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Abstract 
 

As computer architectures continue to grow in complexity, software developers and 
hardware engineers cope with the increasing complexity by developing proprietary 
applications, simulations and tool sets to understand the behavior of these complex 
systems.  Although the field of information visualization is leading to powerful 
applications in many areas, information visualization applications for computer 
architecture development are either tightly coupled with a specific architecture or target a 
wide range of computer system data. 
 
This thesis introduces the Visualization Tool for Computer Architects (VISTA) 
Environment.  The VISTA Environment is an extensible and modular information 
visualization environment for hardware engineers, software developers and educators to 
visualize data from a variety of computer architecture simulations at different levels of 
abstraction.  The VISTA Environment leverages common attributes in simulation data, 
computer architecture visualizations, and computer architecture development methods to 
create a powerful information visualization environment to aid in designing, 
understanding and communicating complex computer architectures. 
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Chapter 1:   
 
Introduction 

The internal workings of modern computer architectures are well abstracted away 

from the typical computer user.  While computer users chat in real-time over the Internet, 

listen to a set of their favorite songs, and watch recorded television episodes on their 

desktop machine, the computer processor, which took thousands of man-years to design, 

is quietly orchestrating the complex set of operations required to seamlessly multitask 

these applications. 

Although the typical computer user might not be aware of the complexities in the 

modern processor, hardware engineers and software designers are thoroughly acquainted 

with these issues.  These professionals have to design prospective architectures, 

understand the internal workings of the processor at some level, and discuss with others 

various issues regarding the processor. 

Hardware engineers and software designers have developed an enormous set of 

applications, tool sets and simulations in order to cope with the complexity of modern 

computer architectures.  This set of tools cover a wide range of aspects in computer 

architecture development, but fails to provide a common framework to design, 

understand and communicate computer architecture related material 

This is the basis for the Visualization Tool for Computer Architects (VISTA) 

Environment.  The VISTA Environment is an extensible information visualization 

environment for hardware engineers, software developers and educators to visualize data 

from a variety of computer architecture simulations at different levels of abstraction.  The 

VISTA Environment leverages common attributes in simulation data, computer 

architecture visualizations, and computer architecture development methods to create a 
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flexible and powerful information visualization environment to aid in designing, 

understanding and communicating complex computer architectures. 

1.1  The Microprocessor: A Device of Exponentially 
Increasing Complexity 

The birth of the microprocessor can be traced back to 1958 at a laboratory in 

Dallas, Texas.  It was there that Jack Kilby, a Texas Instruments engineer, borrowed and 

improvised equipment to build the first two-transistor integrated circuit.  This seemingly 

small piece of work by Kilby laid the foundation for the entire field of microprocessors 

and microelectronics.  Forty-five years later, the microelectronics field that sprung from 

Kilby’s work has evolved to a $200 billion industry that drives a $1 trillion electronic 

end-equipment market. [1] 

Since 1958, the size, complexity and computational power of microprocessors 

have grown at an exponential rate.  In a 1965 article published in Electronics, Gordon 

Moore, one of the founders of Fairchild Semiconductor and the Intel Corporation, noted 

that the number of transistors in an integrated circuit was growing at an exponential rate 

and saw “no reason to believe [that this growth] will not remain nearly constant for at 

least 10 years” [2].  This observation was immediately termed “Moore’s Law” by the 

press and the name has stuck.   

Although Moore was only willing to commit to the exponential growth trend until 

1975, his observation has held true for nearly forty years.  The Intel x86 family of 

processors, the predominate computer architecture in the desktop computing world, can 

provide numerous examples of Moore’s Law in action.  Two notable processors are the 

Intel 8088 processor released in 1982 and the Intel Pentium 4 processor released in 2000. 

Twenty years after the creation of the first integrated circuit, Intel and IBM 

launched one of the first lines of home computers.  This machine, termed the IBM PC, 

was released in 1982 and came standard with a monochrome monitor, floppy disk 

system, and an Intel 8088 processor.  Although the machine was fairly primitive 

compared to today’s machines—it could only handle simple word processing applications 

and business management tasks—the Intel 8088 contained nearly 29,000 transistors [3]. 
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In November of 2000, approximately twenty years after the release of the IBM 

PC, Intel introduced the Pentium 4 processor.  The Pentium 4 was designed to tackle the 

increasingly complex set of applications that desktop and entry level workstation users 

demanded.  Users wanted a processor capable of multi-tasking an assortment of 

applications including software to communicate over the Internet with real-time audio 

and video, video games that rendered sophisticated 3D graphics on the fly, and 

multimedia applications that incorporated computationally intensive video and audio 

compression formats.  To accomplish this, the Pentium 4 delivered users with a dramatic 

increase of processing power, but required an enormous amount of processor complexity.  

The Pentium 4 could execute instructions 5,000 times faster than as its Intel 8088 

ancestor [4], but it had grown to use 42 million transistors [3]. 

The increase in the number of transistors suggests that there are considerable 

differences between the two processors.  As the x86 series of processors evolved from the 

Intel 8088, Intel hardware engineers implemented a set of complex techniques and 

sophisticated internal operations to improve the performance of their processors.  These 

techniques and operations, each one involving numerous interactions between 

components of the processor, included branch prediction and speculative execution of 

instructions, concurrent out-of-order execution of instructions on multiple functional 

units and in-order commitment of the results to memory, dynamically renaming registers 

to remove artificial data and control dependencies, and complex interactions between the 

processor and memory system.  Although these techniques dramatically increase the 

performance of the processors, the resulting complexity is clear: thousands of man-years 

of effort are now required to develop a new generation of these sophisticated processors. 

1.2  Designing, Understanding and Communicating 
Complex Computer Architectures 

The task of effectively designing, understanding and communicating complex 

computer architectures becomes more difficult as the complexity of the system increases.  

In order to cope with the increasing complexity of computer architectures, hardware 

engineers, software designers and academia develop software simulations that model the 

architecture at various levels of abstraction. 
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1.2.1  Simulation Applications: Hardware and Software Development 

Simulation applications for hardware and software development are used 

throughout the design process to cope with the complexity in computer architecture and 

software design.  Simulation users enjoy the freedom to choose or develop simulations 

that take into account the time they have to run the simulation, the type of information 

they want to obtain about the system, and the computing environment in which they want 

to execute the simulation. 

Simulations that model the behavior of the architecture are created during the first 

stages of the development process and are used throughout the life of the processor.  In 

the early stages of development, hardware engineers use behavioral simulations to 

explore different options in an architecture design space, validate design decisions, and 

analyze the performance of existing applications on new architectures.   

At the same time, software developers use system level behavioral simulations to 

create and debug software for the prospective architecture.  Simulations based on 

behavioral models allow software designers to optimize their code on a new architecture 

without having to know the details of the underlying system.  Also, these simulations cost 

less than the actual hardware and are available before the hardware is produced. 

Simulation 
Level 

Simulation 
Components Design Use Simulation rate on 

host machine 
Instruction-set 

architecture 
(ISA) 

Processor, memory 
Hardware Engineers: explore design 

space, validate decisions, and analyze 
existing applications 

> 106 cycles/second 

Complete 
Machine 

Processor, memory, 
operating system, 

other hardware 
components 

Software Developers: creating and 
debugging software without the need 

for actual hardware 
> 103 cycles/second 

Register 
Transfer (RTL) 

Registers, 
Combinational 

Circuits 

Hardware Engineers: examine data 
flow between the registers and 

components 
> 10 cycles/second 

Gate/Circuit Gates, Transistors 
Hardware Engineers: detailed 

modeling of for circuit timing and  
energy consumption 

> 1 cycles/second 

Figure 1-1: Table of Simulation Applications 

Hardware and software developers use simulation applications throughout the 
design of a new architecture to cope with the complexity in hardware and software 
design. 

After developing an architecture design using the behavioral simulators, hardware 

engineers implement the functional aspects of the processor in register transfer level 
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(RTL) simulations.  Hardware engineers use a Hardware Descriptive Language (HDL) to 

specify how the data flows between the registers and how the architecture processes the 

data.  At this stage, the hardware engineers implement and debug complex functional 

techniques that increase the computational power of the architecture. 

Finally, there are instances when a hardware engineer needs more detailed 

information about the simulation of a processor.  For instance, an engineer could require 

highly accurate energy consumption information about the processor.  In these cases, the 

hardware engineer can use general purpose analog circuit simulators like SPICE to obtain 

such information.  However, the SPICE simulations of a circuit are orders of magnitude 

slower than a RTL level simulation. 

