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Abstract

In this thesis, we evaluate the feasibility of exposing elements in a processor's datap-
ath to the compiler in order to reduce energy consumption. We focus on eliminating
register �le tra�c by exposing the latches in the bypass network, as our study shows
that there is potential for signi�cant bene�t by doing this. We present the idea of
software restart markers to handle the exception management overhead that results
from exposing additional processor state. We then implement our proposed tech-
niques and observe an average energy savings of 7.0% across a range of benchmarks
when compared to a low-power MIPS processor. We also explore the implications
of changing the pipeline structure to both improve performance and expose more
machine state.
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Chapter 1

Introduction

Microprocessor performance improves each year at an impressive rate. Technology

advances allow for a greater number of transistors to �t onto a chip, enabling faster

speeds and more features. Designers continually strive to increase instruction level

parallelism (ILP) through methods such as out-of-order execution. The quest to

increase ILP has led to a greater focus on levels of the system hierarchy higher than the

circuit or microarchitectural levels|more attention is being devoted to architectural

and compiler techniques to achieve better performance. This is evidenced by the

recent trend of VLIW architectures, which give more control over performance to the

compiler. However, in the constant push to make processors faster, the complexity

of the hardware has rapidly increased. As a result, energy consumption has become

an increasingly critical factor in microprocessor designs, particularly in embedded

processors. Maintaining performance while reducing energy consumption is one of

the major challenges faced by today's designers.

Many circuit techniques have been developed in e�orts to consume less energy.

However, there have not been many energy optimizations at higher levels of the system

hierarchy, such as compilers and instruction set architectures. These areas have been

explored in attempts to increase performance; they can also be approached from an

energy perspective. There is an untapped potential to reduce energy consumption by

exposing processor energy at these levels.

Current ISAs are designed to enhance performance, with little or no attention

13



paid to the energy implications of design decisions. As a result, many ISA imple-

mentations cause several energy-consuming microarchitectural operations to occur

when executing a simple instruction. As long as these operations do not a�ect the

throughput or latency of the processor, there is little incentive from a performance

perspective to expose them. However, from an energy perspective, exposing these

microarchitectural operations to the compiler through the ISA can be very bene�-

cial, as the compiler can make attempts to reduce energy consumption by removing

unnecessary operations.

In this study, we examine the e�ects of exposing microprocessor energy consump-

tion to the compiler. Our goal is to shift some of the hardware complexity in the

datapath into software, and thus consume less total energy.

When considering both power and performance in a microprocessor design, simple

architectures are preferred [20]. Thus, our research focuses on simple pipelined dat-

apaths. In particular, we use a �ve-stage pipelined microprocessor that implements

a subset of the MIPS II instruction set architecture as our baseline design. MIPS

is one of the simpler RISC architectures, making it a good candidate for low-power

research. We also use a combination of benchmarks that target both embedded and

desktop systems. Our methodology is described in Chapter 2.

Chapter 3 of this paper discusses the motivation for exposing datapath elements to

the compiler. We select the register �le and the associated bypass network as the focus

of our study. In today's microprocessors, register �le accesses are typically responsible

for a large percentage of the datapath power consumption. In Motorola's M�CORE

processor, the register �le consumes 16% of the total processor power and 42% of the

total datapath power [22]. One way to reduce register �le power consumption is to

eliminate unnecessary reads and writes. Previous work has shown that many register

values are only used once [4], indicating that they may be unnecessarily written back

to the register �le. Additionally, many values are provided by the bypass network

[25], meaning that the corresponding register �le reads are unnecessary. We conduct

our own register lifetime analysis study for our particular workload to determine a

theoretical upper bound on the bene�t that we can expect to achieve by trying to

14



eliminate unnecessary register �le tra�c using compile-time information.

Exposing a microprocessor's organization to the compiler is not a new concept, as

VLIW machines, vector processors, and recon�gurable computers all utilize this idea.

