Senior Member, IEEE 

Abstract- This paper presents the architecture of a neuro- 
microprocessor. This processor was designed using the results of 
careful analysis of our set of applications and extensive simulation 
of moderate-precision arithmetic for back-propagation networks. 
We present simulated performance results and test-chip results 
for the processor. This work is an important intermediate step in 
the development of a connectionist network supercomputer. 

I. INTRODUCTION 

E are engaged in the development of a connectionist W network supercomputer. This computer is targeted for a 
peak performance of 1011 connections per second for networks 
with up to a million units and a billion connections. It will 
include specialized sensor and actuator interfaces for interac- 
tion with real-time processes. We feel that this combination 
of large networks and real-world interaction is critical to the 
development of large neural network applications and has the 
potential of enabling new science. 

Using implementation technologies available within the next 
several years, a system of this capacity is by necessity a 
multiprocessor. The design of such a machine is similar to that 
of a general purpose parallel computer. Both share the same set 
of issues relating to system partitioning and communication. 
Today’s digital technology offers a mature implementation 
strategy for such systems. Future systems may employ analog 
or emerging new technologies, however, at this stage we are 
taking advantage of many years of digital processor design 
methodology and fabrication processes. We are focusing our 
systems efforts on digital implementations. 

As an intermediate step in the development of a connec- 
tionist network supercomputer, we have designed a single 
chip CMOS neuro-microprocessor that provides significant 
improvements in cost/performance over earlier systems for 
artificial neural network calculations. The architecture is fully 
programmable, and efficiently executes a wide range of con- 
nectionist computations. Special emphasis has been placed 
on the support of variants of the commonly used back- 
propagation training algorithm for multilayer feed-forward 
networks [6], [7]. This class of networks is of interest in the 

Manuscript received August 17, 1992; revised September 23, 1992. The 
National Science Foundation provided support for the VLSI building blocks 
and design tools under Grant MIP-8922354. B. Kingsbury was supported 
by a Graduate Fellowship. J. Wawrzynek was supported by the National 
Science Foundation through the Presidential Young Investigator (PYI) Award, 
MIP-8958568. The larger project was supported by the ONR URI N00014- 
92-5-1617 and the International Computer Science Institute. 

J. Wawrzynek is with the Department of Electrical Engineering and 
Computer Science, University of California, Berkeley, CA 94704. 

K. AsanoviC and N. Morgan are with the University of California, Berkeley 
and the International Computer Science Institute, Berkeley, CA 94704. 

IEEE Log Number 9207193. 

speech recognition task that is the focus of our applications 
work [3]. 

An earlier system, the Ring Array Processor (RAP), was 
a multiprocessor based on commercial DSP’s with a low- 
latency ring interconnection scheme [4]. We have used the 
RAP to simulate variable precision arithmetic and guide us 
in the design of the neuro-microprocessor [l]. The RAP 
system played a critical role in this study, enabling us to 
experiment with much larger networks than would otherwise 
be possible. Our study shows that, for the speech recognition 
training problems we have examined, back-propagation train- 
ing algorithms only require moderate precision. Specifically, 
16 b weight values and 8 b output values were sufficient to 
achieve training and classification results comparable to 32 b 
floating point. Although these results were gathered for frame 
classification in continuous speech, we expect that they will 
extend to many other Connectionist calculations. We have 
used these results as part of the design of a programmable 
single chip microprocessor, SPERT. The reduced precision 
arithmetic permits the use of multiple datapaths per processor. 
Also, reduced precision operands make more efficient use of 
valuable processor-memory bandwidth. 

Our experience with the RAP has also shown us that 
close interaction with real user applications is critical for 
neurocomputer design. There is a strong push from users to 
reduce the wall-clock time for their applications. Successful 
neural system design must be sensitive to what could be 
considered a “neural” corollary to Amdahl’s Law: 

A connectionist accelerator can be best speed up an ap- 
plication by a factor of l/(fraction of nonconnectionist 
computation). 
For the applications we have observed, this speedup is 

in the range of 10 to 100. For this reason, we believe 
that general computational support is required even in a 
specialized connectionist machine, e.g., at least one general 
purpose processor per 10- 100 neural multiply-accumulate 
units. Furthermore, memory capacity and bandwidth must keep 
pace with the rest of the machine to support real applications. 
Finally, regardless of its potential for speedup, any machine 
will go unused unless usable and efficient software is available. 
The RAP was a successful compromise of these concerns; it is 
used on a daily basis by a growing user’s group at a number of 
research sites. SPERT is our first attempt to incorporate more 
specialized VLSI into a system in a equally balanced way. 