1.2.2  Simulation Applications: Teaching and Communicating 
Fundamental Ideas and Research 

The underlying concepts behind computer architecture designs are difficult to 

describe, communicate and understand using traditional methods of teaching.  

Introductory computer architecture classes are typically taught using static visual and 

textural representations such as diagrams and drawings in lectures, papers, and textbooks.  

These traditional methods of teaching computer architecture severely limit one’s ability 

to grasp complicated design implementations, computational behavioral patters, and 

component interactions that take place in modern processors. 

These complex interactions require dynamic and interactive simulations in which 

one can monitor the progression of instructions and data through a system and understand 

the effects of design changes on a system.  Dynamic and interactive simulations allow 

users to understand the functional components in a design, the interaction between 

software and the processor, and how hardware and software design decisions are made. 

The set of simulation tools used by hardware engineers and software designers are 

usually not appropriate for students to learn about architecture designs.  These feature 

rich simulation tools are frequently designed for optimum simulation speed of complex 

design projects and require special training to use.  Ease of use, excellent visualization 

tools and portability are not normally goals for these simulator applications.  
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The demand for dynamic and interactive teaching material has spurred the 

development of simulation and visualization environments that are useful for interactive 

learning of computer architecture concepts.  Tools such as RaVi [6], JCachesim [8] and 

HASE [10] are examples of such tools.  RaVi and HASE are general purpose computer 

architecture environments that allow for simulations and dynamic presentations to be 

created for web based learning environments.  JCachesim provides many of the same 

functions, but is focused on observing the interaction between a processor and the cache 

during the execution of a program.  JCachesim also includes logging capabilities for use 

in an online learning environment. 

1.3  Traditional Approaches to Simulations and 
Visualizations 

Although the set of applications for simulating and visualizing computer 

architectures is quite large, most of these applications can be grouped in three different 

categories: (a) high performance proprietary or customizable simulation engines with 

text-based trace output, (b) simulation engines coupled with visualization environments 

or (c) visualization environments that accept data from a variety of different sources. 

1.3.1  The SimpleScalar Tool Set 

The SimpleScalar Tool Set is the most widely used superscalar processor 

performance simulator and uses a high performance customizable simulation engine with 

text-based trace output.  Typically, hardware engineers will turn to performance 

simulators like the SimpleScalar Tool Set in order to explore various architecture designs 

because these simulators tend to run several orders of magnitude faster than RTL 

simulations. The SimpleScalar Tool Set is publicly available and extensible.   

The SimpleScalar Tool Set allows users to choose from highly detailed (and 

hence relatively slower) simulations or faster simulations that provide less detail.  On a 

200-MHz Pentium Pro, the highly detailed version of SimpleScalar can simulate 150,000 

machine cycles per second.  On the same 200-MHz Pentium Pro, the less detailed version 

of SimpleScalar can simulate four million machine cycles per second. [9] 
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The drawback of using the SimpleScalar Tool Set is that the text-based trace 

output can be a large and complex dataset that is difficult to navigate.  In this situation, 

users typically reduce the data into a more manageable dataset, or spend large amounts of 

time tediously navigating the dataset.  Although reduction can be useful for confirming a 

hypothesis about an existing system and navigation of a large dataset is possible for a 

well known system, these techniques are less useful for debugging or understanding a 

novel system. 

1.3.2  The Hierarchical Computer Architecture Design and Simulation 
Environment 

The Hierarchical Computer Architecture Design and Simulation Environment 

(HASE) is a computer system design, simulation and visualization environment 

developed at the University of Edinburgh.  HASE allows for rapid development and 

exploration of computer architectures at various levels of abstraction.  The environment 

is designed for both hardware and software designers to create a system, simulate 

software execution on the system and examine the simulation results in an animation and 

visualization environment. [10] 

Although the HASE simulation system was originally written in C++, it has since 

been ported to Java and spurred the creation of a number of other tool sets; SimJava, 

JavaHASE and WebHASE have been created as a result of the HASE Java port.  The 

Java implementation of HASE has allowed for applet development to share simulations 

and visualizations of systems over the web (see Figure 1-2).  Current applets include 

interactive animations and simulations of the DLX pipeline, scoreboarding, predication, 

and Tomasulo’s Algorithm.  

The drawback of the HASE simulation environment is that it is tightly coupled 

with the visualization system.  Although HASE provides users with a number of tools to 

design, simulate, and share their systems over the Internet, these users are always bound 

to the discrete-event simulation engine incorporated into HASE. 
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Figure 1-2: HASE Applet Used To Demonstrate A DLX Processor with Scoreboarding 

Currently the Hierarchical Computer Architecture Design and Simulation 
Environment (HASE) project provides a number of educational simulations 
available on the web as applets.  These simulations include interactive animations 
and simulations of the DLX pipeline, scoreboarding, predication, and Tomasulo’s 
Algorithm. [11] 

1.3.3  The Rivet Visualization Environment 

The Rivet Visualization Environment was developed by Robert P. Bosch at 

Stanford for his PhD work.  Rivet can accept data from a variety of data sources and 

present this information in various different visual displays.  Rivet is extensible and 

allows for rapid prototyping of new visualizations. 

In Bosch’s dissertation, he details a number of computer related systems that 

Rivet was used to visualize.  During the course of this research, Bosch used Rivet to 

create visualizations for an interactive parallelizing compiler, a detailed memory system, 

an application running on superscalar processors (see Figure 1-3), and a real-time 
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performance of computer systems and clusters [12].  Since then, Rivet has gone beyond 

computer related systems to visualize multi-dimensional relational databases. 

As Bosch showed in his dissertation, Rivet can visualize an assortment of 

different computer system related information, including computer architecture 

simulation data.  However, the work on Rivet has focused visualizing diverse datasets, 

not visualizing datasets with common characteristics.  For instance, the “PipeCleaner” 

visualization was created to visualize data from a specific processor simulator and it is 

not reused to visualize data from other processor simulators.  

 
Figure 1-3: Rivet Visualization from the “PipeCleaner” Project 

The Rivet Visualization Environment was developed by Robert P. Bosch at 
Stanford for his PhD work.  Rivet is an visualization environment that can accept 
data from a variety of data sources and present this information in various 
different visual displays.  Rivet is extensible and allows for rapid prototyping of 
new visualizations.  The “PiperCleaner” Project is one such visualization that 
displays application performance on superscalar processors. [13] 
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Chapter 2:   
 
The Vista Environment 

This chapter presents an overview of the VISTA Environment.  The first section 

enumerates the goals of the VISTA Environment.  The next section develops a 

specification of the abstract data objects from a widely used simulation data format.   

Finally, this chapter ends with a design overview of VISTA Environment.  This 

design overview introduces the three sets of components that make up the VISTA 

Environment and the interfaces that these components implement.  Also, this section 

provides a design overview for each of these three components. 

2.1  The VISTA Approach 
The VISTA Environment, in its broadest definition, is a software package that 

enables users to transform rich and detailed computer architecture simulation datasets 

into manageable visualizations.  Since the first implementation of the VISTA 

Environment by Mathew Jack in 2002, the VISTA Environment has evolved to meet 

several specific goals.   

The specific goals of the VISTA Environment are to provide users with: 

Visualizations for Effective Navigation of Rich and Complex Datasets.  The 

VISTA Environment allows users to create visual representations of rich and complex 

datasets.  While retaining the richness of the original dataset, data visualizations provide 

users with simple elements to explore the data, allow users to view large amounts of data 

on a single screen, and present the datasets at various levels of abstraction. 

Dynamic and Interactive Presentations of Architecture Concepts.  Visualizing 

of the dynamic behavior of complex architectures improves the dissemination of the ideas 

and concepts incorporated into these systems.  Research into visualization tools for 
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computer architecture students have noted that “navigating through the screens of 

interesting, colorful visualizations maintains students’ interest and can keep their brains 

active” [8]  and that “students really like the [visualization] units, appreciate their 

availability … [and are] highly motivated [to try] these units at home.” [6] 

Access to Varied Computer Architecture Simulation Datasets without 

Significant Data Storage or Processing Overhead.  The VISTA Environment leverages 

common attributes in data created by architecture simulations and allows users to quickly 

adapt their pre-defined visualizations to different sets of data, different architecture 

simulations, and different iterations of the same simulation.  With the VISTA 

Environment, users have the freedom to choose or develop their own simulation package 

while continuing to use the VISTA Environment for their data visualization needs.   

