
VISTA: A Visualization Tool for Computer Architects

by

Aaron D. Mihalik

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 30, 2004

Copyright 2004 Massachusetts Institute of Technology. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

January 30, 2004

Certified by

Krste Asanović
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

 i

VISTA: A Visualization Tool for Computer Architects

by

Aaron D. Mihalik

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science
and Master of Engineering in Electrical Engineering and Computer Science

Abstract

As computer architectures continue to grow in complexity, software developers and
hardware engineers cope with the increasing complexity by developing proprietary
applications, simulations and tool sets to understand the behavior of these complex
systems. Although the field of information visualization is leading to powerful
applications in many areas, information visualization applications for computer
architecture development are either tightly coupled with a specific architecture or target a
wide range of computer system data.

This thesis introduces the Visualization Tool for Computer Architects (VISTA)
Environment. The VISTA Environment is an extensible and modular information
visualization environment for hardware engineers, software developers and educators to
visualize data from a variety of computer architecture simulations at different levels of
abstraction. The VISTA Environment leverages common attributes in simulation data,
computer architecture visualizations, and computer architecture development methods to
create a powerful information visualization environment to aid in designing,
understanding and communicating complex computer architectures.

Thesis Supervisor: Krste Asanović
Title: Associate Professor of Computer Science

 ii

Acknowledgments
The VISTA project was initially created by Mathew Jack and Chris Batten in

2002. Mathew Jack, a student at Cambridge University, created a prototype version of

VISTA while he studied at MIT during the 2002-2003 academic year. Chris Batten

continued to work on VISTA until Krste Asanović invited me to work on the project in

the Fall of 2003. Thanks to Krste, I was able to work on this unique project in computer

architecture.

Throughout the development of VISTA, Chris Batten was always there to offer

me advice, encouragement and inspiration. Although the “firehose” metaphor is

overused, I cannot think of anything more appropriate: getting some good ideas from

Chris Batten is like trying to get a drink of water from a firehose.

There are also a two friends I’d like to thank. Throughout my time at MIT, I have

run into Goutam Reddy numerous times and he’s always been a great friend. This past

year and half was no exception as dragged me through my classes and kept me line

whenever I wandered. Also, I am indebt to Karen Robinson both financially and

emotionally. Whenever Goutam left off, Karen Robinson picked up.

Finally, I’d like to thank my family. My parents have provided me with

numerous unique opportunities throughout my life, and they have always been there to

support my endeavors. My younger brother, Adam, remains my best friend and a hell of

a role model. And last, I thank my little sister Emily (Em Emers Emilinie). She is so

wise and so funny.

 iii

Table of Contents
CHAPTER 1: INTRODUCTION 1

1.1 THE MICROPROCESSOR: A DEVICE OF EXPONENTIALLY INCREASING COMPLEXITY......................... 2

1.2 DESIGNING, UNDERSTANDING AND COMMUNICATING COMPLEX COMPUTER ARCHITECTURES 3

1.2.1 Simulation Applications: Hardware and Software Development.. 4

1.2.2 Simulation Applications: Teaching and Communicating Fundamental Ideas and Research 5

1.3 TRADITIONAL APPROACHES TO SIMULATIONS AND VISUALIZATIONS .. 6

1.3.1 The SimpleScalar Tool Set ... 6

1.3.2 The Hierarchical Computer Architecture Design and Simulation Environment....................... 7

1.3.3 The Rivet Visualization Environment... 8

CHAPTER 2: THE VISTA ENVIRONMENT 10

2.1 THE VISTA APPROACH .. 10

2.2 ABSTRACT SIMULATION DATA OBJECTS .. 11

2.2.1 Signal Metadata Object... 12

2.2.2 Signal Value Object .. 13

2.2.3 Discrete Simulation Frame Objects .. 14

2.3 DESIGN OVERVIEW ... 17

2.3.1 Three Components of the VISTA Environment.. 18

2.3.2 Interfacing the VISTA Components ... 19

2.3.3 Importing and Managing Simulation Data Component Overview.. 20

2.3.4 Visualizing Simulation Data Component Overview ... 22

2.3.5 Graphical User Interface Component Overview ... 23

CHAPTER 3: IMPORTING AND MANAGING SIMULATION DATA
COMPONENT IMPLEMENTATION 24

3.1 VISTA DATA STRUCTURES.. 25

3.1.1 Structure.. 25

 iv

3.1.2 VisValue ... 26

3.1.3 TraceFrame ... 27

3.1.4 Image .. 27

3.2 SIMULATION IMPORT .. 28

3.2.1 SimParser .. 28

3.2.2 Runtime Import Manager.. 29

3.3 RUNTIME DATA MANAGER... 29

3.4 RUNTIME DATA STORAGE .. 30

CHAPTER 4: VISUALIZING SIMULATION DATA COMPONENT
IMPLEMENTATION 32

4.1 VIEW OBJECTS.. 33

4.1.1 Single Value View Object... 34

4.1.2 Plot View Object... 34

4.2 VIEW LAYOUTS... 36

4.2.1 Flow View Layout .. 36

4.2.2 Grid View Layout ... 37

4.2.3 Plot View Layout .. 39

4.3 SIGNAL EXPLORER.. 40

4.4 GLOBAL TIME LISTENER INTERFACE .. 42

CHAPTER 5: THE VISTA GRAPHICAL USER INTERFACE COMPONENT
IMPLEMENTATION 43

5.1 MANAGING VISUALIZATIONS USING A MULTIPLE DOCUMENT INTERFACE 44

5.1.1 View Layouts Containers.. 45

5.1.2 Dispatching Mouse Events.. 46

5.1.3 Drag and Drop Implementation .. 47

5.2 MODIFYING AND EXAMINING THE STATE OF THE VISTA ENVIRONMENT 48

5.2.1 User Actions in the VISTA Environment ... 49

5.2.2 Providing VISTA State Information ... 50

 v

5.2.3 Property Boxes.. 51

CHAPTER 6: CONCLUSION AND FUTURE WORK 52

CHAPTER 7: BIBLIOGRAPHY 54

 vi

Table of Figures
FIGURE 1-1: TABLE OF SIMULATION APPLICATIONS ... 4

FIGURE 1-2: HASE APPLET USED TO DEMONSTRATE A DLX PROCESSOR WITH SCOREBOARDING 8

FIGURE 1-3: RIVET VISUALIZATION FROM THE “PIPECLEANER” PROJECT .. 9

FIGURE 2-1: $VAR SPECIFICATION FROM THE IEEE 1364 STANDARD ... 13

FIGURE 2-2: RULES FOR UNKNOWN AND HIGH IMPEDANCE VALUES FROM THE IEEE 1364 STANDARD 14

FIGURE 2-3: SAMPLE VALUE CHANGE SECTION FROM A VALUE CHANGE DUMP FILE.................................. 15

FIGURE 2-4: THE MEMORY AND ACCESS TIME COST OF VARIOUS VALUE CHANGE SCHEMES 16

FIGURE 2-5: CONCEPTUAL COMPONENT MODEL OF THE VISTA ENVIRONMENT.. 18

FIGURE 2-6: INTERFACE BETWEEN GUI AND IMPORTING AND MANAGING SIMULATION DATA COMPONENTS
.. 19

FIGURE 2-7: INTERFACE BETWEEN THE GUI AND THE VISUALIZATIONS... 19

FIGURE 2-8: INTERFACE BETWEEN THE VISUALIZATIONS AND DATA COMPONENTS 20

FIGURE 2-9: CONCEPTUAL MODEL OF THE COMPONENTS OF DATA COMPONENTS 21

FIGURE 2-10: CONCEPTUAL MODEL OF VIEW OBJECTS IN A VIEW LAYOUT ACCESSING SIMULATION DATA
FROM THE IMPORTING AND MANAGING SIMULATION DATA COMPONENT .. 23

FIGURE 3-1: DIAGRAM OF A STRUCTURE OBJECT ... 25

FIGURE 3-2: DIAGRAM OF A VISVALUE OBJECT ... 26

FIGURE 3-3: DIAGRAM OF A TRACEFRAME OBJECT .. 27

FIGURE 3-4: DIAGRAM OF AN IMAGE OBJECT ... 27

FIGURE 4-1: EXAMPLE OF A SINGLE VALUE VIEW OBJECT ... 34

FIGURE 4-2: EXAMPLES OF A PLOT VIEW OBJECT: LINE GRAPH, WAVEFORM GRAPH, AND A BAR GRAPH .. 35

FIGURE 4-3: EXAMPLE OF A FLOW VIEW LAYOUT WITH A SET OF SINGLE VALUE VIEWS 37

FIGURE 4-4: EXAMPLE OF A GRID VIEW LAYOUT WITH A SET OF SINGLE VALUE VIEWS 38

FIGURE 4-5: EXAMPLE OF A GRID VIEW LAYOUT WITH SINGLE VALUE VIEWS AND BACKGROUND IMAGE . 38

FIGURE 4-6: EXAMPLE OF A PLOT VIEW LAYOUT WITH A SET OF PLOT VIEW OBJECTS 39

FIGURE 4-7: EXAMPLE OF THE SIGNAL EXPLORER .. 41

FIGURE 5-1: THE GRAPHICAL USER INTERFACE OF THE VISTA ENVIRONMENT... 44

 vii

FIGURE 5-2: A STANDARD FRAME AND A PALETTE FRAME .. 46

FIGURE 5-3: THE STRUCTURE OF A TOP-LEVEL CONTAINER... 46

FIGURE 5-4: THE USE OF SWING TRANSFER HANDLERS IN DRAG AND DROP.. 48

FIGURE 5-5: EXAMPLE OF A USER ACTION’S JAVA CODE AND DESCRIPTION ENTRY.................................... 49

FIGURE 5-6: MENUS AND TOOLBAR FROM THE VISTA GRAPHICAL USER INTERFACE 50

FIGURE 5-7: VISTA GRAPHICAL USER INTERFACE STATUS BAR.. 50

FIGURE 5-8: A PLOT VIEW OBJECT WITH A PROPERTY BOX AND COLOR CHOOSER...................................... 51

 1

Chapter 1:

Introduction

The internal workings of modern computer architectures are well abstracted away

from the typical computer user. While computer users chat in real-time over the Internet,

listen to a set of their favorite songs, and watch recorded television episodes on their

desktop machine, the computer processor, which took thousands of man-years to design,

is quietly orchestrating the complex set of operations required to seamlessly multitask

these applications.