11. SPERT ARCHITECTURE 

SPERT is a processor design that combines a general 
purpose integer datapath, similar to those found in RISC 
microprocessors, a vector unit comprising a SIMD array of 
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datapaths optimized for neural network computations, and a 
wide connection to external memory. The RISC-like datapath 
is used for general scalar computation, to provide loop and 
branch control, and to generate memory addresses. It is the 
moderate precision requirement of neural network calculations 
that permits SIMD processing at the chip level. 

SPERT has a single 128 b VLIW instruction format. The 
instruction contains a number of orthogonal fields that control 
different functional units. The fields in the VLIW instruction 
are split into five major groups: host synchronization control, 
scalar datapath control, SIMD datapath control, external mem- 
ory control, and an immediate field. The immediate field is 
used either as a value for the scalar datapath or as an absolute 
branch address. The instruction pipeline has seven stages, and, 
in the absence of instruction cache misses and host memory 
accesses, one instruction can be completed every cycle. 

The overall structure of SPERT is shown in Fig. 1. The 
main components are a scalar 32 b integer datapath, a SIMD 
array containing eight 32 b fixed point datapaths, an instruction 
fetch unit with an instruction cache, the 128 b wide external 
memory interface, and a JTAG' interface and control unit. 

SPERT functions as an attached processor for a conventional 
workstation host. The JTAG serial bus is used as the host- 
SPERT interface. Chip and board testing, bootstrap, data I/O, 
synchronization, and program debugging are all performed 
over the JTAG link. Data 1/0 over JTAG can be overlapped 
with SPERT computation. A minimal system configuration 
will include a SPERT processor, a JTAG connection to a host 
processor, and external SRAM. The initial implementation of 
SPERT has a maximum clock frequency of 50 MHz. The 
external memory interface supports up to 16 MB of single 
cycle memory over a 128 b data bus. At the maximum 50 MHz 
clock rate, memory bandwidth is 800 MB/s. The external 
memory will typically be used to hold weight values and 
program code. Input and output training patterns will be 
supplied by the host from a large database held on disk. Even 
with relatively small networks, the time spent training on one 
pattern is sufficient to transfer training data for the next pattern 
over the JTAG link. 

The computation core of SPERT comprises the scalar unit 
and the SIMD array. The scalar unit, shown in detail in Fig. 2 
contains a triple-ported general purpose register file, a 32 b 
adder (addo), a 32 b logical unit (lu), a branch comparator 
(brc), a 32 b shifter, the SIMD shift amount register (sa), 
and two address generation units (add1 and add2). These are 
connected by three buses (wbus, xbus, and ybus) managed by 
register bypassing hardware. The 32 b wide global scalar bus, 
scbus, is used to transfer data between the scalar unit and the 
rest of SPERT. It connects all SIMD datapaths to the scalar 
unit. The bus transfer two values per cycle. 

The scalar unit connects to the external memory data bus 
through the memory latches in the SIMD datapaths. After an 
external memory load operation, the 128 b of data are held in 
latches in the SIMD array. A scalar load then selects one of 
the datapaths to broadcast the value it received over the scbus. 

'Initials of the Joint Test Action Group who helped formulate the 
IEEE1149.1 boundary scan standard. For brevity, the term JTAG is used to 
refer to the standard. 
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Fig. 1. SPERT structure. 

This value can then be read by the scalar unit and/or all the 
SIMD datapaths. The same circuitry is used when performing a 
scalar unit load from SIMD register; the complete 256 b vector 
register is read by all SIMD datapaths, and only the selected 
datapath broadcasts the values to the rest of the system. 

Fig. 3 shows the structure of one of the eight parallel 
SIMD datapaths. Each SIMD datapath is similar to that of 
a fixed-point DSP and contains 24 b x 8 b multiplier (mul), 
a 32 b saturating adder (sadd), a 32 b shifter (shift), and a 
32 b limiter (lim). All datapaths in the SIMD array execute 
the same operation under control of a number of fields in 
the current instruction. All of these functional units can be 
active simultaneously, delivering up to 400 x lo6 fixed-point 
multiply-accumulates per second. The multiplier produces a 
full 32 b result, but can optionally round the result to 24 b, 
16 b, or 8 b. Both inputs to the multiplier can be treated as 
either signed or unsigned to support higher precision multiplies 
in software. 

The functional units are connected to each other, the register 
file, and memory by three buses (a, b, and c). The buses 
transfer two operands per clock, to allow up to six values 
to be transferred per instruction. In addition, there are four 
sneak paths between physically adjacent functional units. In 
this manner, up to 10 values can be moved between functional 
units in every datapath each cycle. Over all eight datapaths, 
this is an operand bandwidth of up to 16 GB/s. 