Common Visual Framework to Understand and Communicate Simulation 

Results.  The VISTA Environment provides a common visual language to compare and 

contrast architecture simulation datasets.  This common framework allows users to focus 

on understanding the architecture under study, rather than focusing on learning a new 

visualization environment or software application for each simulation dataset. 

Customizable and Extensible Data Visualization Toolset.  Since it is 

impossible to provide users with a complete set of visualizations, the VISTA 

Environment provides the framework for users to customize and create new 

visualizations.  Users can rearrange, transform, manipulate and reformat the visualization 

environment.  Users can create new and unique visualizations of their datasets and reuse 

these visualizations on other datasets. 

2.2  Abstract Simulation Data Objects 
The abstract data structures used to encapsulate simulation data in the VISTA 

Environment are inspired by the specifications of the Value Change Dump format.  The 

Value Change Dump format is a common format for data from low-level hardware 

simulations and is specified in the IEEE Standard 1364 [14].   

Notable aspects of the Value Change Dump format are: 

• The metadata for all of the signals in the system is declared at the start of 

the file.  This metadata is separate from any signal data.   
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• The signal is assigned a unique case-sensitive string identifier and is 

referred to by that key throughout the Value Change Dump file. 

• The signal data is stored as value changes in discrete simulation time 

intervals or “simulation frames”. 

• The values are real numbers, strings or sets of bits. 

These aspects of the Value Change Dump format are representative of computer 

architecture simulation data, and for the basis for data types in the VISTA Environment. 

2.2.1  Signal Metadata Object 

This data object contains signal metadata from the simulation.  It is based on the 

$VAR declarations in the Value Change Dump specification in IEEE Standard 1364 [14].  

During the Metadata declaration, the following information is given: 

• var_type and size: This metadata can be used to determine the type of object 

that be used to store the signal data. 

• reference: The name of the signal as a string of characters.  This name does not 

have to be unique, and also provides insight about the hierarchical structure of the 

set of signals.   

•  identifier_code: The signal’s unique case-sensitive string identifier. 
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Figure 2-1: $VAR Specification from the IEEE 1364 Standard 

The metadata information stored in the Structure can be extracted from the $VAR 
declarations in a Value Change Dump file. 

2.2.2  Signal Value Object 

This data object contains a signal’s value tagged with the signal key.  It is based 

on the Vector Value Change format in the Value Change Dump specification in IEEE 

Standard 1364 [14]. 

A value change is represented by a single line that contains the signal’s 

identifier_code followed by the signal’s new value.  The value of the signal is a 

number, string or bitset.  This bitset data can be of arbitrary length and contain unknown 

bits (‘x’) and high impedance bits (‘z’).   
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Figure 2-2: Rules for Unknown and High Impedance Values from the IEEE 1364 Standard 

The bitset data often found in simulation data files contain bitset data of arbitrary 
length with unknown and high impedance bits. 

2.2.3  Discrete Simulation Frame Objects 

This data object contains a frame number, a set of all of the keys that change state 

during that frame, a set of new Signal Value Objects and a set of previous Signal Value 

Objects.  It is based on the Value Change section in the Value Change Dump 

specification in IEEE Standard 1364 [14].   

In computer architecture simulations, signal values change at discrete simulation 

time increments.  In a Value Change Dump file, there is a special marker—the “#” sign—

that signifies a time increment.  After each marker, there is a new frame number and a list 

of signal identifier and signal value pairs. 
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Figure 2-3: Sample Value Change Section from a Value Change Dump File 

In computer architecture simulations, signal values change at discrete simulation 
time increments.  In a Value Change Dump file, there is a special marker—the “#” 
sign—that signifies a time increment.  After each marker, there is a new frame 
number and a list of signal identifier and signal value pairs. 

Since the previous value of the signal is not preserved, the information contained 

in a Value Change Dump can only be used to determine the next state of the system.  For 

instance, if someone knew the values of all of the signals at frame #520, he could 

determine the value of all of the signals at frame #530.  However, he could not determine 

the value of all of the signals at frame #510. 
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Figure 2-4: The Memory and Access Time Cost of Various Value Change Schemes 

The VISTA Environment implements a comfortable medium between memory 
usage and access time.  The VISTA Environment stores both the previous value 
and next value change information when a signals value changes and it stores the 
complete system state at regular simulation time intervals. 

The technique of storing only the next value change information is useful to 

reduce the storage of the data.  However, this scheme requires the most time to derive the 

system state at an arbitrary simulation time.  On the other hand, storing the system state at 

every simulation time interval would minimize the time required to derive a system state, 

but required an enormous amount of data storage.   

The VISTA Environment implements a comfortable medium between these two 

techniques that balances memory usage and access time.  The VISTA Environment stores 

both the previous value and next value change information when a signals value changes 

and it stores the complete system state at regular simulation time intervals.   

Since the VISTA Environment stores both the previous value and next value 

change information, the VISTA Environment can derive the system state at a desired 

simulation time from a system state at any arbitrary simulation time.  In the technique 
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used in the VCD file, a user can derive the system state for a desired simulation time only 

from a system state that is from a previous simulation time.  Typically, the technique 

used by the VISTA Environment will require slightly more memory than other schemes, 

but it allows the VISTA Environment to quickly derive a system state at any given 

simulation time. 

2.3  Design Overview 
The VISTA Environment is composed of three sets of components that interface 

with each other.  These components are responsible for responding to requests from the 

other components, and, in the case of the Graphical User Interface, responsible for 

responding to requests from the user.  Although the VISTA Environment is implemented 

in Java, these components are open to many different implementations. 

In the first section, there is a brief explanation of the components and their 

functions.  Next, there is an overview of how these components interface with each other.  

Finally, this section provides a design overview for each component. 



 18

2.3.1  Three Components of the VISTA Environment 

Visualization Graphical User
Interface

Data Manager

User

Simulation Data File

 
Figure 2-5: Conceptual Component Model of the VISTA Environment 

The VISTA Environment is composed of three sets of components that interface 
with each other.  Although the VISTA Environment is implemented in Java, these 
interfaces are simple and are open to many different implementations. 

Data Manager: This component is responsible for importing the simulation data 

at the request of the GUI and for translating the simulation data into objects that are 

usable by the Visualization component. 

Visualization: This component is responsible for retrieving simulation data from 

the Data Manager and providing the GUI with visual representations of the simulation 

data.   

Graphical User Interface: This component is responsible for presenting the 

Visualization components to the user and for presenting the status of the importing 

process from the Data Manger.  Also, this component handles the user’s interaction with 

the VISTA Environment and relays requests to the other components when required. 
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2.3.2  Interfacing the VISTA Components 

Graphical User
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Figure 2-6: Interface Between GUI and Importing and Managing Simulation Data Components 

Through the Graphical User Interface, the user can specify the simulation data file 

that he wants to import and can monitor the status of the simulation data file import 

process. 

The GUI takes the simulation data file specifications from the user and provides 

the Data Manger with simulation file parameters (i.e. file location, and simulation file 

type).  The Data Manager then initiates the simulation data importing process. 

While the Data Manager is importing simulation data, it provides the GUI with 

status information about the state of the data import.  The GUI presents this status 

information to the user so that he can monitor the status of the simulation data file import 

process. 

Graphical User
InterfaceVisualization

Create, Modify or Interact
with Visualizations

Visualizations and
Visualization Parameters

 to Screen

User

Data Visualization Sized to Boundaries
Request Current Simulation Time Change

Visualization Parameters

Create and Control Boundaries
Set Current Simulation Time

User Input Events
Visualization Parameters

 

Figure 2-7: Interface Between the GUI and the Visualization 

Through the Graphical User Interface, the user can create, modify or interact with 

visualizations. 
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The GUI is responsible for creating the boundaries for the visualizations, 

notifying visualizations of changes of the current simulation time, passing relevant user 

input events to visualizations, and allowing the user to adjust parameters in the of the 

visualizations. 

The Visualization component is responsible for providing the GUI with 

visualizations in response to the GUI’s request, fitting the visualizations to boundaries 

imposed by the GUI, sending requests to the GUI when a visualization wants to change 

the current simulation time, and providing the GUI with editable parameters for a 

visualization. 

Data ManagerVisualization

Request for Signal
Data and Metadata

Signal Data and Metadata

 
Figure 2-8: Interface Between the Visualizations and Data Components 

The Visualization component contains visualizations of simulation data and 

requests the simulation data from the Data Manager.  The Data Manager provides the 

visualizations with simulation data and metadata. 