Although the typical computer user might not be aware of the complexities in the

modern processor, hardware engineers and software designers are thoroughly acquainted

with these issues. These professionals have to design prospective architectures,

understand the internal workings of the processor at some level, and discuss with others

various issues regarding the processor.

Hardware engineers and software designers have developed an enormous set of

applications, tool sets and simulations in order to cope with the complexity of modern

computer architectures. This set of tools cover a wide range of aspects in computer

architecture development, but fails to provide a common framework to design,

understand and communicate computer architecture related material

This is the basis for the Visualization Tool for Computer Architects (VISTA)

Environment. The VISTA Environment is an extensible information visualization

environment for hardware engineers, software developers and educators to visualize data

from a variety of computer architecture simulations at different levels of abstraction. The

VISTA Environment leverages common attributes in simulation data, computer

architecture visualizations, and computer architecture development methods to create a

 2

flexible and powerful information visualization environment to aid in designing,

understanding and communicating complex computer architectures.

1.1 The Microprocessor: A Device of Exponentially
Increasing Complexity

The birth of the microprocessor can be traced back to 1958 at a laboratory in

Dallas, Texas. It was there that Jack Kilby, a Texas Instruments engineer, borrowed and

improvised equipment to build the first two-transistor integrated circuit. This seemingly

small piece of work by Kilby laid the foundation for the entire field of microprocessors

and microelectronics. Forty-five years later, the microelectronics field that sprung from

Kilby’s work has evolved to a $200 billion industry that drives a $1 trillion electronic

end-equipment market. [1]

Since 1958, the size, complexity and computational power of microprocessors

have grown at an exponential rate. In a 1965 article published in Electronics, Gordon

Moore, one of the founders of Fairchild Semiconductor and the Intel Corporation, noted

that the number of transistors in an integrated circuit was growing at an exponential rate

and saw “no reason to believe [that this growth] will not remain nearly constant for at

least 10 years” [2]. This observation was immediately termed “Moore’s Law” by the

press and the name has stuck.

Although Moore was only willing to commit to the exponential growth trend until

1975, his observation has held true for nearly forty years. The Intel x86 family of

processors, the predominate computer architecture in the desktop computing world, can

provide numerous examples of Moore’s Law in action. Two notable processors are the

Intel 8088 processor released in 1982 and the Intel Pentium 4 processor released in 2000.

Twenty years after the creation of the first integrated circuit, Intel and IBM

launched one of the first lines of home computers. This machine, termed the IBM PC,

was released in 1982 and came standard with a monochrome monitor, floppy disk

system, and an Intel 8088 processor. Although the machine was fairly primitive

compared to today’s machines—it could only handle simple word processing applications

and business management tasks—the Intel 8088 contained nearly 29,000 transistors [3].

 3

In November of 2000, approximately twenty years after the release of the IBM

PC, Intel introduced the Pentium 4 processor. The Pentium 4 was designed to tackle the

increasingly complex set of applications that desktop and entry level workstation users

demanded. Users wanted a processor capable of multi-tasking an assortment of

applications including software to communicate over the Internet with real-time audio

and video, video games that rendered sophisticated 3D graphics on the fly, and

multimedia applications that incorporated computationally intensive video and audio

compression formats. To accomplish this, the Pentium 4 delivered users with a dramatic

increase of processing power, but required an enormous amount of processor complexity.

The Pentium 4 could execute instructions 5,000 times faster than as its Intel 8088

ancestor [4], but it had grown to use 42 million transistors [3].

The increase in the number of transistors suggests that there are considerable

differences between the two processors. As the x86 series of processors evolved from the

Intel 8088, Intel hardware engineers implemented a set of complex techniques and

sophisticated internal operations to improve the performance of their processors. These

techniques and operations, each one involving numerous interactions between

components of the processor, included branch prediction and speculative execution of

instructions, concurrent out-of-order execution of instructions on multiple functional

units and in-order commitment of the results to memory, dynamically renaming registers

to remove artificial data and control dependencies, and complex interactions between the

processor and memory system. Although these techniques dramatically increase the

performance of the processors, the resulting complexity is clear: thousands of man-years

of effort are now required to develop a new generation of these sophisticated processors.

1.2 Designing, Understanding and Communicating
Complex Computer Architectures

The task of effectively designing, understanding and communicating complex

computer architectures becomes more difficult as the complexity of the system increases.

In order to cope with the increasing complexity of computer architectures, hardware

engineers, software designers and academia develop software simulations that model the

architecture at various levels of abstraction.

 4

1.2.1 Simulation Applications: Hardware and Software Development

Simulation applications for hardware and software development are used

throughout the design process to cope with the complexity in computer architecture and

software design. Simulation users enjoy the freedom to choose or develop simulations

that take into account the time they have to run the simulation, the type of information

they want to obtain about the system, and the computing environment in which they want

to execute the simulation.

Simulations that model the behavior of the architecture are created during the first

stages of the development process and are used throughout the life of the processor. In

the early stages of development, hardware engineers use behavioral simulations to

explore different options in an architecture design space, validate design decisions, and

analyze the performance of existing applications on new architectures.

At the same time, software developers use system level behavioral simulations to

create and debug software for the prospective architecture. Simulations based on

behavioral models allow software designers to optimize their code on a new architecture

without having to know the details of the underlying system. Also, these simulations cost

less than the actual hardware and are available before the hardware is produced.

Simulation
Level

Simulation
Components Design Use Simulation rate on

host machine
Instruction-set

architecture
(ISA)

Processor, memory
Hardware Engineers: explore design

space, validate decisions, and analyze
existing applications

> 106 cycles/second

Complete
Machine

Processor, memory,
operating system,

other hardware
components

Software Developers: creating and
debugging software without the need

for actual hardware
> 103 cycles/second

Register
Transfer (RTL)

Registers,
Combinational

Circuits

Hardware Engineers: examine data
flow between the registers and

components
> 10 cycles/second

Gate/Circuit Gates, Transistors
Hardware Engineers: detailed

modeling of for circuit timing and
energy consumption

> 1 cycles/second

Figure 1-1: Table of Simulation Applications

Hardware and software developers use simulation applications throughout the
design of a new architecture to cope with the complexity in hardware and software
design.

After developing an architecture design using the behavioral simulators, hardware

engineers implement the functional aspects of the processor in register transfer level

 5

(RTL) simulations. Hardware engineers use a Hardware Descriptive Language (HDL) to

specify how the data flows between the registers and how the architecture processes the

data. At this stage, the hardware engineers implement and debug complex functional

techniques that increase the computational power of the architecture.

Finally, there are instances when a hardware engineer needs more detailed

information about the simulation of a processor. For instance, an engineer could require

highly accurate energy consumption information about the processor. In these cases, the

hardware engineer can use general purpose analog circuit simulators like SPICE to obtain

such information. However, the SPICE simulations of a circuit are orders of magnitude

slower than a RTL level simulation.

1.2.2 Simulation Applications: Teaching and Communicating
Fundamental Ideas and Research

The underlying concepts behind computer architecture designs are difficult to

describe, communicate and understand using traditional methods of teaching.

Introductory computer architecture classes are typically taught using static visual and

textural representations such as diagrams and drawings in lectures, papers, and textbooks.

These traditional methods of teaching computer architecture severely limit one’s ability

to grasp complicated design implementations, computational behavioral patters, and

component interactions that take place in modern processors.

These complex interactions require dynamic and interactive simulations in which

one can monitor the progression of instructions and data through a system and understand

the effects of design changes on a system. Dynamic and interactive simulations allow

users to understand the functional components in a design, the interaction between

software and the processor, and how hardware and software design decisions are made.

The set of simulation tools used by hardware engineers and software designers are

usually not appropriate for students to learn about architecture designs. These feature

rich simulation tools are frequently designed for optimum simulation speed of complex

design projects and require special training to use. Ease of use, excellent visualization

tools and portability are not normally goals for these simulator applications.

 6

The demand for dynamic and interactive teaching material has spurred the

development of simulation and visualization environments that are useful for interactive

learning of computer architecture concepts. Tools such as RaVi [6], JCachesim [8] and

HASE [10] are examples of such tools. RaVi and HASE are general purpose computer

architecture environments that allow for simulations and dynamic presentations to be

created for web based learning environments. JCachesim provides many of the same

functions, but is focused on observing the interaction between a processor and the cache

during the execution of a program. JCachesim also includes logging capabilities for use

in an online learning environment.

1.3 Traditional Approaches to Simulations and
Visualizations

Although the set of applications for simulating and visualizing computer

architectures is quite large, most of these applications can be grouped in three different

categories: (a) high performance proprietary or customizable simulation engines with

text-based trace output, (b) simulation engines coupled with visualization environments

or (c) visualization environments that accept data from a variety of different sources.

1.3.1 The SimpleScalar Tool Set

The SimpleScalar Tool Set is the most widely used superscalar processor

performance simulator and uses a high performance customizable simulation engine with

text-based trace output. Typically, hardware engineers will turn to performance

simulators like the SimpleScalar Tool Set in order to explore various architecture designs

because these simulators tend to run several orders of magnitude faster than RTL

simulations. The SimpleScalar Tool Set is publicly available and extensible.