Each of the functional units has a register associated with 
each input. The input registers can be loaded with values 
from the register file, the output of other functional units, 
or can be left unchanged. They allow multiple operands to 
be transferred between functional units less expensively than 
providing multiple ports into a single shared register file. 
The registers can retain values across multiple instructions, 
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Fig. 2. Scalar unit datapath. 
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Fig. 3. SIMD datapath. 

allowing constants to be held in the datapath with no further 
datapath bus traffic. 

SPERT is a pure loadhtore architecture; all memory trans- 
fers are to/from registers, and all functional unit operations 
take register operands. All address generation is performed 
by the scalar unit. Memory transfers for the SIMD array can 
either move a vector of four or eight operands, or load a single 
scalar operand. 

The scalar unit can directly load/store into a SIMD register, 
treating each one as a small 8 x 32 b on-chip memory. 
This capability is used to allow eight scalar operands to be 
transferred between registers and memory in one cycle, and to 
allow a tight coupling between the scalar unit and the SIMD 
units for cases where operations cannot be parallelized across 
the SIMD datapaths. SPERT is capable of performing a scalar 
unit load from a SIMD register, a scalar unit store to a SIMD 
register, and an external memory SIMD vector access in a 
single cycle. 

SPERT instructions are stored in external memory and 
cached on chip. The instruction fetch unit manages a small 
instruction case that provides nearly 800 MB/s of instruction 
bandwidth. Typical applications are dominated by small loops 
and will experience high hit rates. Also, the large external 
memory bandwidth ensures that performance can never be 
more than halved as a result of instruction cache misses. 

111. SPERT PERFORMANCE ANALYSIS 

During the architectural design process, a number of appli- 
cations were considered and used to evaluate design alterna- 
tives. The primary envisaged application is back-propagation 
training. In this section we present detailed performance results 
for forward propagation and back-propagation training on 
SPERT. 

These results have been obtained by careful analysis of 
assembly code routines. The results take into account all loop 
overhead, blocking overhead, and instruction cache miss cy- 
cles. The routines are fully parameterized, with all parameters 
passed in scalar registers. For these timings, all input data 
resides in memory, and all output data is placed back into 
memory in a form that will allow these routines to be chained 
with no penalty for data rearrangement. The only restriction 
imposed by these routines is that the number of units in a layer 
be a multiple of eight. This is not an important restriction, 
because dummy units can be inserted to pad smaller layers if 
necessary. For these results, weights are 16 b, inputs are 8 b, 
and activations are 8 b sigmoids looked up in a 64 K entry 
table. Most intermediate values are calculated to 24-32 b 
precision. 

A single data structure is used to store the weight matrix 
for both forward propagation and back-propagation. Weights 
are stored as a two-dimensional array with all the weights 
corresponding to a particular neural unit in a column and the 
weights corresponding to a particular input in a row. Layer 
input and output values are arranged in linear arrays. 

Forward propagation for a multilayered network is com- 
puted one layer at a time. The basic operation is a vector- 
matrix multiplication with a vector of input values used to 
form the inner-product with each column of the weight matrix. 
Within the layer, the output of eight units at a time are 
calculated-one unit per SIMD datapath. The first step is a 
vector-read of eight input values. One input is stored in each 
of the SIMD datapaths and subsequently broadcast to all the 
other datapaths. One by one each input value is broadcast and 
multiplied by a vector of eight weights read from memory; the 
results are accumulated, one per datapath. After all eight inputs 
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have been processed another set of inputs are read. The process 
is continued until the entire inner-product is computed for a 
set of eight units. Finally, the appropriate nonlinear function 
for each unit is computed with a table lookup operation using 
the scalar unit. The process is then repeated for another set of 
units until all units in the layer have been computed. 

Fig. 4 plots the performance of SPERT on forward propaga- 
tion. The graph plots a number of curves for a fully connected 
pair of layers, varying the number of units in the input and 
output layers. Peak performance is around 350 MCPS. By 
using reduced precision, SPERT makes better use of processor- 
memory bandwidth, and can sustain 89% of its theoretical peak 
performance even when all operands are stored in external 
memory. The fast on-chip scalar unit helps SPERT attain high 
performance even with smaller nets. Nets must be smaller than 
32 x 32 to drop below half peak performance. 

The back-propagation training algorithm uses a forward 
propagation step to compute the error at the network outputs, 
followed by an error back-propagation step, and finally a 
weight update step. The forward propagation step is the 
standard method described above. The weight update step 
is simply a matter of accessing the weights and augmenting 
them with the appropriate error. The difficult part of back- 
propagation algorithm is the error back-propagation phase. 
This part is essentially a vector-matrix product between a 
vector of errors and the transpose of the weight matrix. 