These techniques add more state that is visible to software, and give the compiler

knowledge of the various aspects of a processor's hardware design so that greater

performance can be achieved. Traditionally it has been di�cult for these types of

processors to handle exceptions because of the overhead required to manage the ad-

ditional exposed machine state. As a result, these systems have not been able to

implement features such as virtual memory. This has begun to change in recent years

for vector processors [3] and VLIW machines [21], as hardware-based methods have

been developed to handle this problem. However, our goal in this study is to shift

as much complexity from hardware to software as possible in order to reduce energy

consumption. Thus, Chapter 4 presents a software-based solution to the exception

management overhead problem in the form of software restart markers, which allow

the use of temporary state. This technique provides a simple way to expose machine

state without having to introduce additional hardware to preserve the state across

exceptions.

Chapter 5 of this paper explores the energy savings that can be achieved in prac-

tice. We expose the bypass latches to the compiler and assembler and make various

modi�cations to them in order to save energy. We present results for the percentage

of register �le accesses that can be eliminated, and also show the energy that is saved

by our optimizations.

Additional bene�t can be gained by designing the processor's microarchitecture

with energy in mind. By splitting the pipeline into two sections, one to handle ad-

dress computations and one to handle data computations, we create more temporary

state that can be exposed and also allow for greater correlation between address

and data values, which can theoretically reduce switching energy. This split-pipeline

organization can also improve performance [5]. We explore this idea in Chapter 6.

Chapter 7 concludes and discusses future work.
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Chapter 2

Methodology

The complexity of microprocessors increases each year as designers attempt to achieve

higher levels of performance with techniques such as superscalar datapaths, instruc-

tion reordering, and speculative execution. However, the performance gains of these

methods typically result in an increase in power consumption. As shown in [20], sim-

ple pipelined datapaths are preferred when considering both power and performance

in a microprocessor design. Thus, we use a �ve-stage pipelined MIPS II-compatible

microprocessor, code named Vanilla Pekoe, as our baseline design, and we stick with

relatively simple pipelines throughout our investigation. The Vanilla Pekoe pipeline is

shown in Figure 2-1. It implements a subset of the MIPS II instruction set architec-

ture, not including misaligned load/store instructions, multiprocessor synchronization

instructions, or trap instructions. There is a single architected branch delay slot, and

all branches are predicted taken with a one cycle branch mispredict penalty. The mi-

croprocessor has a single interlocked load-use delay slot, and two interlocked load-use

delay slots for 8-bit and 16-bit loads. Integer multiply and divide are non-pipelined

and have latencies of 18 cycles and 33 cycles, respectively. Vanilla Pekoe does not

have a oating-point unit, and thus all oating-point instructions are trapped and

emulated in software.

We gather statistics by obtaining dynamic benchmark instruction traces using a

cycle-accurate simulator that models the behavior of Vanilla Pekoe as well as our

subsequent pipeline designs. A similar method was used in the development of the
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M�CORE architecture [6]. Energy statistics are obtained using our cycle-accurate

simulator, SyCHOsys [15]. We obtain additional statistics on program behavior by

using an ISA simulator that was initially developed for T0 [1], a vector microprocessor

with a MIPS core similar to Vanilla Pekoe. We do not include the e�ects of caches in

our simulations as our techniques do not a�ect cache performance and thus adding

stalls due to cache misses would only lessen any performance penalty introduced by

our changes.

It is important to use a workload that is representative of programs that will actu-

ally be run on our target microprocessors. Thus, we use a combination of embedded

and desktop applications from the MediaBench [16] and SPECint2000 [7] benchmark

suites. We run all programs to completion. For the SPECint2000 benchmarks, we

use small test inputs to keep the simulation time reasonable. A description of the

benchmarks used is in Table 2.1, along with user-level instruction counts and cycle

counts for Vanilla Pekoe. Table 2.2 gives the distribution of instruction types in each

benchmark.

Our C compiler is egcs-1.0.3a, a version of GNU gcc which generates assembly

code that is processed by version 2.8.1 of GNU gas. These are widely-used programs

which have their source codes freely available, giving us the exibility to make mod-

i�cations to achieve our goals. We set up a cross-compiler environment in which we

run these tools on both Solaris and Linux workstations, and generate binaries that

can be run on our target processors. We statically link the program code with version

1.8.2 of the newlib standard C library.