The SimpleScalar Tool Set allows users to choose from highly detailed (and

hence relatively slower) simulations or faster simulations that provide less detail. On a

200-MHz Pentium Pro, the highly detailed version of SimpleScalar can simulate 150,000

machine cycles per second. On the same 200-MHz Pentium Pro, the less detailed version

of SimpleScalar can simulate four million machine cycles per second. [9]

 7

The drawback of using the SimpleScalar Tool Set is that the text-based trace

output can be a large and complex dataset that is difficult to navigate. In this situation,

users typically reduce the data into a more manageable dataset, or spend large amounts of

time tediously navigating the dataset. Although reduction can be useful for confirming a

hypothesis about an existing system and navigation of a large dataset is possible for a

well known system, these techniques are less useful for debugging or understanding a

novel system.

1.3.2 The Hierarchical Computer Architecture Design and Simulation
Environment

The Hierarchical Computer Architecture Design and Simulation Environment

(HASE) is a computer system design, simulation and visualization environment

developed at the University of Edinburgh. HASE allows for rapid development and

exploration of computer architectures at various levels of abstraction. The environment

is designed for both hardware and software designers to create a system, simulate

software execution on the system and examine the simulation results in an animation and

visualization environment. [10]

Although the HASE simulation system was originally written in C++, it has since

been ported to Java and spurred the creation of a number of other tool sets; SimJava,

JavaHASE and WebHASE have been created as a result of the HASE Java port. The

Java implementation of HASE has allowed for applet development to share simulations

and visualizations of systems over the web (see Figure 1-2). Current applets include

interactive animations and simulations of the DLX pipeline, scoreboarding, predication,

and Tomasulo’s Algorithm.

The drawback of the HASE simulation environment is that it is tightly coupled

with the visualization system. Although HASE provides users with a number of tools to

design, simulate, and share their systems over the Internet, these users are always bound

to the discrete-event simulation engine incorporated into HASE.

 8

Figure 1-2: HASE Applet Used To Demonstrate A DLX Processor with Scoreboarding

Currently the Hierarchical Computer Architecture Design and Simulation
Environment (HASE) project provides a number of educational simulations
available on the web as applets. These simulations include interactive animations
and simulations of the DLX pipeline, scoreboarding, predication, and Tomasulo’s
Algorithm. [11]

1.3.3 The Rivet Visualization Environment

The Rivet Visualization Environment was developed by Robert P. Bosch at

Stanford for his PhD work. Rivet can accept data from a variety of data sources and

present this information in various different visual displays. Rivet is extensible and

allows for rapid prototyping of new visualizations.

In Bosch’s dissertation, he details a number of computer related systems that

Rivet was used to visualize. During the course of this research, Bosch used Rivet to

create visualizations for an interactive parallelizing compiler, a detailed memory system,

an application running on superscalar processors (see Figure 1-3), and a real-time

 9

performance of computer systems and clusters [12]. Since then, Rivet has gone beyond

computer related systems to visualize multi-dimensional relational databases.

As Bosch showed in his dissertation, Rivet can visualize an assortment of

different computer system related information, including computer architecture

simulation data. However, the work on Rivet has focused visualizing diverse datasets,

not visualizing datasets with common characteristics. For instance, the “PipeCleaner”

visualization was created to visualize data from a specific processor simulator and it is

not reused to visualize data from other processor simulators.

Figure 1-3: Rivet Visualization from the “PipeCleaner” Project

The Rivet Visualization Environment was developed by Robert P. Bosch at
Stanford for his PhD work. Rivet is an visualization environment that can accept
data from a variety of data sources and present this information in various
different visual displays. Rivet is extensible and allows for rapid prototyping of
new visualizations. The “PiperCleaner” Project is one such visualization that
displays application performance on superscalar processors. [13]

 10

Chapter 2:

The Vista Environment

This chapter presents an overview of the VISTA Environment. The first section

enumerates the goals of the VISTA Environment. The next section develops a

specification of the abstract data objects from a widely used simulation data format.

Finally, this chapter ends with a design overview of VISTA Environment. This

design overview introduces the three sets of components that make up the VISTA

Environment and the interfaces that these components implement. Also, this section

provides a design overview for each of these three components.

2.1 The VISTA Approach
The VISTA Environment, in its broadest definition, is a software package that

enables users to transform rich and detailed computer architecture simulation datasets

into manageable visualizations. Since the first implementation of the VISTA

Environment by Mathew Jack in 2002, the VISTA Environment has evolved to meet

several specific goals.

The specific goals of the VISTA Environment are to provide users with:

Visualizations for Effective Navigation of Rich and Complex Datasets. The

VISTA Environment allows users to create visual representations of rich and complex

datasets. While retaining the richness of the original dataset, data visualizations provide

users with simple elements to explore the data, allow users to view large amounts of data

on a single screen, and present the datasets at various levels of abstraction.

Dynamic and Interactive Presentations of Architecture Concepts. Visualizing

of the dynamic behavior of complex architectures improves the dissemination of the ideas

and concepts incorporated into these systems. Research into visualization tools for

 11

computer architecture students have noted that “navigating through the screens of

interesting, colorful visualizations maintains students’ interest and can keep their brains

active” [8] and that “students really like the [visualization] units, appreciate their

availability … [and are] highly motivated [to try] these units at home.” [6]

Access to Varied Computer Architecture Simulation Datasets without

Significant Data Storage or Processing Overhead. The VISTA Environment leverages

common attributes in data created by architecture simulations and allows users to quickly

adapt their pre-defined visualizations to different sets of data, different architecture

simulations, and different iterations of the same simulation. With the VISTA

Environment, users have the freedom to choose or develop their own simulation package

while continuing to use the VISTA Environment for their data visualization needs.

Common Visual Framework to Understand and Communicate Simulation

Results. The VISTA Environment provides a common visual language to compare and

contrast architecture simulation datasets. This common framework allows users to focus

on understanding the architecture under study, rather than focusing on learning a new

visualization environment or software application for each simulation dataset.

Customizable and Extensible Data Visualization Toolset. Since it is

impossible to provide users with a complete set of visualizations, the VISTA

Environment provides the framework for users to customize and create new

visualizations. Users can rearrange, transform, manipulate and reformat the visualization

environment. Users can create new and unique visualizations of their datasets and reuse

these visualizations on other datasets.

2.2 Abstract Simulation Data Objects
The abstract data structures used to encapsulate simulation data in the VISTA

Environment are inspired by the specifications of the Value Change Dump format. The

Value Change Dump format is a common format for data from low-level hardware

simulations and is specified in the IEEE Standard 1364 [14].

Notable aspects of the Value Change Dump format are:

• The metadata for all of the signals in the system is declared at the start of

the file. This metadata is separate from any signal data.

 12

• The signal is assigned a unique case-sensitive string identifier and is

referred to by that key throughout the Value Change Dump file.

• The signal data is stored as value changes in discrete simulation time

intervals or “simulation frames”.

• The values are real numbers, strings or sets of bits.

These aspects of the Value Change Dump format are representative of computer

architecture simulation data, and for the basis for data types in the VISTA Environment.

2.2.1 Signal Metadata Object

This data object contains signal metadata from the simulation. It is based on the

$VAR declarations in the Value Change Dump specification in IEEE Standard 1364 [14].

During the Metadata declaration, the following information is given:

• var_type and size: This metadata can be used to determine the type of object

that be used to store the signal data.

• reference: The name of the signal as a string of characters. This name does not

have to be unique, and also provides insight about the hierarchical structure of the

set of signals.

• identifier_code: The signal’s unique case-sensitive string identifier.

 13

Figure 2-1: $VAR Specification from the IEEE 1364 Standard

The metadata information stored in the Structure can be extracted from the $VAR
declarations in a Value Change Dump file.

2.2.2 Signal Value Object

This data object contains a signal’s value tagged with the signal key. It is based

on the Vector Value Change format in the Value Change Dump specification in IEEE

Standard 1364 [14].

A value change is represented by a single line that contains the signal’s

identifier_code followed by the signal’s new value. The value of the signal is a

number, string or bitset. This bitset data can be of arbitrary length and contain unknown

bits (‘x’) and high impedance bits (‘z’).

 14

Figure 2-2: Rules for Unknown and High Impedance Values from the IEEE 1364 Standard

The bitset data often found in simulation data files contain bitset data of arbitrary
length with unknown and high impedance bits.

2.2.3 Discrete Simulation Frame Objects

This data object contains a frame number, a set of all of the keys that change state

during that frame, a set of new Signal Value Objects and a set of previous Signal Value

Objects. It is based on the Value Change section in the Value Change Dump

specification in IEEE Standard 1364 [14].

In computer architecture simulations, signal values change at discrete simulation

time increments. In a Value Change Dump file, there is a special marker—the “#” sign—

that signifies a time increment. After each marker, there is a new frame number and a list

of signal identifier and signal value pairs.

 15

Figure 2-3: Sample Value Change Section from a Value Change Dump File

In computer architecture simulations, signal values change at discrete simulation
time increments. In a Value Change Dump file, there is a special marker—the “#”
sign—that signifies a time increment. After each marker, there is a new frame
number and a list of signal identifier and signal value pairs.

Since the previous value of the signal is not preserved, the information contained

in a Value Change Dump can only be used to determine the next state of the system. For

instance, if someone knew the values of all of the signals at frame #520, he could

determine the value of all of the signals at frame #530. However, he could not determine

the value of all of the signals at frame #510.

 16

Figure 2-4: The Memory and Access Time Cost of Various Value Change Schemes

The VISTA Environment implements a comfortable medium between memory
usage and access time. The VISTA Environment stores both the previous value
and next value change information when a signals value changes and it stores the
complete system state at regular simulation time intervals.

The technique of storing only the next value change information is useful to

reduce the storage of the data. However, this scheme requires the most time to derive the

system state at an arbitrary simulation time. On the other hand, storing the system state at

every simulation time interval would minimize the time required to derive a system state,

but required an enormous amount of data storage.