On SPERT, the weight matrix is not transposed in mem- 
ory to better align with the SIMD datapaths; instead, inner- 
products are computed eight at a time, with each inner-product 
accumulated in eight partial sums, one per datapath. These 
64 values are held in 8 of the SIMD general purpose registers. 
The inner loop of the back-propagation code reads in one 
group of 8 error terms, then reuses this value 8 times to 
multiply 8 vectors of 8 weights each, one vector per inner- 
product. The results are accumulated in the partial sums. 
Computation proceeds in these 8 by 8 blocks across the weight 
matrix until each of the 8 inner-products is available in the 
form of 8 partial sums that must be reduced to a single value. 
One SIMD operation can reduce the 8 elements to 4 which are 
then reduced to a single value using the scalar unit. This entire 
process is repeated for the next set of eight weight matrix rows. 

Fig. 5 shows the training performance on a 3 layer feed- 
forward network with equal numbers of units on the in- 
put, hidden, and output layers. Peak performance is around 
100 MCUPS. 

In comparing these performance figures with other imple- 
mentations, it must be stressed that the figures for SPERT 
represent training with no pooling of weight updates. The 
training is entirely on-line with weight updates occurring 
after every pattern presentation. Some parallel systems train 
multiple copies of a network, then periodically pool the 
weight updates. This can lead to reduced training performance, 
counteracting the benefits of increased parallelism. 

IV. SPERT VLSI IMPLEMENTATION 

The SPERT design is being implemented in MOSIS CMOS 
scalable design rules, with a target 50 MHz clock rate. The 
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Fig. 4. SPERT forward propagation performance. 
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Units per Layer 

Fig. 5. SPERT training Performance. Three layers, with equal number of 
units per layer. 

design uses a mixture of full-custom cells for the datapaths and 
pads, and standard cells for control and other random logic. 

A number of scaled SPERT components have been success- 
fully fabricated and tested, including the critical multiplier and 
adder components. We have recently completed the design, 
layout, and verification of a test chip containing the datapath 
for the SIMD array. A microphotograph of the test chip is 
shown in Fig. 6. This datapath will be repeated eight times in 
the SPERT design. It measures 3,490 x 9,132 X (A = 0.6). 
Tests results for the fabricated chip indicate that the datapath 
is functional and operational above 50 MHz. Dynamic power 
consumption for the test datapath is 0.4 W at 50 MHz. Based 
on this measurement we expect the power consumption for 
SPERT to be around 5.0 W at 50 MHz. Fabrication of an entire 
neuro-microprocessor is planned for summer 1993. 

V. RELATED WORK 

Several related efforts are underway to construct pro- 
grammable digital neurocomputers, most notably the CNAPS 
chip from Adaptive Solutions [2] and the MA-16 chip from 
Siemens [5 ] .  

Adaptive Solutions provides a SIMD array with 64 pro- 
cessing elements per chip, in a system with four chips on a 
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Fig. 6. Photomicrograph of SPERT test-chip. 

board controlled by a common microcode sequencer. As with 
SPERT, processing elements are similar to general purpose 
DSP’s with reduced precision multipliers. Unlike SPERT, 
this chip provides on-chip SRAM sufficient to hold 128 K 
16 b weights but has no support for off-chip memory. Larger 
networks require additional processor chips, even if the extra 
processing power cannot be efficiently employed. 

Like SPERT, the MA-16 leverage the high density and low 
cost of commercial memory parts. This chip is designed to 
be most efficient for three general network formulae that are 
intended to summarize many connectionist computations. One 
realization will consist of a two-dimensional array containing 

256 of these chips, and the resulting system will provide im- 
pressive raw peak throughput. This purely systolic approach, 
using deep pipelines and a specialized instruction set (at the 
chip level) will be appropriate for some network applications 
with little nonconnectionist code. 

SPERT will provide the large off-chip memory bandwidth 
of the Siemens chip along with the general programmability 
of the Adaptive Solutions chip. In addition, SPERT provides 
high scalar performance and performs well on smaller layers. 
These capabilities are important for our application, as we 
are interested in experimenting with larger, sparser network 
structures that are organized as collections of smaller, highly 
interconnected, sub-networks. Both the CNAF’S and the MA- 
16 are designed to be cascaded into larger SIMD processor 
arrays. An important goal in the SPERT design is to prototype 
ideas for a parallel processing node that will be used in a 
future, scalable, MIMD multiprocessor system. Such a system 
would target large, irregular network structures. 
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