2.3.3  Importing and Managing Simulation Data Component Overview 

In order to interface with the visualizations and the GUI, the Data Manager 

implements several sub components to orchestrate and delegate the tasks. 
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Figure 2-9: Conceptual Model of the Components of Data Components 

Runtime Data Manager: The Runtime Data Manager is the bridge between the 

Data Manager and the rest of the VISTA Environment.  The Runtime Data Manager 

orchestrates the other processes in the Data Manager, provides the visualizations with 

methods to retrieve simulation data, provides the GUI with methods to initiate the 

simulation importing process, and provides the GUI with methods to retrieve the status of 

the simulation importing process. 

Simulation Import:  The Simulation Import components include a Runtime 

Import Manager and a set of simulation file parsers.  The Runtime Import Manager 

controls the simulation parser on a separate program thread, allowing the simulation file 

parsing and creation of data objects to be run in the background.  The Runtime Import 

Manager has methods that allow the Runtime Data Manager to initiate the simulation 

importing process and to retrieve the status of the simulation importing process. 

Runtime Data Storage: The Runtime Data Storage is used to store simulation 

data objects that can be transferred to other storage methods.  It is reasonable to assume 

that alternative storage methods for simulation data objects will be required to store the 
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data objects created in the simulation importing process.  Simulation data files can be 

quite large—on the order of hundreds of megabytes or gigabytes—and many operating 

system will not allow the Java Virtual Machine this much memory. 

2.3.4  Visualizing Simulation Data Component Overview 

In order to interface with the Data Manager and the Graphical User Interface, the 

Visualization Simulation Data component implements two sub components and adheres 

to a model to communicate “current simulation time”.  The two components are View 

Layout and View Object and the current simulation time model is a Global Time Event. 

Global Time Event Listener:  Simulation data is stored in discrete time intervals 

and a visualization can represent the data at any time within the simulation.  However, it 

is useful to have all of the visualizations presented by the GUI represent a consistent 

time.  This gives rise to a “current simulation time” to which all of the visualizations are 

synchronized.  When this current simulation time changes, the visualization must change 

to represent this different current simulation time.  Each component that implements the 

Global Time Event Listener model can “hear” changes in the current simulation time 

represented in the VISTA Environment. 

View Object: The View Object is the basic building block of the visualizations.  

View Objects are used to visualize a single signal’s simulation data over a range of 

simulation time.  A View Object is placed in a View Layout.  View Objects request data 

from the Data Manager, and requests a change in the current simulation time from the 

Graphical User Interface.  View Objects also respond to changes in the current simulation 

time from the GUI, allows the GUI to access to view and modify some of its fields, and 

can respond directly to user input events. 

View Layouts: The View Layout is container for a set of View Objects.  A View 

Layout does not present simulation data, and creates a data visualization composed of 

View Objects in the boundaries set by the GUIs.  View Layouts, like View Objects, 

respond to changes in the current simulation time from the GUI and allow the GUI to 

access to view and modify some of their fields, and can respond directly to user input 

events. 
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Figure 2-10: Conceptual Model of View Objects in a View Layout Accessing Simulation Data From 
the Importing and Managing Simulation Data Component 

2.3.5  Graphical User Interface Component Overview 

In order to interface with the User, the Data Manager and the Visualization 

Simulation Data component, the Graphical Interface component implements several sub 

components. 

Visualization Containers: The GUI has visualization containers to control the 

boundaries of visualizations from the visualizations.  Also, these containers route user 

input events directly to the visualizations. 

Global Time Event Manager: The GUI controls the Global Time Event 

Manager and has an interface receiving requests to change current simulation time from 

the visualizations.  Also, the Global Time Event Manager announces Global Time Events 

that Global Time Event Listeners can “hear.” 

Modifying and Examining the VISTA Environment: The GUI has tools that 

allow the user to initiate a simulation import process and to receive feedback about the 

status of this process.  Also, there are tools that allow users to examine and modify 

information of visualizations. 
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Chapter 3:   
 
 Data Manager Implementation 

This chapter covers the implementation of the mechanisms that are responsible 

for translating the simulation data into objects that are usable in the visualization process.  

These mechanisms read the structure and state data contained in the simulation files, 

encapsulate these values into data objects and provides a standard interface for the 

visualization process to access the data. Although the details of this process are abstracted 

from typical users, some users will be required to create new simulation parsers for new 

data sources. 

The first section in this chapter introduces the Vista Data Structures that are 

used to store the information contained in the simulation files.  These Vista Data 

Structures implement the Abstract Simulation Data Objects (see 2.2). 

Next, the Simulation Import section details the simulations import components 

that are used to parse the simulation data files and create the Vista Data Structures.  

Since some users will be required to create new simulation parsers, these components 

include templates and tools to assist in creating new parsers. 

The third section details the Runtime Data Manager mechanism that serves as 

the bridge between these components and the rest of the VISTA Environment.  The 

Runtime Data Manager controls the data importing process, manipulates the data once 

it is imported, and provides VISTA with a simple interface to the data. 

The final section explains the Runtime Data Storage system that the Runtime 

Data Manager uses to store simulation data.  This system opens up the possibility for 

users to store the Vista Data Structures outside of the software heap and onto disk or 

network storage. 
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3.1  Vista Data Structures 
The VISTA Environment uses four different objects to encapsulate simulation 

data. These objects implement the Abstract Simulation Data Objects defined in Section 

2.2. 

The Structure object is the implementation of the Signal Metadata Object and 

contains signal metadata from the simulation.  Each piece of metadata is tagged with a 

key—a unique case-sensitive string identifier—that corresponds to the signal.   

A VisValue is an implementation of the Signal Value Object and holds the value 

of a signal tagged with the same signal key used in the metadata contained in the 

Structure.  The value of the signal is either a number or string. 

A TraceFrame is an implementation of the Discrete Simulation Frame Object 

and contains a frame number, a set of keys that correspond to signals that change value 

during the frame, a set of the new VisValues for the signals that change, and a set of the 

previous VisValues for the signals that change.    

An Image contains the values and metadata of all of the signals in a system at a 

specific simulation time.  The specific simulation time that an Image represents can be 

changed by applying a particular set of TraceFrames in a particular order. 

3.1.1  Structure 
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Name, Path,
Java Class

Key

Name, Path,
Java Class

Key

Name, Path,
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Key

Name, Path,
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Figure 3-1: Diagram of a Structure Object 

The Structure contains a set of metadata objects that correspond to signals in the 
simulation.  These metadata objects are tagged with a key—a unique case-
sensitive string identifier—that corresponds to the signal. 

The Structure contains a set of metadata objects that correspond to signals in the 

simulation.  The metadata includes the name of the signal, the path of the signal in the 

simulation structure hierarchy, and the Java class that is used to encapsulate the value of 

the signal.   
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The name of the signal is stored as a string of characters.  This name does not 

have to be unique and the length is not limited.   

The path of the signal is stored as an array of strings.  The lowest element in the 

array (i.e. String[0]) is the furthest ancestor from the signal and the highest element (i.e. 

String[length-1]) is the parent of the signal.  The root of the structure hierarchy is not 

contained in the path array (instead, the root is stored in the Structure name field).  A path 

of length zero means that the signal is a direct descendent from the root.   

These metadata objects are tagged with a key—a unique case-sensitive string 

identifier—that corresponds to the signal.  The key is a string of characters that is not 

limited in length but it is required to be unique within the VISTA Environment.  The key 

is used throughout the VISTA Environment for retrieving signal data, and identical keys 

could lead to undesired results.   

3.1.2  VisValue 

Value
Key

 
Figure 3-2: Diagram of a VisValue Object 

A VisValue holds the value of a signal and a key that uniquely identifies the 
signal.  

A VisValue stores the state data for a signal in either a String (java.lang.String) or 

a concrete subclass of the Number (java.lang.Number) abstract class.  This allows VISTA 

to store both strings and numbers in a single data object that can be operated on by the 

visualizations.  Also, a VisValue is tagged with a key that corresponds to the metadata 

stored in the Structure (see 3.1.1).   

The VISTA Environment contains VCDBitSet, a subclass of java.lang.Number 

that can handle simulation data bitsets.  Currently, VCDBitSet can handle arbitrary length 

bitsets, and sets unknown and high impendence bits to zero. 
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3.1.3  TraceFrame 
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Figure 3-3: Diagram of a TraceFrame Object 

A TraceFrame contains a frame number, a set of all of the keys that change state 
during that frame, a set of the new VisValues for the signals that change, and a set 
of the previous VisValues for the signals that change.  