The VISTA Environment implements a comfortable medium between these two

techniques that balances memory usage and access time. The VISTA Environment stores

both the previous value and next value change information when a signals value changes

and it stores the complete system state at regular simulation time intervals.

Since the VISTA Environment stores both the previous value and next value

change information, the VISTA Environment can derive the system state at a desired

simulation time from a system state at any arbitrary simulation time. In the technique

Shortest Longest

Access Time

M
em

or
y

U
sa

ge

Le
as

t
M

os
t Store System State at Every

Simulation Time Interval

Store System State at n Selected
Simulation Intervals and

“Next Only” Value Changes

Store System State at n Selected
Simulation Intervals and

“Next and Previous” Value Changes

Store System Start State and
“Next Only” Value Changes

 17

used in the VCD file, a user can derive the system state for a desired simulation time only

from a system state that is from a previous simulation time. Typically, the technique

used by the VISTA Environment will require slightly more memory than other schemes,

but it allows the VISTA Environment to quickly derive a system state at any given

simulation time.

2.3 Design Overview
The VISTA Environment is composed of three sets of components that interface

with each other. These components are responsible for responding to requests from the

other components, and, in the case of the Graphical User Interface, responsible for

responding to requests from the user. Although the VISTA Environment is implemented

in Java, these components are open to many different implementations.

In the first section, there is a brief explanation of the components and their

functions. Next, there is an overview of how these components interface with each other.

Finally, this section provides a design overview for each component.

 18

2.3.1 Three Components of the VISTA Environment

Visualization Graphical User
Interface

Data Manager

User

Simulation Data File

Figure 2-5: Conceptual Component Model of the VISTA Environment

The VISTA Environment is composed of three sets of components that interface
with each other. Although the VISTA Environment is implemented in Java, these
interfaces are simple and are open to many different implementations.

Data Manager: This component is responsible for importing the simulation data

at the request of the GUI and for translating the simulation data into objects that are

usable by the Visualization component.

Visualization: This component is responsible for retrieving simulation data from

the Data Manager and providing the GUI with visual representations of the simulation

data.

Graphical User Interface: This component is responsible for presenting the

Visualization components to the user and for presenting the status of the importing

process from the Data Manger. Also, this component handles the user’s interaction with

the VISTA Environment and relays requests to the other components when required.

 19

2.3.2 Interfacing the VISTA Components

Graphical User
InterfaceData Manager

Import Status
(e.g. Number of Frames Imported,

Max/Min Frame Numbers,
Import Thread Running?)

Import Parameters
(e.g. Simulation File Name,

Simulation File Type)

Import Status

Import Simulation
Data File

User

Figure 2-6: Interface Between GUI and Importing and Managing Simulation Data Components

Through the Graphical User Interface, the user can specify the simulation data file

that he wants to import and can monitor the status of the simulation data file import

process.

The GUI takes the simulation data file specifications from the user and provides

the Data Manger with simulation file parameters (i.e. file location, and simulation file

type). The Data Manager then initiates the simulation data importing process.

While the Data Manager is importing simulation data, it provides the GUI with

status information about the state of the data import. The GUI presents this status

information to the user so that he can monitor the status of the simulation data file import

process.

Graphical User
InterfaceVisualization

Create, Modify or Interact
with Visualizations

Visualizations and
Visualization Parameters

 to Screen

User

Data Visualization Sized to Boundaries
Request Current Simulation Time Change

Visualization Parameters

Create and Control Boundaries
Set Current Simulation Time

User Input Events
Visualization Parameters

Figure 2-7: Interface Between the GUI and the Visualization

Through the Graphical User Interface, the user can create, modify or interact with

visualizations.

 20

The GUI is responsible for creating the boundaries for the visualizations,

notifying visualizations of changes of the current simulation time, passing relevant user

input events to visualizations, and allowing the user to adjust parameters in the of the

visualizations.

The Visualization component is responsible for providing the GUI with

visualizations in response to the GUI’s request, fitting the visualizations to boundaries

imposed by the GUI, sending requests to the GUI when a visualization wants to change

the current simulation time, and providing the GUI with editable parameters for a

visualization.

Data ManagerVisualization

Request for Signal
Data and Metadata

Signal Data and Metadata

Figure 2-8: Interface Between the Visualizations and Data Components

The Visualization component contains visualizations of simulation data and

requests the simulation data from the Data Manager. The Data Manager provides the

visualizations with simulation data and metadata.

2.3.3 Importing and Managing Simulation Data Component Overview

In order to interface with the visualizations and the GUI, the Data Manager

implements several sub components to orchestrate and delegate the tasks.

 21

Runtime Data Manager

Runtime Import Manager

File Parser

Simulation
Data File

Runtime Data Storage

Graphical User
Interface

Visualizing
Simulation Data

Figure 2-9: Conceptual Model of the Components of Data Components

Runtime Data Manager: The Runtime Data Manager is the bridge between the

Data Manager and the rest of the VISTA Environment. The Runtime Data Manager

orchestrates the other processes in the Data Manager, provides the visualizations with

methods to retrieve simulation data, provides the GUI with methods to initiate the

simulation importing process, and provides the GUI with methods to retrieve the status of

the simulation importing process.

Simulation Import: The Simulation Import components include a Runtime

Import Manager and a set of simulation file parsers. The Runtime Import Manager

controls the simulation parser on a separate program thread, allowing the simulation file

parsing and creation of data objects to be run in the background. The Runtime Import

Manager has methods that allow the Runtime Data Manager to initiate the simulation

importing process and to retrieve the status of the simulation importing process.

Runtime Data Storage: The Runtime Data Storage is used to store simulation

data objects that can be transferred to other storage methods. It is reasonable to assume

that alternative storage methods for simulation data objects will be required to store the

 22

data objects created in the simulation importing process. Simulation data files can be

quite large—on the order of hundreds of megabytes or gigabytes—and many operating

system will not allow the Java Virtual Machine this much memory.

2.3.4 Visualizing Simulation Data Component Overview

In order to interface with the Data Manager and the Graphical User Interface, the

Visualization Simulation Data component implements two sub components and adheres

to a model to communicate “current simulation time”. The two components are View

Layout and View Object and the current simulation time model is a Global Time Event.

Global Time Event Listener: Simulation data is stored in discrete time intervals

and a visualization can represent the data at any time within the simulation. However, it

is useful to have all of the visualizations presented by the GUI represent a consistent

time. This gives rise to a “current simulation time” to which all of the visualizations are

synchronized. When this current simulation time changes, the visualization must change

to represent this different current simulation time. Each component that implements the

Global Time Event Listener model can “hear” changes in the current simulation time

represented in the VISTA Environment.

View Object: The View Object is the basic building block of the visualizations.

View Objects are used to visualize a single signal’s simulation data over a range of

simulation time. A View Object is placed in a View Layout. View Objects request data

from the Data Manager, and requests a change in the current simulation time from the

Graphical User Interface. View Objects also respond to changes in the current simulation

time from the GUI, allows the GUI to access to view and modify some of its fields, and

can respond directly to user input events.

View Layouts: The View Layout is container for a set of View Objects. A View

Layout does not present simulation data, and creates a data visualization composed of

View Objects in the boundaries set by the GUIs. View Layouts, like View Objects,

respond to changes in the current simulation time from the GUI and allow the GUI to

access to view and modify some of their fields, and can respond directly to user input

events.

 23

View Layout

View
Object

View
Object

View
Object

View
Object

View
Object

View
Object

Importing and
Managing

Simulation Data

Figure 2-10: Conceptual Model of View Objects in a View Layout Accessing Simulation Data From
the Importing and Managing Simulation Data Component

2.3.5 Graphical User Interface Component Overview

In order to interface with the User, the Data Manager and the Visualization

Simulation Data component, the Graphical Interface component implements several sub

components.

Visualization Containers: The GUI has visualization containers to control the

boundaries of visualizations from the visualizations. Also, these containers route user

input events directly to the visualizations.

Global Time Event Manager: The GUI controls the Global Time Event

Manager and has an interface receiving requests to change current simulation time from

the visualizations. Also, the Global Time Event Manager announces Global Time Events

that Global Time Event Listeners can “hear.”

Modifying and Examining the VISTA Environment: The GUI has tools that

allow the user to initiate a simulation import process and to receive feedback about the

status of this process. Also, there are tools that allow users to examine and modify

information of visualizations.

 24

Chapter 3:

 Data Manager Implementation

This chapter covers the implementation of the mechanisms that are responsible

for translating the simulation data into objects that are usable in the visualization process.

These mechanisms read the structure and state data contained in the simulation files,

encapsulate these values into data objects and provides a standard interface for the

visualization process to access the data. Although the details of this process are abstracted

from typical users, some users will be required to create new simulation parsers for new

data sources.

The first section in this chapter introduces the Vista Data Structures that are

used to store the information contained in the simulation files. These Vista Data

Structures implement the Abstract Simulation Data Objects (see 2.2).

Next, the Simulation Import section details the simulations import components

that are used to parse the simulation data files and create the Vista Data Structures.

Since some users will be required to create new simulation parsers, these components

include templates and tools to assist in creating new parsers.

The third section details the Runtime Data Manager mechanism that serves as

the bridge between these components and the rest of the VISTA Environment. The

Runtime Data Manager controls the data importing process, manipulates the data once

it is imported, and provides VISTA with a simple interface to the data.

The final section explains the Runtime Data Storage system that the Runtime

Data Manager uses to store simulation data. This system opens up the possibility for

users to store the Vista Data Structures outside of the software heap and onto disk or

network storage.

 25

3.1 Vista Data Structures
The VISTA Environment uses four different objects to encapsulate simulation

data. These objects implement the Abstract Simulation Data Objects defined in Section

2.2.

The Structure object is the implementation of the Signal Metadata Object and

contains signal metadata from the simulation. Each piece of metadata is tagged with a

key—a unique case-sensitive string identifier—that corresponds to the signal.