19



Benchmark User-Level User-Level Description
fData Setg Instruction Count Cycle Count

adpcm(decode) 5,843,735 6,802,729 An adaptive di�erential
fclinton.adpcmg pulse code modulation

decoder
adpcm(encode) 6,967,125 8,498,659 An adaptive di�erential
fclinton.pcmg pulse code modulation

encoder
bzip2 9,871,943,186 11,491,425,114 A data compression
ftestg program
g721(decode) 290,462,290 381,244,054 A voice decompression
fclinton.g721g program
g721(encode) 298,023,582 392,065,079 A voice compression
fclinton.pcmg program
gcc 1,893,715,242 2,258,779,011 A C Language compiler
ftestg
gsm(decode) 90,150,531 140,955,378 A full-rate speech
fclinton.pcm.gsmg transcoder
gsm(encode) 229,655,663 531,567,516 A full-rate speech
fclinton.pcmg transcoder
gzip 3,087,502,624 3,535,713,029 A data compression
ftestg program
jpeg(decode) 5,084,336 6,552,104 An image decompression
ftestimg.jpgg program
jpeg(encode) 16,261,685 20,485,752 An image compression
ftestimg.ppmg program
mcf 216,662,213 252,092,168 A single-depot vehicle
ftestg scheduling program
parser 3,925,961,662 4,558,530,147 A syntactic parser
ftestg of English
pegwit(decode) 19,237,898 22,979,612 A program that performs
fpegwit.enc, public key decryption
my.secg and authentication
pegwit(encode) 33,855,094 40,913,225 A program that performs
fmy.pub, public key encryption
pgptest.plain, and authentication
encryption junkg
vortex 10,235,479,193 11,796,918,443 A single-user object-
ftestg oriented database

transaction program

Total 30,226,806,059 35,445,522,020

Table 2.1: Vanilla Pekoe benchmark instruction counts, cycle counts, and descriptions
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Benchmark Arithmetic Logical Load Store Shift Lui

adpcm(decode) 29.18 20.20 6.33 2.54 18.94 0.01
adpcm(encode) 37.75 13.43 6.37 1.07 16.95 0.01
bzip2 45.03 6.77 18.47 13.85 2.60 1.47
g721(decode) 39.05 2.51 12.60 4.51 12.93 1.21
g721(encode) 39.54 2.31 12.21 4.10 13.32 1.28
gcc 32.99 3.49 21.91 12.52 4.66 3.38
gsm(decode) 42.03 8.51 6.59 3.66 19.45 0.01
gsm(encode) 40.50 0.54 16.45 3.76 19.69 0.08
gzip 30.99 6.30 19.52 8.52 5.87 9.51
jpeg(decode) 47.27 3.18 17.15 8.96 15.23 0.36
jpeg(encode) 39.81 0.94 20.46 6.50 16.03 0.78
mcf 43.47 0.41 18.37 15.17 2.45 0.87
parser 29.40 4.27 22.66 9.05 3.93 5.49
pegwit(decode) 32.27 15.40 18.44 5.92 12.12 4.44
pegwit(encode) 33.62 15.86 17.58 5.82 12.17 2.86
vortex 28.25 0.87 26.63 18.60 1.97 5.54

Average 36.95 6.56 16.36 7.78 11.14 2.33

Benchmark Cond. Uncond. Mul/ Nop Other
Branch Branch Div

adpcm(decode) 22.74 0.03 0.00 0.02 0.01
adpcm(encode) 21.19 1.08 0.00 2.13 0.00
bzip2 10.28 0.93 0.00 0.61 0.00
g721(decode) 17.01 3.01 1.00 6.16 0.00
g721(encode) 17.22 2.96 0.97 6.10 0.00
gcc 13.25 3.54 0.24 3.99 0.04
gsm(decode) 11.05 2.92 5.67 0.09 0.00
gsm(encode) 4.42 0.29 13.99 0.28 0.00
gzip 11.75 3.88 0.02 3.66 0.00
jpeg(decode) 5.48 0.64 1.25 0.48 0.00
jpeg(encode) 13.01 1.81 0.36 0.31 0.00
mcf 15.97 0.85 0.04 2.40 0.00
parser 14.14 3.61 0.20 7.24 0.00
pegwit(decode) 8.78 1.82 0.00 0.81 0.00
pegwit(encode) 9.25 1.95 0.00 0.88 0.00
vortex 10.37 3.89 0.13 3.76 0.00

Average 12.87 2.08 1.59 2.43 0.00

Table 2.2: Vanilla Pekoe benchmark instruction type distribution as a percentage
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Chapter 3

Exposing Datapath Elements

3.1 Motivation

Energy consumption is becoming increasingly important in today's microprocessors.