A TraceFrame contains a frame number, a set of the keys of the signals that 

change value during that frame, a set of the new VisValues for the signals that change, 

and a set of the previous VisValues for the signals that change.  For each key in the set of 

keys, there is a corresponding new VisValue and a corresponding old VisValue. 

3.1.4  Image 
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Figure 3-4: Diagram of an Image Object 

An Image contains the values and metadata of all of the signals in a system at a 
specific simulation time.  The specific simulation time that an Image represents 
can be changed by applying a particular set of TraceFrames in a particular order. 
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An Image contains the values and metadata of all of the signals in a system at a 

specific simulation time.  The specific simulation time that an Image represents can be 

changed by applying a particular set of TraceFrames in a particular order.  Although only 

one Image is visible to the user in the VISTA Environment, the Runtime Data Manager 

caches Images at regular simulation time intervals in order to minimize the access time 

required for a given simulation time (see 3.3). 

TraceFrames can be applied to an Image to change the given simulation time that 

the Image represents.  However, care needs to be taken to apply the correct trace frame, 

or the Image will represent incorrect data.  The process of applying TraceFrames is 

performed by the Runtime Data Manager (see 3.3). 

3.2  Simulation Import 
The VISTA Environment contains two components for importing simulation data.  

These components are used to parse the simulation data files and create the Vista Data 

Structures.  Since some users will be required to create new simulation parsers, these 

components include templates and tools to assist in creating new parsers. 

SimParser is an abstract class that developers can subclass in order to create a 

new parser.  The abstract SimParser class takes care of many of the details of writing a 

new simulation parser and allows developers to create add parsers without much effort.  

The VISTA Environment has a VCDPaser, a subclass of SimParser, which can be used 

to parse Value Change Dump files. 

The Runtime Import Manager controls the simulation parser on a separate 

program thread, allowing the simulation file parsing and Vista Data Structure creation to 

be run in the background.  Developers do not need to understand the details of Runtime 

Import Manager in order to write new parsers. 

3.2.1  SimParser 

Users that want to import a new simulation file format into the VISTA 

Environment are required to write a new simulation parser.  Since most of these 

simulation data files are based on a proprietary format, it is reasonable to assume that 



 29

users will be writing parsers.  To make this process easier, users subclass the abstract 

SimParser class to create a new simulation parser.  

In order to create a new parser, the simulation parser developer will need to 

implement several abstract methods from the SimParser class.  The developer will need 

to write a constructor that initializes the Structure of the simulation data.  Also, since the 

SimParser implements the iterator interface, the simulation parser developer will need to 

implement the hasNextFrame and nextFrame methods.  The hasNextFrame method 

returns a true value if there is another frame in the simulation file and the nextFrame 

method returns the next Trace Frame. 

3.2.2  Runtime Import Manager 

The Runtime Import Manager creates and controls an instance of the SimParser 

class to import the user’s data.  The Runtime Import Manager runs on a separate program 

thread, allowing the simulation file parsing and Vista Data Structure creation to be run in 

the background.  The Runtime Import Manager is used by the Runtime Data Manger to 

control an implemented simulation parser and provide feedback on the status of the 

parser. 

Since the Runtime Import Manager runs on a separate thread, it shares processor 

time with other threads.  Users of the VISTA Environment can set the priority of the 

Runtime Import Manager thread, or even stop the thread completely.  While the Runtime 

Import Manager is running, the Runtime Data Manager periodically checks on its status 

and the Vista Data Structures it has created.  If the Runtime Data Manager detects new 

Vista Data Structures, it brings them into the VISTA Environment. 

3.3  Runtime Data Manager 
The Runtime Data Manager is the bridge between the Importing and Managing 

Simulation Data set of components and the rest of the VISTA Environment.  The 

Runtime Data Manager orchestrates the Importing and Managing Simulation Data 

processes and provides the rest of the VISTA Environment with simple methods to 

import and retrieve simulation data. 
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The VISTA Environment can to initiate a simulation data import by calling the 

importTraceFile method in the Runtime Data Manager.  This method requires a file 

path and a string identifier of the parser to be used.  The Runtime Data Manager will 

open the file, package the file data into a Buffered Input Stream, create the corresponding 

simulation parser, and start the Runtime Import Manager process to import the data. 

The VISTA Environment can retrieve a VisValue of a signal at a specific 

simulation time calling the getVisValue method in the Runtime Data Manger.  This 

method requires the signal’s key and an integer corresponding to the desired simulation 

time.   

The simplicity of these commands masks the complexity of the processes.  For 

instance, the process to retrieve a VisValue requires the Runtime Data Manager to 

perform a number of operations to derive the desired simulation state of the system.  

When the VISTA Environment retrieves a VisValue from the Runtime Data 

Manager, a number of operations occur.  Although the Runtime Data Manager only has 

one active Image, it stores a number of inactive Images in the Runtime Data Storage.  

These inactive Images are snapshots of the simulation state of the system at certain 

intervals in the simulation time.  If an inactive Image is closer to the desired simulation 

time than the active image, the active image is replaced by the inactive one.   

Then the Runtime Data Manager determines the TraceFrames that are required to 

get the active Image to the desired simulation time and applies these TraceFrames 

correctly.  If the active Image crosses a certain interval in the simulation time during the 

process of applying these TraceFrames, this active Image will be cloned and stored in the 

Runtime Data Storage. 

3.4  Runtime Data Storage 
In the development of the VISTA Environment, a major limitation has been the 

amount of memory that an operating system will allocate to the Java Virtual Machine.  

Simulation data files can be quite large—on the order of hundreds of megabytes or 

gigabytes—and many operating system will not allow the Java Virtual Machine this 

much memory.  The Runtime Data Storage is used to store data objects that can be 

transferred to other storage methods. 
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The Runtime Data Storage is an abstract class that serves as an interface to any 

number of different data storage schemes to be implemented in a subclass.  These 

schemes could involve a storing the data in another JVM process, on the machine’s local 

disk or across a network.  Although the Runtime Data Storage mechanism has a number 

of potential implementations, the current implementation (SimpleRuntimeDataStorage) 

stores the data in the Java Virtual Machine heap. 
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Chapter 4:   
 
Visualization Implementation 

This chapter covers the implementation of the mechanisms that are responsible 

for creating visual representations of the simulation data in the VISTA Environment.  

Once the simulation data has been imported into the VISTA Environment, these 

visualization mechanisms can access and present the data to the user.  Users can 

configure a set of standard visualizations or of develop their own. 

These components are developed using the Swing Graphics User Interface 

package from the Java Foundation Classes (JFC).  Swing includes a number of methods 

and features that help users create powerful Graphical User Interfaces and users familiar 

with Swing will find the task of developing new visualizations straightforward. 

The View Object is the basic building block of visualizations in the VISTA 

Environment. View Objects are implemented as Swing components and are used to 

visualize a single signal’s simulation data.   

View Layouts are containers for View Objects.  A View Layout manages a set 

of View Objects, controls their boundaries, and responds to any events they might fire.  

View Layouts, like View Objects, are Swing components but do not represent any signal 

data or metadata. 

The View Object and View Layout model is a flexible, reusable and modular 

model for developing visualizations in the VISTA Environment.  However, not all 

visualizations fit this model and the Signal Explorer demonstrates how the VISTA 

Environment can be made to support alternative design models. 

Finally, this chapter discusses the Global Time Listener Interface that 

visualizations must implement in order to be notified of current time changes. 
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4.1  View Objects 
View Objects are used to visualize the simulation data imported into the VISTA 

Environment.  View Objects are subclasses of JPanel (javax.swing.JPanel), a standard 

Java Swing component, and make use of Swing’s painting, layout and event-handling 

methods.  Users familiar with Swing are encouraged to write new View Objects and will 

find the task straightforward. 

View Objects have access to the simulation data stored in the VISTA 

Environment.  A View Object has a key—a unique case-sensitive string identifier that 

corresponds to the signal—and can use the key to retrieve signal data (see 3.1.2) or signal 

metadata (see 3.1.1) from the VISTA Environment data storage (see 3.4) for any 

simulation time.  The VISTA Environment has a concept of a current simulation time 

(see 3.1.4) and calls a View Object’s UpdatePresentation method whenever this 

current simulation time changes. 

View Objects make use of the JPanel class from Java’s Swing package.  Although 

a detailed explanation of Swing and JPanels are beyond the scope of this paper, this 

implementation allows users familiar with Swing to create new View Objects quickly and 

import visualizations written for other applications without much effort.  It also gives 

users the ability to include other Swing components, layouts, painting routines and event-

handling methods in a View Object.  