A VisValue is an implementation of the Signal Value Object and holds the value

of a signal tagged with the same signal key used in the metadata contained in the

Structure. The value of the signal is either a number or string.

A TraceFrame is an implementation of the Discrete Simulation Frame Object

and contains a frame number, a set of keys that correspond to signals that change value

during the frame, a set of the new VisValues for the signals that change, and a set of the

previous VisValues for the signals that change.

An Image contains the values and metadata of all of the signals in a system at a

specific simulation time. The specific simulation time that an Image represents can be

changed by applying a particular set of TraceFrames in a particular order.

3.1.1 Structure

Metadata for All
Values:

Name, Path,
Java Class

Key

Name, Path,
Java Class

Key

Name, Path,
Java Class

Key

Name, Path,
Java Class

Key

Name, Path,
Java Class

Key

Name, Path,
Java Class

Key

Figure 3-1: Diagram of a Structure Object

The Structure contains a set of metadata objects that correspond to signals in the
simulation. These metadata objects are tagged with a key—a unique case-
sensitive string identifier—that corresponds to the signal.

The Structure contains a set of metadata objects that correspond to signals in the

simulation. The metadata includes the name of the signal, the path of the signal in the

simulation structure hierarchy, and the Java class that is used to encapsulate the value of

the signal.

 26

The name of the signal is stored as a string of characters. This name does not

have to be unique and the length is not limited.

The path of the signal is stored as an array of strings. The lowest element in the

array (i.e. String[0]) is the furthest ancestor from the signal and the highest element (i.e.

String[length-1]) is the parent of the signal. The root of the structure hierarchy is not

contained in the path array (instead, the root is stored in the Structure name field). A path

of length zero means that the signal is a direct descendent from the root.

These metadata objects are tagged with a key—a unique case-sensitive string

identifier—that corresponds to the signal. The key is a string of characters that is not

limited in length but it is required to be unique within the VISTA Environment. The key

is used throughout the VISTA Environment for retrieving signal data, and identical keys

could lead to undesired results.

3.1.2 VisValue

Value
Key

Figure 3-2: Diagram of a VisValue Object

A VisValue holds the value of a signal and a key that uniquely identifies the
signal.

A VisValue stores the state data for a signal in either a String (java.lang.String) or

a concrete subclass of the Number (java.lang.Number) abstract class. This allows VISTA

to store both strings and numbers in a single data object that can be operated on by the

visualizations. Also, a VisValue is tagged with a key that corresponds to the metadata

stored in the Structure (see 3.1.1).

The VISTA Environment contains VCDBitSet, a subclass of java.lang.Number

that can handle simulation data bitsets. Currently, VCDBitSet can handle arbitrary length

bitsets, and sets unknown and high impendence bits to zero.

 27

3.1.3 TraceFrame

Value
Key

Value
Key

Value
Key

Value
Key

Value
KeyOld Values:

New Values:

Frame Number

Value
Key

Value
Key

Value
Key

Value
Key

Value
Key

Figure 3-3: Diagram of a TraceFrame Object

A TraceFrame contains a frame number, a set of all of the keys that change state
during that frame, a set of the new VisValues for the signals that change, and a set
of the previous VisValues for the signals that change.

A TraceFrame contains a frame number, a set of the keys of the signals that

change value during that frame, a set of the new VisValues for the signals that change,

and a set of the previous VisValues for the signals that change. For each key in the set of

keys, there is a corresponding new VisValue and a corresponding old VisValue.

3.1.4 Image

All Values at
Current Time:

Frame Number

Value
Key

Value
Key

Value
Key

Value
Key

Value
Key

Metadata for All
Values:

Name, Path,
Java Class

Key

Name, Path,
Java Class

Key

Name, Path,
Java Class

Key
Name, Path,
Java Class

Key
Name, Path,
Java Class

Key
Name, Path,
Java Class

Key

Figure 3-4: Diagram of an Image Object

An Image contains the values and metadata of all of the signals in a system at a
specific simulation time. The specific simulation time that an Image represents
can be changed by applying a particular set of TraceFrames in a particular order.

 28

An Image contains the values and metadata of all of the signals in a system at a

specific simulation time. The specific simulation time that an Image represents can be

changed by applying a particular set of TraceFrames in a particular order. Although only

one Image is visible to the user in the VISTA Environment, the Runtime Data Manager

caches Images at regular simulation time intervals in order to minimize the access time

required for a given simulation time (see 3.3).

TraceFrames can be applied to an Image to change the given simulation time that

the Image represents. However, care needs to be taken to apply the correct trace frame,

or the Image will represent incorrect data. The process of applying TraceFrames is

performed by the Runtime Data Manager (see 3.3).

3.2 Simulation Import
The VISTA Environment contains two components for importing simulation data.

These components are used to parse the simulation data files and create the Vista Data

Structures. Since some users will be required to create new simulation parsers, these

components include templates and tools to assist in creating new parsers.

SimParser is an abstract class that developers can subclass in order to create a

new parser. The abstract SimParser class takes care of many of the details of writing a

new simulation parser and allows developers to create add parsers without much effort.

The VISTA Environment has a VCDPaser, a subclass of SimParser, which can be used

to parse Value Change Dump files.

The Runtime Import Manager controls the simulation parser on a separate

program thread, allowing the simulation file parsing and Vista Data Structure creation to

be run in the background. Developers do not need to understand the details of Runtime

Import Manager in order to write new parsers.

3.2.1 SimParser

Users that want to import a new simulation file format into the VISTA

Environment are required to write a new simulation parser. Since most of these

simulation data files are based on a proprietary format, it is reasonable to assume that

 29

users will be writing parsers. To make this process easier, users subclass the abstract

SimParser class to create a new simulation parser.

In order to create a new parser, the simulation parser developer will need to

implement several abstract methods from the SimParser class. The developer will need

to write a constructor that initializes the Structure of the simulation data. Also, since the

SimParser implements the iterator interface, the simulation parser developer will need to

implement the hasNextFrame and nextFrame methods. The hasNextFrame method

returns a true value if there is another frame in the simulation file and the nextFrame

method returns the next Trace Frame.

3.2.2 Runtime Import Manager

The Runtime Import Manager creates and controls an instance of the SimParser

class to import the user’s data. The Runtime Import Manager runs on a separate program

thread, allowing the simulation file parsing and Vista Data Structure creation to be run in

the background. The Runtime Import Manager is used by the Runtime Data Manger to

control an implemented simulation parser and provide feedback on the status of the

parser.

Since the Runtime Import Manager runs on a separate thread, it shares processor

time with other threads. Users of the VISTA Environment can set the priority of the

Runtime Import Manager thread, or even stop the thread completely. While the Runtime

Import Manager is running, the Runtime Data Manager periodically checks on its status

and the Vista Data Structures it has created. If the Runtime Data Manager detects new

Vista Data Structures, it brings them into the VISTA Environment.

3.3 Runtime Data Manager
The Runtime Data Manager is the bridge between the Importing and Managing

Simulation Data set of components and the rest of the VISTA Environment. The

Runtime Data Manager orchestrates the Importing and Managing Simulation Data

processes and provides the rest of the VISTA Environment with simple methods to

import and retrieve simulation data.

 30

The VISTA Environment can to initiate a simulation data import by calling the

importTraceFile method in the Runtime Data Manager. This method requires a file

path and a string identifier of the parser to be used. The Runtime Data Manager will

open the file, package the file data into a Buffered Input Stream, create the corresponding

simulation parser, and start the Runtime Import Manager process to import the data.

The VISTA Environment can retrieve a VisValue of a signal at a specific

simulation time calling the getVisValue method in the Runtime Data Manger. This

method requires the signal’s key and an integer corresponding to the desired simulation

time.

The simplicity of these commands masks the complexity of the processes. For

instance, the process to retrieve a VisValue requires the Runtime Data Manager to

perform a number of operations to derive the desired simulation state of the system.

When the VISTA Environment retrieves a VisValue from the Runtime Data

Manager, a number of operations occur. Although the Runtime Data Manager only has

one active Image, it stores a number of inactive Images in the Runtime Data Storage.

These inactive Images are snapshots of the simulation state of the system at certain

intervals in the simulation time. If an inactive Image is closer to the desired simulation

time than the active image, the active image is replaced by the inactive one.

Then the Runtime Data Manager determines the TraceFrames that are required to

get the active Image to the desired simulation time and applies these TraceFrames

correctly. If the active Image crosses a certain interval in the simulation time during the

process of applying these TraceFrames, this active Image will be cloned and stored in the

Runtime Data Storage.

3.4 Runtime Data Storage
In the development of the VISTA Environment, a major limitation has been the

amount of memory that an operating system will allocate to the Java Virtual Machine.

Simulation data files can be quite large—on the order of hundreds of megabytes or

gigabytes—and many operating system will not allow the Java Virtual Machine this

much memory. The Runtime Data Storage is used to store data objects that can be

transferred to other storage methods.

 31

The Runtime Data Storage is an abstract class that serves as an interface to any

number of different data storage schemes to be implemented in a subclass. These

schemes could involve a storing the data in another JVM process, on the machine’s local

disk or across a network. Although the Runtime Data Storage mechanism has a number

of potential implementations, the current implementation (SimpleRuntimeDataStorage)

stores the data in the Java Virtual Machine heap.

 32

Chapter 4:

Visualization Implementation

This chapter covers the implementation of the mechanisms that are responsible

for creating visual representations of the simulation data in the VISTA Environment.

Once the simulation data has been imported into the VISTA Environment, these

visualization mechanisms can access and present the data to the user. Users can

configure a set of standard visualizations or of develop their own.

These components are developed using the Swing Graphics User Interface

package from the Java Foundation Classes (JFC). Swing includes a number of methods

and features that help users create powerful Graphical User Interfaces and users familiar

with Swing will find the task of developing new visualizations straightforward.

The View Object is the basic building block of visualizations in the VISTA

Environment. View Objects are implemented as Swing components and are used to

visualize a single signal’s simulation data.

View Layouts are containers for View Objects. A View Layout manages a set

of View Objects, controls their boundaries, and responds to any events they might fire.

View Layouts, like View Objects, are Swing components but do not represent any signal

data or metadata.

The View Object and View Layout model is a flexible, reusable and modular

model for developing visualizations in the VISTA Environment. However, not all

visualizations fit this model and the Signal Explorer demonstrates how the VISTA

Environment can be made to support alternative design models.

Finally, this chapter discusses the Global Time Listener Interface that

visualizations must implement in order to be notified of current time changes.

 33

4.1 View Objects
View Objects are used to visualize the simulation data imported into the VISTA

Environment. View Objects are subclasses of JPanel (javax.swing.JPanel), a standard

Java Swing component, and make use of Swing’s painting, layout and event-handling

methods. Users familiar with Swing are encouraged to write new View Objects and will

find the task straightforward.

View Objects have access to the simulation data stored in the VISTA

Environment. A View Object has a key—a unique case-sensitive string identifier that

corresponds to the signal—and can use the key to retrieve signal data (see 3.1.2) or signal

metadata (see 3.1.1) from the VISTA Environment data storage (see 3.4) for any

simulation time. The VISTA Environment has a concept of a current simulation time

(see 3.1.4) and calls a View Object’s UpdatePresentation method whenever this

current simulation time changes.

View Objects make use of the JPanel class from Java’s Swing package. Although

a detailed explanation of Swing and JPanels are beyond the scope of this paper, this

implementation allows users familiar with Swing to create new View Objects quickly and

import visualizations written for other applications without much effort. It also gives

users the ability to include other Swing components, layouts, painting routines and event-

handling methods in a View Object.

In this release of VISTA, there are two View Objects. The Single Value View

Object displays a text representation of the signal’s data and metadata at a single

simulation time. The Plot View Object graphs the signal’s data over a range of

simulation times.

Although these are quite simple View Objects, VISTA users who want to write

new View Objects should examine the code behind these View Objects to learn how

View Objects interact with the VISTA Environment. Swing users will find the code

straightforward and users new to Swing will find that the View Objects provide a good

introduction to Swing’s capabilities and functions.

 34

4.1.1 Single Value View Object

The Single Value View Object (see Figure 4-1) is a simple View Object that

displays a text representation of the signal’s data and metadata at a single simulation

time. The Single Value View Object provides a good example of how use other Swing

components in a View Object and how to interact with the VISTA Environment.

Figure 4-1: Example of a Single Value View Object

The Single Value View Object is a simple View Object that displays a text
representation of the signal’s data and metadata at a single simulation time. This
Single Value View Object is displaying that the Signal named
“InstructionsStarted” at simulation time “0” is equal to “1.0”.

A Single Value View uses a JLabel (another swing component) to display the

signal’s data and metadata at the current simulation time in a text format. A JLabel can

display plain text, images and interpret HTML encoded text. The Single Value View

Object delegates the painting and layout responsibility to the JLabel.

The VISTA Environment notifies the Single Value View Object of a change in

the current simulation time by calling the Single Value View Object’s

UpdatePresention method. In this method, the Single Value View Object retrieves

from the VISTA Environment the current simulation time, the signal’s data, and the

signal’s metadata. The Single Value View Object makes this data into a String, and

passes the String onto the JLabel to present it.

4.1.2 Plot View Object

The Plot View Object (see Figure 4-2) is slightly more complicated than the

Single Value View Object. The Plot View Object presents a signal’s data over a range of

simulation time, implements its own Swing painting method, and it fires a Java Property

Change Event whenever a user modifies the Plot View Object’s range of simulation time.

 35

Figure 4-2: Examples of a Plot View Object: Line Graph, Waveform Graph, and a Bar Graph

The Plot View Object presents a signal’s data over a range of simulation time,
implements its own Swing painting method, and it fires a Property Change Event
whenever a user modifies the Plot View Object’s range of simulation time. In this
example, there are three Plot View Objects that are plotting simulation data over a
range of 13 simulation time intervals. The vertical bar represents the current
simulation time in the VISTA Environment.

A Plot View Object represents the signal’s data over a range of simulation time.

Although the VISTA Environment has a concept of current simulation time, it also

provides methods to retrieve signal data at any arbitrary simulation time. While the Plot

View Object could obtain the signal’s data within the entire range of the simulation time

each time the Plot View Object needed to repaint, this would cause an undue burden on

the Runtime Data Manager in the VISTA Environment. Instead, the Plot View object

will obtain all of the data within the range of simulation time when it is created and store

it internally.

The Plot View Object implements its own painting method to plot a waveform, a

bar graph or a line graph over a range of simulation time. Also, the Plot View Object

paints a marker on the graph to represent the current simulation time within the VISTA

Environment and repaints this marker on notification from the VISTA Environment of a

change in current simulation time.

Implementing a custom painting routine is more difficult than delegating painting

responsibilities to another Swing component, but Swing provides simple graphics tools

that allow for sophisticated control over geometry, color, and text presentation. The Plot

View Object’s updatePresentation, paintComponent, drawBarGraph,

drawLineGraph, drawWaveformGraph, and drawCurrentBar are good examples of the

simplicity and power of the Swing graphic tools.

 36

Finally, the Plot View Object uses Swing’s model of Event Handling in order to

inform other Swing components that its range of simulation time have changed. If a user

modifies the range of simulation time of a Plot View Object at runtime, the Plot View

Object will fire a Property Change Event (java.beans.PropertyChangeEvent). These

events can be heard by other Swing components and the other Swing components can act

accordingly. For instance, if a Plot View Layout (see 4.2.3) hears this event from one of

its Plot View Objects, the Plot View Layout will change the simulation time ranges of its

other Plot View Objects.

4.2 View Layouts
View Layouts are containers for View Objects. A View Layout manages a set of

View Objects, controls their boundaries, and responds to any Property Change Events

they might fire. View Layouts, like View Objects, are subclasses of JPanel and are

notified when the current time changes in the VISTA Environment. However, View

Layouts require a Swing Layout Manager—either a new implementation or a standard

Swing Layout Manager—and do not represent any signal data or metadata.

In this release of VISTA, there are three View Layouts. Flow View Layout

demonstrates the simplicity of the View Layout system by employing Flow Layout, a

standard Swing Layout Manager. Grid View Layout implements its own layout manager

and can load an image as its background. Finally, Plot View Layout responds to events

generated by Plot View Objects and delegates its layout duties to a JScrollBar, a Swing

Component, coupled with a Box Layout, a standard Swing Layout Manager.

4.2.1 Flow View Layout

The Flow View Layout (see Figure 4-3) is the simplest of any View Layout. The

Flow View Layout does not do anything in response to changes in the current simulation

time of the VISTA Environment nor does it listen for Property Changed Events that

might be fired by its set of View Objects.

The Flow View Layout employs a Flow Layout Manager (java.awt.FlowLayout),

a standard Java Layout Manager, to control the boundaries of its set of View Object. The

 37

Flow Layout Manger arranges the set of View Objects in a left-to-right flow, much like

lines of text in a paragraph.

Figure 4-3: Example of a Flow View Layout with a Set of Single Value Views

Flow View Layout is the simplest of any View Layout. The Flow Layout Manger
arranges the set of View Objects in a left-to-right flow, much like lines of text in a
paragraph.

4.2.2 Grid View Layout

The Grid View Layout (see Figure 4-4 and Figure 4-5) implements its own

Layout Manager in order to “snap” View Objects to a grid and can load an image as its

background. The Grid View Layout does not do anything in response to changes in the

current simulation time of the VISTA Environment nor does it listen for Property

Changed Events that might be fired by any of its View Objects.

 38

Figure 4-4: Example of a Grid View Layout with a Set of Single Value Views

The Grid View Layout implements its own Layout Manager to “snap” View
Objects to a grid. The Grid View Layout does not do anything in response to
changes in the current simulation time of the VISTA Environment nor does it
listen for Property Changed Events that might be fired by any of its View Objects.

Figure 4-5: Example of a Grid View Layout with Single Value Views and Background Image

The Grid View Layout implements a custom painting method in order to control
presentation. For example, this Grid View Layout has a set of Single Value
Views of signal data overlaying an image of the corresponding Five Stage
Pipelined processor.

Java comes standard with eight implemented Layout Managers and the ability to

use an “Absolute Positioning” layout scheme (by setting the Layout Manager to null).

 39

Although these Layout Mangers are designed to handle almost any layout task, there is

not a Layout Manger designed to “snap” its components to a grid.

The Grid View Layout Manager was designed to perform this task by “snapping”

the upper left corner of a View Object to an intersection on the grid. The size of the grid

can be change by a user at runtime.

The Grid View Layout, like the Plot View Object (see 4.1.2), also implements a

custom painting method in order to control its presentation. The Grid View Layout can

paint its background as a grid, an image from a file, or both. This enables users to

overlay View Objects on top of images that complement the View Objects (see Figure

4-5).

4.2.3 Plot View Layout

The Plot View Layout (see Figure 4-6), unlike any of the other View Layouts,

delegates its layout duties another Swing component, responds to events generated by its

set of View Objects and responds to changes in the current simulation time maintained by

the VISTA Environment.

Figure 4-6: Example of a Plot View Layout with a set of Plot View Objects

The Plot View Layout, unlike any of the other View Layouts, delegates its layout
duties another Swing component, responds to events generated by its set of View
Objects and responds to changes in the current simulation time maintained by the
VISTA Environment.

The Plot View Layout uses a JScrollBar in order to view a portion of the View

Object at once. This is useful for View Objects, like the Plot View Objects (see 4.1.2),

that represent a signal over a range of simulation times. The boundaries of the set of

View Objects are controlled by a Grid Layout Manager (java.awt.GridLayout) in order to

 40

maintain the View Object in one column with unlimited number of equally distributed

rows. In order to achieve the effect of zooming in and out of the View Object, the width

of the underlying panel is adjusted.