In this release of VISTA, there are two View Objects.  The Single Value View 

Object displays a text representation of the signal’s data and metadata at a single 

simulation time.  The Plot View Object graphs the signal’s data over a range of 

simulation times. 

Although these are quite simple View Objects, VISTA users who want to write 

new View Objects should examine the code behind these View Objects to learn how 

View Objects interact with the VISTA Environment.  Swing users will find the code 

straightforward and users new to Swing will find that the View Objects provide a good 

introduction to Swing’s capabilities and functions. 



 34

4.1.1  Single Value View Object 

The Single Value View Object (see Figure 4-1) is a simple View Object that 

displays a text representation of the signal’s data and metadata at a single simulation 

time.  The Single Value View Object provides a good example of how use other Swing 

components in a View Object and how to interact with the VISTA Environment. 

 
Figure 4-1: Example of a Single Value View Object 

The Single Value View Object is a simple View Object that displays a text 
representation of the signal’s data and metadata at a single simulation time.  This 
Single Value View Object is displaying that the Signal named 
“InstructionsStarted” at simulation time “0” is equal to “1.0”.  

A Single Value View uses a JLabel (another swing component) to display the 

signal’s data and metadata at the current simulation time in a text format. A JLabel can 

display plain text, images and interpret HTML encoded text.  The Single Value View 

Object delegates the painting and layout responsibility to the JLabel. 

The VISTA Environment notifies the Single Value View Object of a change in 

the current simulation time by calling the Single Value View Object’s 

UpdatePresention method.  In this method, the Single Value View Object retrieves 

from the VISTA Environment the current simulation time, the signal’s data, and the 

signal’s metadata.  The Single Value View Object makes this data into a String, and 

passes the String onto the JLabel to present it. 

4.1.2  Plot View Object 

The Plot View Object (see Figure 4-2) is slightly more complicated than the 

Single Value View Object.  The Plot View Object presents a signal’s data over a range of 

simulation time, implements its own Swing painting method, and it fires a Java Property 

Change Event whenever a user modifies the Plot View Object’s range of simulation time. 
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Figure 4-2: Examples of a Plot View Object: Line Graph, Waveform Graph, and a Bar Graph  

The Plot View Object presents a signal’s data over a range of simulation time, 
implements its own Swing painting method, and it fires a Property Change Event 
whenever a user modifies the Plot View Object’s range of simulation time.  In this 
example, there are three Plot View Objects that are plotting simulation data over a 
range of 13 simulation time intervals.  The vertical bar represents the current 
simulation time in the VISTA Environment.  

A Plot View Object represents the signal’s data over a range of simulation time.  

Although the VISTA Environment has a concept of current simulation time, it also 

provides methods to retrieve signal data at any arbitrary simulation time.  While the Plot 

View Object could obtain the signal’s data within the entire range of the simulation time 

each time the Plot View Object needed to repaint, this would cause an undue burden on 

the Runtime Data Manager in the VISTA Environment.  Instead, the Plot View object 

will obtain all of the data within the range of simulation time when it is created and store 

it internally. 

The Plot View Object implements its own painting method to plot a waveform, a 

bar graph or a line graph over a range of simulation time.  Also, the Plot View Object 

paints a marker on the graph to represent the current simulation time within the VISTA 

Environment and repaints this marker on notification from the VISTA Environment of a 

change in current simulation time.   

Implementing a custom painting routine is more difficult than delegating painting 

responsibilities to another Swing component, but Swing provides simple graphics tools 

that allow for sophisticated control over geometry, color, and text presentation.  The Plot 

View Object’s updatePresentation, paintComponent, drawBarGraph, 

drawLineGraph, drawWaveformGraph, and drawCurrentBar are good examples of the 

simplicity and power of the Swing graphic tools. 
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Finally, the Plot View Object uses Swing’s model of Event Handling in order to 

inform other Swing components that its range of simulation time have changed.  If a user 

modifies the range of simulation time of a Plot View Object at runtime, the Plot View 

Object will fire a Property Change Event (java.beans.PropertyChangeEvent).  These 

events can be heard by other Swing components and the other Swing components can act 

accordingly.  For instance, if a Plot View Layout (see 4.2.3) hears this event from one of 

its Plot View Objects, the Plot View Layout will change the simulation time ranges of its 

other Plot View Objects. 

4.2  View Layouts 
View Layouts are containers for View Objects.  A View Layout manages a set of 

View Objects, controls their boundaries, and responds to any Property Change Events 

they might fire.  View Layouts, like View Objects, are subclasses of JPanel and are 

notified when the current time changes in the VISTA Environment.  However, View 

Layouts require a Swing Layout Manager—either a new implementation or a standard 

Swing Layout Manager—and do not represent any signal data or metadata. 

In this release of VISTA, there are three View Layouts.  Flow View Layout 

demonstrates the simplicity of the View Layout system by employing Flow Layout, a 

standard Swing Layout Manager.  Grid View Layout implements its own layout manager 

and can load an image as its background.  Finally, Plot View Layout responds to events 

generated by Plot View Objects and delegates its layout duties to a JScrollBar, a Swing 

Component, coupled with a Box Layout, a standard Swing Layout Manager. 

4.2.1  Flow View Layout 

The Flow View Layout (see Figure 4-3) is the simplest of any View Layout.  The 

Flow View Layout does not do anything in response to changes in the current simulation 

time of the VISTA Environment nor does it listen for Property Changed Events that 

might be fired by its set of View Objects.   

The Flow View Layout employs a Flow Layout Manager (java.awt.FlowLayout), 

a standard Java Layout Manager, to control the boundaries of its set of View Object.  The 
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Flow Layout Manger arranges the set of View Objects in a left-to-right flow, much like 

lines of text in a paragraph. 

 
Figure 4-3: Example of a Flow View Layout with a Set of Single Value Views 

Flow View Layout is the simplest of any View Layout.  The Flow Layout Manger 
arranges the set of View Objects in a left-to-right flow, much like lines of text in a 
paragraph. 

4.2.2  Grid View Layout 

The Grid View Layout (see Figure 4-4 and Figure 4-5) implements its own 

Layout Manager in order to “snap” View Objects to a grid and can load an image as its 

background.  The Grid View Layout does not do anything in response to changes in the 

current simulation time of the VISTA Environment nor does it listen for Property 

Changed Events that might be fired by any of its View Objects.  
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Figure 4-4: Example of a Grid View Layout with a Set of Single Value Views 

The Grid View Layout implements its own Layout Manager to “snap” View 
Objects to a grid.  The Grid View Layout does not do anything in response to 
changes in the current simulation time of the VISTA Environment nor does it 
listen for Property Changed Events that might be fired by any of its View Objects.  

 
Figure 4-5: Example of a Grid View Layout with Single Value Views and Background Image 

The Grid View Layout implements a custom painting method in order to control 
presentation.  For example, this Grid View Layout has a set of Single Value 
Views of signal data overlaying an image of the corresponding Five Stage 
Pipelined processor. 

Java comes standard with eight implemented Layout Managers and the ability to 

use an “Absolute Positioning” layout scheme (by setting the Layout Manager to null).  
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Although these Layout Mangers are designed to handle almost any layout task, there is 

not a Layout Manger designed to “snap” its components to a grid. 

The Grid View Layout Manager was designed to perform this task by “snapping” 

the upper left corner of a View Object to an intersection on the grid.  The size of the grid 

can be change by a user at runtime. 

The Grid View Layout, like the Plot View Object (see 4.1.2), also implements a 

custom painting method in order to control its presentation.  The Grid View Layout can 

paint its background as a grid, an image from a file, or both.  This enables users to 

overlay View Objects on top of images that complement the View Objects (see Figure 

4-5). 

4.2.3  Plot View Layout 

The Plot View Layout (see Figure 4-6), unlike any of the other View Layouts, 

delegates its layout duties another Swing component, responds to events generated by its 

set of View Objects and responds to changes in the current simulation time maintained by 

the VISTA Environment.  

 
Figure 4-6: Example of a Plot View Layout with a set of Plot View Objects 

The Plot View Layout, unlike any of the other View Layouts, delegates its layout 
duties another Swing component, responds to events generated by its set of View 
Objects and responds to changes in the current simulation time maintained by the 
VISTA Environment. 

The Plot View Layout uses a JScrollBar in order to view a portion of the View 

Object at once.  This is useful for View Objects, like the Plot View Objects (see 4.1.2), 

that represent a signal over a range of simulation times.  The boundaries of the set of 

View Objects are controlled by a Grid Layout Manager (java.awt.GridLayout) in order to 
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maintain the View Object in one column with unlimited number of equally distributed 

rows.  In order to achieve the effect of zooming in and out of the View Object, the width 

of the underlying panel is adjusted.  

Some View Objects can fire Property Change Events and the Plot View Layout 

listens for events that signify a change in the range of data that is being represented by 

one of its View Objects.  If a Plot View Layouts hears one of its View Objects fire one of 

these Property Change Events, the Plot View Layout propagates this change to its other 

View Objects. 

Finally, the Plot View Layout responds to changes in the current simulation time 

in the VISTA Environment.  Once notified of the change in current simulation time, a 

Plot View Layout will check to see if this simulation time data is visible.  If the 

simulation time data is not visible, the Plot View Layout will move the JScrollBar to a 

position such that the simulation time data is visible. 

4.3  Signal Explorer 
The View Object and View Layout model provides users with flexible, reusable 

and modular model to develop visualizations in the VISTA Environment.  Occasionally, 

however, a user might run into a situation where this model does not fit their visualization 

design.  The VISTA Environment can be made to support alternative design models, but 

it is not encouraged and requires more work on the designer’s part. 

The Signal Explorer (see Figure 4-7) is an example when the View Object and 

View Layout model failed.  In this instance, there existed an excellent Swing component 

named JTreeTable [15] and the Signal Explorer needed to display data obtained from the 

entire Structure (see 3.1.1). 
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Figure 4-7: Example of the Signal Explorer 

The Signal Explorer is an example when the View Object and View Layout model 
failed.  In this instance, there existed an excellent Swing component named 
JTreeTable and the Signal Explorer needed to display data obtained from the 
entire Structure. 

The Signal Explorer was originally intended to be a View Layout; the Signal 

Explorer would place View Objects in their appropriate position in a layout that 

demonstrated the hierarchal relationship between the signals.  However, the JTreeTable, a 

third-party Swing component, provided a simple and sophisticated visualization that 

could not be matched by standard Swing components.  Unfortunately the JTreeTable 

couldn’t be a View Layout because the entries could not accept JPanels, and it couldn’t 

be a View Object because it presented the entire Structure, not only one signal. 

This type of visualization can attach itself to the VISTA Environment to gain 

access to the simulation data and notifications of changes in the current simulation time.  

The developer can mimic the methods that the View Layouts and View Objects use to 

perform these tasks.  However, many of the other features of the VISTA Environment, 

like the ability to transfer data through drag-and-drop, will depend on the implementation 

of the Graphical User Interface (see Chapter 5). 
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4.4  Global Time Listener Interface 
In order to receive notification from the VISTA Environment of changes in the 

current simulation time, a component must implement the Global Time Listener Interface 

and register itself with the VISTA Environment.  Fortunately for developers using the 

View Layout and View Object model, this is built into the model.  However, alternative 

visualization design models must implement this interface if they want to receive 

notification of changes in the current simulation time. 

A Global Time Listener is a subclass of the traditional Java event listener for the 

VISTA Environment.  In order to implement this listener interface, the component must 

contain two public methods: GlobalTimeAdded and GlobalTimeChanged.  The 

GlobalTimeAdded method will be called whenever the Runtime Data Manager detects 

that new simulation data has been imported by the Runtime Import Manager.  The 

GlobalTimeChanged method will be called whenever the current simulation time 

changes in the VISTA Environment. 

Objects that implement the Global Time Listener can add themselves to the 

Global Time Listener Event Queue by calling the Vista.registerGlobalTimeListener 

and remove themselves by calling Vista.deregisterGlobalTimeListener. 
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Chapter 5:   
 
 Graphical User Interface Implementation 

This final chapter details the implementation of the VISTA Graphical User 

Interface (see Figure 5-1).  The GUI is responsible for managing the presentation of the 

VISTA Environment to the user and for handling the user’s interaction with the VISTA 

Environment.  These components include top-level containers for View Layouts, menus, 

toolbars and other general graphical user interface components that serve as many of the 

functional aspects of the VISTA Environment. 

Managing Visualizations Using a Multiple Document Interface discusses the 

Java implementation of the MDI and the benefits of using this interface in Java 

applications.  Also, this section describes how the VISTA GUI handles user interaction to 

present and modify the visualizations of simulation data. 

Finally, Modifying and Examining the State of the VISTA Environment 

describes how users can interact with the VISTA Environment through the VISTA GUI 

and how the VISTA GUI presents the state of the VISTA Environment to the user.  This 

section details the “actions” that users can use to change the VISTA Environment, the 

user interface of these actions (e.g. menus and toolbars), and the presentation of the state 

of the VISTA Environment through a status bar. 
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Figure 5-1: The Graphical User Interface of the VISTA Environment 

The components that comprise the Graphical User Interface are responsible for 
managing the presentation of the VISTA Environment to the user and for handling 
the user’s interaction with the VISTA Environment.  These components include 
top-level containers for View Layouts, menus, toolbars and other general 
graphical user interface components that serve as many of the functional aspects 
of the VISTA Environment. 

5.1  Managing Visualizations Using a Multiple 
Document Interface 

The VISTA Graphical User Interface is presented using the Java implementation 

of the Multiple Document Interface.  The VISTA GUI relies on the MDI to provide top-

level containers to hold the visualizations, notify the visualization of user interaction and 

to transfer data between visualizations. 

The MDI is one of several different objects that Java can use to present a 

Graphical User Interface.  The two other objects are the Applet and the Frame.  The 

Applet is useful for applications intended to be embedded in a web page and the Frame 

object becomes programmatically cumbersome in a cross-platform multi-frame 
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environment.  The MDI, however, is platform independent, provides users with a single 

GUI to the VISTA Environment and allows the greater control over the presentation 

visualizations of simulation data. 

5.1.1  View Layouts Containers 

View Layouts (see 4.2) are implemented as Java panels and require a top-level 

container—a frame or main window—to control their boundaries.  Since the VISTA GUI 

uses a Multiple Document Interface (MDI), the top-level container for a View Layout is 

an internal frame.   

An added benefit of using the Java MDI and the internal frames comes from the 

MDI being implemented using platform-independent code.  This implementation allows 

for features in the internal frames that normal Java frames cannot provide in a cross-

platform environment.  For various reasons, Java cannot implement certain Frame 

commands nor can it guarantee that certain Frame commands will behave the same 

across all platforms. 

The VISTA Environment uses this increased programmatic control over the 

internal frame to maximize the amount of screen area that is used for the visualization of 

data.  The VISTA Environment can enable the “palette” frame boarders on the internal 

frame (see Figure 5-2) in order to use screen area more efficiently than the standard 

frame. 
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Figure 5-2: A Standard Frame and a Palette Frame 

The VISTA Environment uses the Multiple Document Interface controls to enable 
the “palette” frame boarders that reduce the amount of screen area that the frame 
uses.  The “palette” frame (top) uses screen area more efficiently than the standard 
frame (bottom). 

5.1.2  Dispatching Mouse Events 

The internal frame of the MDI, like any top-level container in Java, has multiple 

panes and stores the View Layout component in the Content Pane (see Figure 5-3).  All 

top-level containers have a Glass Pane above the Content Pane that can catch events or 

paint over an area within the container.  The VISTA GUI makes use of this Glass Pane to 

catch the user’s mouse events and perform the desired operation on the corresponding 

View Object or View Layout. 

 
Figure 5-3: The Structure of a Top-Level Container 

The internal frame of the MDI, like any top-level container in Java, has multiple 
panes and stores the View Layout component in the Content Pane.  The Graphical 
User Interface makes use of the Glass Pane to catch the user’s mouse events and 
perform the desired operation on the corresponding View Object or View Layout 
(Figure from Sun Microsystems, Inc [17]). 
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While this task is straightforward when using the Java Frame, the internal frame 

of the MDI presents some difficulties that have been documented in the Sun’s Bug 

Database.  For instance, once an internal frame is deactivated (either it loses focus or it is 

iconified), the modified Glass Pane is replaced with a fresh Glass Pane [18] .  The VISTA 

GUI works around this problem by replacing the fresh Glass Pane with a modified Glass 

Pane once the internal frame is reactivated. 

5.1.3  Drag and Drop Implementation 

Drag-and-drop allows the user to transfer information between visualizations in 

the VISTA Environment.  In the VISTA GUI, drag-and-drop is implemented using 

Swing’s Transfer Handler interface and is used transfer a signal’s key between 

visualization.  This implementation of Drag and Drop enables users to create new View 

Objects in a View Layout and to attach signals to View Objects. 