Some View Objects can fire Property Change Events and the Plot View Layout

listens for events that signify a change in the range of data that is being represented by

one of its View Objects. If a Plot View Layouts hears one of its View Objects fire one of

these Property Change Events, the Plot View Layout propagates this change to its other

View Objects.

Finally, the Plot View Layout responds to changes in the current simulation time

in the VISTA Environment. Once notified of the change in current simulation time, a

Plot View Layout will check to see if this simulation time data is visible. If the

simulation time data is not visible, the Plot View Layout will move the JScrollBar to a

position such that the simulation time data is visible.

4.3 Signal Explorer
The View Object and View Layout model provides users with flexible, reusable

and modular model to develop visualizations in the VISTA Environment. Occasionally,

however, a user might run into a situation where this model does not fit their visualization

design. The VISTA Environment can be made to support alternative design models, but

it is not encouraged and requires more work on the designer’s part.

The Signal Explorer (see Figure 4-7) is an example when the View Object and

View Layout model failed. In this instance, there existed an excellent Swing component

named JTreeTable [15] and the Signal Explorer needed to display data obtained from the

entire Structure (see 3.1.1).

 41

Figure 4-7: Example of the Signal Explorer

The Signal Explorer is an example when the View Object and View Layout model
failed. In this instance, there existed an excellent Swing component named
JTreeTable and the Signal Explorer needed to display data obtained from the
entire Structure.

The Signal Explorer was originally intended to be a View Layout; the Signal

Explorer would place View Objects in their appropriate position in a layout that

demonstrated the hierarchal relationship between the signals. However, the JTreeTable, a

third-party Swing component, provided a simple and sophisticated visualization that

could not be matched by standard Swing components. Unfortunately the JTreeTable

couldn’t be a View Layout because the entries could not accept JPanels, and it couldn’t

be a View Object because it presented the entire Structure, not only one signal.

This type of visualization can attach itself to the VISTA Environment to gain

access to the simulation data and notifications of changes in the current simulation time.

The developer can mimic the methods that the View Layouts and View Objects use to

perform these tasks. However, many of the other features of the VISTA Environment,

like the ability to transfer data through drag-and-drop, will depend on the implementation

of the Graphical User Interface (see Chapter 5).

 42

4.4 Global Time Listener Interface
In order to receive notification from the VISTA Environment of changes in the

current simulation time, a component must implement the Global Time Listener Interface

and register itself with the VISTA Environment. Fortunately for developers using the

View Layout and View Object model, this is built into the model. However, alternative

visualization design models must implement this interface if they want to receive

notification of changes in the current simulation time.

A Global Time Listener is a subclass of the traditional Java event listener for the

VISTA Environment. In order to implement this listener interface, the component must

contain two public methods: GlobalTimeAdded and GlobalTimeChanged. The

GlobalTimeAdded method will be called whenever the Runtime Data Manager detects

that new simulation data has been imported by the Runtime Import Manager. The

GlobalTimeChanged method will be called whenever the current simulation time

changes in the VISTA Environment.

Objects that implement the Global Time Listener can add themselves to the

Global Time Listener Event Queue by calling the Vista.registerGlobalTimeListener

and remove themselves by calling Vista.deregisterGlobalTimeListener.

 43

Chapter 5:

 Graphical User Interface Implementation

This final chapter details the implementation of the VISTA Graphical User

Interface (see Figure 5-1). The GUI is responsible for managing the presentation of the

VISTA Environment to the user and for handling the user’s interaction with the VISTA

Environment. These components include top-level containers for View Layouts, menus,

toolbars and other general graphical user interface components that serve as many of the

functional aspects of the VISTA Environment.

Managing Visualizations Using a Multiple Document Interface discusses the

Java implementation of the MDI and the benefits of using this interface in Java

applications. Also, this section describes how the VISTA GUI handles user interaction to

present and modify the visualizations of simulation data.

Finally, Modifying and Examining the State of the VISTA Environment

describes how users can interact with the VISTA Environment through the VISTA GUI

and how the VISTA GUI presents the state of the VISTA Environment to the user. This

section details the “actions” that users can use to change the VISTA Environment, the

user interface of these actions (e.g. menus and toolbars), and the presentation of the state

of the VISTA Environment through a status bar.

 44

Figure 5-1: The Graphical User Interface of the VISTA Environment

The components that comprise the Graphical User Interface are responsible for
managing the presentation of the VISTA Environment to the user and for handling
the user’s interaction with the VISTA Environment. These components include
top-level containers for View Layouts, menus, toolbars and other general
graphical user interface components that serve as many of the functional aspects
of the VISTA Environment.

5.1 Managing Visualizations Using a Multiple
Document Interface

The VISTA Graphical User Interface is presented using the Java implementation

of the Multiple Document Interface. The VISTA GUI relies on the MDI to provide top-

level containers to hold the visualizations, notify the visualization of user interaction and

to transfer data between visualizations.

The MDI is one of several different objects that Java can use to present a

Graphical User Interface. The two other objects are the Applet and the Frame. The

Applet is useful for applications intended to be embedded in a web page and the Frame

object becomes programmatically cumbersome in a cross-platform multi-frame

 45

environment. The MDI, however, is platform independent, provides users with a single

GUI to the VISTA Environment and allows the greater control over the presentation

visualizations of simulation data.

5.1.1 View Layouts Containers

View Layouts (see 4.2) are implemented as Java panels and require a top-level

container—a frame or main window—to control their boundaries. Since the VISTA GUI

uses a Multiple Document Interface (MDI), the top-level container for a View Layout is

an internal frame.

An added benefit of using the Java MDI and the internal frames comes from the

MDI being implemented using platform-independent code. This implementation allows

for features in the internal frames that normal Java frames cannot provide in a cross-

platform environment. For various reasons, Java cannot implement certain Frame

commands nor can it guarantee that certain Frame commands will behave the same

across all platforms.

The VISTA Environment uses this increased programmatic control over the

internal frame to maximize the amount of screen area that is used for the visualization of

data. The VISTA Environment can enable the “palette” frame boarders on the internal

frame (see Figure 5-2) in order to use screen area more efficiently than the standard

frame.

 46

Figure 5-2: A Standard Frame and a Palette Frame

The VISTA Environment uses the Multiple Document Interface controls to enable
the “palette” frame boarders that reduce the amount of screen area that the frame
uses. The “palette” frame (top) uses screen area more efficiently than the standard
frame (bottom).

5.1.2 Dispatching Mouse Events

The internal frame of the MDI, like any top-level container in Java, has multiple

panes and stores the View Layout component in the Content Pane (see Figure 5-3). All

top-level containers have a Glass Pane above the Content Pane that can catch events or

paint over an area within the container. The VISTA GUI makes use of this Glass Pane to

catch the user’s mouse events and perform the desired operation on the corresponding

View Object or View Layout.

Figure 5-3: The Structure of a Top-Level Container

The internal frame of the MDI, like any top-level container in Java, has multiple
panes and stores the View Layout component in the Content Pane. The Graphical
User Interface makes use of the Glass Pane to catch the user’s mouse events and
perform the desired operation on the corresponding View Object or View Layout
(Figure from Sun Microsystems, Inc [17]).

 47

While this task is straightforward when using the Java Frame, the internal frame

of the MDI presents some difficulties that have been documented in the Sun’s Bug

Database. For instance, once an internal frame is deactivated (either it loses focus or it is

iconified), the modified Glass Pane is replaced with a fresh Glass Pane [18] . The VISTA

GUI works around this problem by replacing the fresh Glass Pane with a modified Glass

Pane once the internal frame is reactivated.

5.1.3 Drag and Drop Implementation

Drag-and-drop allows the user to transfer information between visualizations in

the VISTA Environment. In the VISTA GUI, drag-and-drop is implemented using

Swing’s Transfer Handler interface and is used transfer a signal’s key between

visualization. This implementation of Drag and Drop enables users to create new View

Objects in a View Layout and to attach signals to View Objects.

The Swing Transfer Handler interface (see Figure 5-4) is used to transfer data

between Swing components. Swing components that contain objects that implement this

interface can exchange data through the system clipboard or by drag-and-drop operations.

Every View Object contains a transfer handler that can send and receive a key—a unique

case-sensitive string identifier—that corresponds to the signal being visualized. Every

View Layout also has a transfer handler that can receive a signal’s key and create the

appropriate View Object for that signal the View Layout.

 48

Figure 5-4: The Use of Swing Transfer Handlers in Drag and Drop

The Swing Transfer Handler interface is used to transfer data between Swing
components. Swing components that contain objects that implement this interface
can exchange data through the system clipboard or by drag-and-drop operations.
(Figure from Sun Microsystems, Inc [16])

The Transfer Hander interface provides a simple way to exchange data between

Swing components and native applications. However, the Transfer Handler does not

provide a “drop” location reference when the data is transferred using the drag-and-drop

operation. Since the “drop” location of a View Object into a View Layout is important, a

View Layout also uses the traditional Java Abstract Window Toolkit (AWT) Drop Target

Adapter to monitor the location of the “drop”.

5.2 Modifying and Examining the State of the VISTA
Environment

In the VISTA Environment, users will want to execute a set of commands and

modify parameters in order to change the state of the VISTA Environment. Also, the

VISTA Environment is responsible for providing users with information to that describes

its state.

In order to execute commands, there are a set of user actions that contain almost

all of commands a user could want to execute. These actions are packaged into the

Toolbars and Menus in the VISTA GUI. The VISTA GUI provides to users the VISTA

Environment state information through a status bar.

Finally, users can access and adjust parameters through a set of Property Boxes.

These Property Boxes are hard-coded into the VISTA Environment and developers need

 49

to create and modify Property Boxes to allow users to access parameters at run-time.

However, these Property Boxes provide developers with numerous tools that allow

developers to create them quickly.

5.2.1 User Actions in the VISTA Environment

While using the VISTA Environment, the user will need to execute commands to

change the state of the VISTA Environment. In the VISTA GUI, these commands are

encapsulated within User Action object. The set of User Action objects comprises of

almost all of the commands a user could want to execute and more commands can be

easily added.

This set of User Action objects include common commands such as importing

simulation data, creating new visualizations, and changing the current simulation time.

In order to create a new User Action (see Figure 5-5), a developer must write Java code

that specifies how the action interacts with the VISTA Environment and update the

property bundle file that contains information provided to the GUI about the User Action.

This model separates the functionality of the action (which is independent of the VISTA

GUI) and the display information (which is independent of the rest of the VISTA

Environment).

Figure 5-5: Example of a User Action’s Java Code and Description Entry

In order to create a User Action, a developer must write Java code that specifies
how the action interacts with the VISTA Environment (top) and update the
property bundle file that contains information provided to the GUI (bottom).

StepForwardAction ###

StepForwardAction.NAME=Step Forward
StepForwardAction.SMALL_ICON=Forward24.gif
StepForwardAction.MNEMONIC_KEY=F
StepForwardAction.ACCELERATOR_KEY=control RIGHT
StepForwardAction.LONG_DESCRIPTION=Step Forward
StepForwardAction.SHORT_DESCRIPTION=Step Forward

public void actionPerformed(ActionEvent event) {
 frameNo = Vista.getGlobalTime();
 refresh();
 if (enabled) {
 Vista.setGlobalTime(Vista.getGlobalTime() + 1);
 }
}

 50

Once the User Action has been created, it can be packaged in Menus or Toolbars

(see Figure 5-6). The description entry in the property bundle file provides the GUI with

information that determines the button icon for the toolbar, the text label for the menu

and shortcut keystroke binding in the VISTA GUI. The Java code is performed when the

user clicks on the button in the toolbar, chooses the item in a menu or presses the shortcut

keystroke.

Figure 5-6: Menus and Toolbar from the VISTA Graphical User Interface

User Actions can be packaged in Menus or Toolbars. The description entry in the
property bundle file provides the GUI with information that determines the button
icon for the toolbar, the text label for the menu and shortcut keystroke binding in
the VISTA GUI. The Java code is performed when the user clicks on the button
in the toolbar, chooses the item in a menu or presses the shortcut keystroke.

5.2.2 Providing VISTA State Information

The VISTA Environment has state information that the user can change through

the set of User Actions. In turn, the VISTA GUI is responsible for presenting changes in

this state information back to the user. This is accomplished by use of a status bar.

Currently, the status bar provides users with state information pertaining the

current simulation time, the range of simulation time imported, the status of the Runtime

Import Manager, the amount of memory that the Java Virtual Machine is using and the

amount of memory available to the JVM.

Figure 5-7: VISTA Graphical User Interface Status Bar

The status bar provides users with state information pertaining the current
simulation time, the range of simulation time imported, the status of the Runtime
Import Manager, the amount of memory that the Java Virtual Machine is using
and the amount of memory available to the JVM.

 51

5.2.3 Property Boxes

The VISTA GUI allows users to access and adjust parameters through a set of

Property Boxes. These Property Boxes are hard-coded into the VISTA GUI and

developers need to create and modify Property Boxes to allow users to access parameters

at run-time. However, these Property Boxes provide developers with numerous tools that

allow developers to create them quickly.

Figure 5-8: A Plot View Object with a Property Box and Color Chooser

The VISTA GUI allows users to access and adjust parameters through a set of
Property Boxes. In this figure, a user is adjusting the format of a Plot View
Object (bottom). The Property Box (top, right) allows users to set various
parameters of the Plot View Object, and will launch other tools—like a color
chooser (top, left)—when required.

A Property Box can be used examine and adjust almost any type of object in Java.

The Property Box component includes methods to add text fields, check boxes, color

choosers and file choosers. The design and code for the Property Boxes are based on

components from the Ptolemy project at the University of California, Berkley [19].

 52

Chapter 6:

Conclusion and Future Work

Since the creation of the VISTA Environment by Mathew Jack in 2002, the

VISTA Environment has changed significantly. Although the initial goals of the VISTA

Environment remain the same, the data models and the main components of the VISTA

Environment have changed drastically. There are two immediate problems that need to

be addressed involving JVM memory usage and the graphical user interface. Also there

is future work with the VISTA Environment that would involve modifying the data

models and adding other functionality to the main components in VISTA.

The Data Manager currently has a lofty storage overhead for the simulation data.

When VISTA imports a Value Change Dump file, the Data Manager requires

approximately ten times the amount of memory to store the simulation data in memory

than was required to store it on disk.

The graphical user interface has artifact problems on the Macintosh platform,

responds slower than expected and requires a large amount of memory. Since the

Macintosh artifact problems haven’t been experienced on Linux and Windows

environments, this is probably just a bug in the Macintosh JVM. The responsiveness,

however, warrants investigation into other Java window managers. Finally, the current

configuration of the Plot View has an entire bit-mapped image of the plot stored in

memory, and this bitmap becomes very large once users zoom in.

The current data types in the VISTA Environment allow users to import and

visualize signal data that is represented as bit data, integers and real numbers, or strings

of characters. While the VISTA Environment can visualize this data in multiple different

 53

ways, it cannot manipulate this data. There are no functions to combine data from

various sources and derive a new piece of data.

The data visualizations can display only one piece of signal data. The simplicity

of having “one signal” correspond to “one visual representation” is a design decision that

I struggled with numerous times. The argument is that users can build complex

visualizations out of simple visualization objects. Future work should experiment with

designing simple visualizations that represent multiple pieces of signal state.

The VISTA Environment has been used to visualize data obtained from two

different Value Change Dump sources: the SyCHOSys simulation and a DLX simulation.

Both of these simulations made use of the Value Change Dump simulation parser

included with the VISTA Environment. While the VISTA Environment provides tools

for users to develop new parsers in Java, potential users have been groaning about the

prospect of writing a new parser. Instead, the VISTA Environment would benefit from a

Graphical User Interface toolset that allowed users to create parsers

 54

Chapter 7:

Bibliography

[1] Jack St. Clair Kilby. Texas Instruments. 25 Dec. 2003
<http://www.ti.com/corp/docs/kilbyctr/jackstclair.shtml>.

[2] Moore, Gordon E.. “Cramming More Components onto Integrated Circuits.”
Electronics 19 Apr. 1965. 25 Dec. 2003
<ftp://download.intel.com/research/silicon/moorespaper.pdf>.

[3] Intel Microprocessor Quick Reference Guide. Intel Corporation. 25 Dec. 2003
<http://www.intel.com/pressroom/kits/quickreffam.htm#i486>

[4] Howstuffworks.com. “How Microprocessors Work.” 15 Jan 2004.
<http://computer.howstuffworks.com/microprocessor1.htm>

[5] Weaver, Chris, et al. “Performance Analysis Using Pipeline Visualization.”
Proceedings of the 2001 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS-2001), Nov. 2001.

[6] Marwedel, Peter, and Birgit Sirocic. “Multimedia components for the visualization
of dynamic behavior in computer architectures.” Proceedings of the Workshop on
Computer Architecture Education (WCAE’03), 8 June 2003.

[7] LS XII / Software. University of Dortmund – Department of Computer Science. 29
Dec. 2003 <http://ls12.cs.uni-dortmund.de/ravi/>

[8] Branovic, Irina, Roberto Giargi, and Antonio Prete. “Web-based training on
computer architecture: The case of JCachesim.” Proceedings of the Workshop on
Computer Architecture Education (WCAE’02), 26 May 2002.

[9] Burger, Doug and Todd M. Austin. “The SimpleScalar Tool Set, Version 2.0.”
University of Wisconsin Computer Sciences Technical Report #1342, June 1997.

[10] Coe, P.S., et al. “A Hierarchical Computer Architecture Design and Simulation
Environment,” ACM TOMACS, Vol. 8, No. 4, 1998, pp. 431-446.

[11] DLX with Parallel Function Units (and labels). School of Informatics, University of
Edinburgh. 29 Dec. 2003 <http://www.icsa.informatics.ed.ac.uk/cgi-
bin/hase/ident.pl?Dlx_v2>

 55

[12] Bosch, Robert P. Jr.. “Using Visualization to Understand The Behavior Of
Computer Systems.” Ph.D. Dissertation, Stanford University, August 2001.

[13] Visualizing Complex Systems: The Rivet Project. Stanford Computer Graphics
Laboratory. 29 Dec. 2003 <http://graphics.stanford.edu/projects/rivet/>

[14] The Institute of Electrical and Electronics Engineers, Inc. “IEEE Standard
Description Language Based on the VERILOG Hardware Description Language,
1364-1995.” New York: IEEE Standard Office, 1996.

[15] Milne, Philip. “Creating TreeTables in Swing.” 14 Jan 2004.
<http://java.sun.com/products/jfc/tsc/articles/treetable1/>

[16] Sun Microsystems, Inc. “How to Use Drag and Drop and Data Transfer.” 15 Jan
2004. <http://java.sun.com/docs/books/tutorial/uiswing/misc/dnd.html>

[17] Sun Microsystems, Inc. “How to Use Root Panes.” 15 Jan 2004.
<http://java.sun.com/docs/books/tutorial/uiswing/components/rootpane.html>

[18] Sun Microsystems, Inc. “bug id: 4222821 Iconifying a JInternalFrame causes its
GlassPane to lose state.” 15 Jan 2004.
<http://developer.java.sun.com/developer/bugParade/bugs/4222821.html>

[19] Department of EECS, UC Berkeley. “Ptolemy.” 15 Jan 2004.
<http://ptolemy.eecs.berkeley.edu/>