The Swing Transfer Handler interface (see Figure 5-4) is used to transfer data 

between Swing components.  Swing components that contain objects that implement this 

interface can exchange data through the system clipboard or by drag-and-drop operations.  

Every View Object contains a transfer handler that can send and receive a key—a unique 

case-sensitive string identifier—that corresponds to the signal being visualized.  Every 

View Layout also has a transfer handler that can receive a signal’s key and create the 

appropriate View Object for that signal the View Layout. 
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Figure 5-4: The Use of Swing Transfer Handlers in Drag and Drop 

The Swing Transfer Handler interface is used to transfer data between Swing 
components.  Swing components that contain objects that implement this interface 
can exchange data through the system clipboard or by drag-and-drop operations.  
(Figure from Sun Microsystems, Inc [16] ) 

The Transfer Hander interface provides a simple way to exchange data between 

Swing components and native applications.  However, the Transfer Handler does not 

provide a “drop” location reference when the data is transferred using the drag-and-drop 

operation.  Since the “drop” location of a View Object into a View Layout is important, a 

View Layout also uses the traditional Java Abstract Window Toolkit (AWT) Drop Target 

Adapter to monitor the location of the “drop”. 

5.2  Modifying and Examining the State of the VISTA 
Environment 

In the VISTA Environment, users will want to execute a set of commands and 

modify parameters in order to change the state of the VISTA Environment.  Also, the 

VISTA Environment is responsible for providing users with information to that describes 

its state.   

In order to execute commands, there are a set of user actions that contain almost 

all of commands a user could want to execute.  These actions are packaged into the 

Toolbars and Menus in the VISTA GUI.  The VISTA GUI provides to users the VISTA 

Environment state information through a status bar. 

Finally, users can access and adjust parameters through a set of Property Boxes.  

These Property Boxes are hard-coded into the VISTA Environment and developers need 
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to create and modify Property Boxes to allow users to access parameters at run-time.  

However, these Property Boxes provide developers with numerous tools that allow 

developers to create them quickly. 

5.2.1  User Actions in the VISTA Environment 

While using the VISTA Environment, the user will need to execute commands to 

change the state of the VISTA Environment.  In the VISTA GUI, these commands are 

encapsulated within User Action object.  The set of User Action objects comprises of 

almost all of the commands a user could want to execute and more commands can be 

easily added.   

This set of User Action objects include common commands such as importing 

simulation data, creating new visualizations, and changing the current simulation time.  

In order to create a new User Action (see Figure 5-5), a developer must write Java code 

that specifies how the action interacts with the VISTA Environment and update the 

property bundle file that contains information provided to the GUI about the User Action.  

This model separates the functionality of the action (which is independent of the VISTA 

GUI) and the display information (which is independent of the rest of the VISTA 

Environment). 

 
Figure 5-5: Example of a User Action’s Java Code and Description Entry 

In order to create a User Action, a developer must write Java code that specifies 
how the action interacts with the VISTA Environment (top) and update the 
property bundle file that contains information provided to the GUI (bottom). 

### StepForwardAction ### 
 
StepForwardAction.NAME=Step Forward 
StepForwardAction.SMALL_ICON=Forward24.gif 
StepForwardAction.MNEMONIC_KEY=F 
StepForwardAction.ACCELERATOR_KEY=control RIGHT 
StepForwardAction.LONG_DESCRIPTION=Step Forward 
StepForwardAction.SHORT_DESCRIPTION=Step Forward 

public void actionPerformed(ActionEvent event) { 
 frameNo = Vista.getGlobalTime(); 
 refresh(); 
 if (enabled) { 
  Vista.setGlobalTime(Vista.getGlobalTime() + 1); 
 } 
} 
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Once the User Action has been created, it can be packaged in Menus or Toolbars 

(see Figure 5-6).  The description entry in the property bundle file provides the GUI with 

information that determines the button icon for the toolbar, the text label for the menu 

and shortcut keystroke binding in the VISTA GUI.  The Java code is performed when the 

user clicks on the button in the toolbar, chooses the item in a menu or presses the shortcut 

keystroke.   

 
Figure 5-6: Menus and Toolbar from the VISTA Graphical User Interface 

User Actions can be packaged in Menus or Toolbars.  The description entry in the 
property bundle file provides the GUI with information that determines the button 
icon for the toolbar, the text label for the menu and shortcut keystroke binding in 
the VISTA GUI.  The Java code is performed when the user clicks on the button 
in the toolbar, chooses the item in a menu or presses the shortcut keystroke. 

5.2.2  Providing VISTA State Information 

The VISTA Environment has state information that the user can change through 

the set of User Actions.  In turn, the VISTA GUI is responsible for presenting changes in 

this state information back to the user.  This is accomplished by use of a status bar. 

Currently, the status bar provides users with state information pertaining the 

current simulation time, the range of simulation time imported, the status of the Runtime 

Import Manager, the amount of memory that the Java Virtual Machine is using and the 

amount of memory available to the JVM. 

 
Figure 5-7: VISTA Graphical User Interface Status Bar 

The status bar provides users with state information pertaining the current 
simulation time, the range of simulation time imported, the status of the Runtime 
Import Manager, the amount of memory that the Java Virtual Machine is using 
and the amount of memory available to the JVM. 
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5.2.3  Property Boxes 

The VISTA GUI allows users to access and adjust parameters through a set of 

Property Boxes.  These Property Boxes are hard-coded into the VISTA GUI and 

developers need to create and modify Property Boxes to allow users to access parameters 

at run-time.  However, these Property Boxes provide developers with numerous tools that 

allow developers to create them quickly. 

 
Figure 5-8: A Plot View Object with a Property Box and Color Chooser 

The VISTA GUI allows users to access and adjust parameters through a set of 
Property Boxes.  In this figure, a user is adjusting the format of a Plot View 
Object (bottom).  The Property Box (top, right) allows users to set various 
parameters of the Plot View Object, and will launch other tools—like a color 
chooser (top, left)—when required. 

A Property Box can be used examine and adjust almost any type of object in Java.  

The Property Box component includes methods to add text fields, check boxes, color 

choosers and file choosers.  The design and code for the Property Boxes are based on 

components from the Ptolemy project at the University of California, Berkley [19]. 
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Chapter 6:   
 
Conclusion and Future Work 

Since the creation of the VISTA Environment by Mathew Jack in 2002, the 

VISTA Environment has changed significantly.  Although the initial goals of the VISTA 

Environment remain the same, the data models and the main components of the VISTA 

Environment have changed drastically.  There are two immediate problems that need to 

be addressed involving JVM memory usage and the graphical user interface.  Also there 

is future work with the VISTA Environment that would involve modifying the data 

models and adding other functionality to the main components in VISTA. 

The Data Manager currently has a lofty storage overhead for the simulation data.  

When VISTA imports a Value Change Dump file, the Data Manager requires 

approximately ten times the amount of memory to store the simulation data in memory 

than was required to store it on disk.   

The graphical user interface has artifact problems on the Macintosh platform, 

responds slower than expected and requires a large amount of memory.  Since the 

Macintosh artifact problems haven’t been experienced on Linux and Windows 

environments, this is probably just a bug in the Macintosh JVM.  The responsiveness, 

however, warrants investigation into other Java window managers.  Finally, the current 

configuration of the Plot View has an entire bit-mapped image of the plot stored in 

memory, and this bitmap becomes very large once users zoom in. 

The current data types in the VISTA Environment allow users to import and 

visualize signal data that is represented as bit data, integers and real numbers, or strings 

of characters.  While the VISTA Environment can visualize this data in multiple different 
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ways, it cannot manipulate this data.  There are no functions to combine data from 

various sources and derive a new piece of data. 

The data visualizations can display only one piece of signal data.  The simplicity 

of having “one signal” correspond to “one visual representation” is a design decision that 

I struggled with numerous times.  The argument is that users can build complex 

visualizations out of simple visualization objects.  Future work should experiment with 

designing simple visualizations that represent multiple pieces of signal state. 

The VISTA Environment has been used to visualize data obtained from two 

different Value Change Dump sources: the SyCHOSys simulation and a DLX simulation.  

Both of these simulations made use of the Value Change Dump simulation parser 

included with the VISTA Environment.  While the VISTA Environment provides tools 

for users to develop new parsers in Java, potential users have been groaning about the 

prospect of writing a new parser.  Instead, the VISTA Environment would benefit from a 

Graphical User Interface toolset that allowed users to create parsers  
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