In the quest to improve performance, microprocessor designers have devised numerous

methods to increase instruction level parallelism (ILP), such as superscalar processors,

out-of-order execution, and VLIW architectures. However, with each new technique

that results in higher performance, the subsequent complexity of the microprocessor

typically increases. As a result, the microprocessor's energy consumption increases

as well. We want to reduce this energy consumption by exposing datapath elements

to the compiler and thus shifting some of the hardware complexity into software

complexity.

3.2 Choosing Datapath Elements to Expose

We must decide which elements in the datapath should be exposed to the compiler.

We want to select hardware components that are easily made software-visible and that

are responsible for a signi�cant percentage of the microprocessor's energy consump-

tion. If one or both of these criteria are not met, then it is unlikely that the energy

savings we can achieve by exposing the selected elements will o�set the additional

software (and possibly hardware) complexity required.
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One datapath component that is already visible to the compiler is the register �le.

In today's microprocessors, most operations get their source values from the register

�le and write any destination values to the register �le. The compiler is responsible

for determining which architectural registers are used. However, the compiler does

not have access to all of the components related to the register �le, namely the

bypass network. It should be relatively simple to expose the latches within the bypass

network, as they are essentially extensions of the register �le. Thus, the register �le

and its associated components satisfy the �rst criterion mentioned above.

Additionally, register �le accesses typically consume a signi�cant percentage of

the processor datapath power consumption. For example, in Motorola's M�CORE

processor, the register �le consumes 16% of the total processor power and 42% of

the total datapath power [22]. This means that the second criterion is satis�ed as

well. We therefore choose to focus on register �le accesses in our study. If we can

demonstrate that our approach is a feasible method of reducing microprocessor energy

consumption, then we can extend it to other elements of the datapath.

3.3 Register Lifetime Analysis

It has been shown previously that a large fraction of register values have a short

lifetime, frequently being used only once [4]. For example, consider the following

code sequence which is used to increment a memory variable:

lw r1, (r3) # Load value.

add r1, r1, 1 # Increment.

sw r1, (r3) # Update memory.

The values generated by the load and add instructions are each only used once by

the subsequent instruction and are normally read from the bypass network rather

than the register �le. A conventional processor does not have access to this lifetime

information and thus must always write values back to the register �le, as it must

assume that a value can be used at any point in the future or that an interrupt can
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occur at any time. By communicating lifetime information to the processor, we can

enable optimizations that will reduce register �le tra�c. We intend to do this by

exposing latches in the bypass network to the compiler and explicitly targeting them

when a value has a short lifetime. When the processor sees an explicit use of a bypass

latch, it can disable the corresponding register �le access. To determine an upper

bound on the bene�t that we can achieve in our workload, we conducted a register

lifetime analysis study by running programs through our ISA simulator.

3.3.1 Terminology

Instruction Count

All of our statistics are based on user-level instructions; kernel code is ignored. We

de�ne the \instruction count" at a particular point in a program to be the number

of user-level instructions executed up to that point, and measure lifetime lengths and

other corresponding statistics in terms of instruction counts.

Register Value Lifetime

The lifetime of a register value consists of the time between the writing of that value

and the last read of that value. We de�ne a value's lifetime length using the following

formula:

lifetime length = (instruction count when the last read of a register value occurs) �

(instruction count when the value was written into the register)

In other words, the lifetime indicates the span of instructions over which a par-

ticular register value is active. To illustrate this concept, consider the following code

segment, in which the instruction count is listed to the left of the instruction.

100 add r1, r2, r3 # r1 = r2 + r3

101 and r6, r1, r7 # r6 = r1 & r7

102 add r7, r2, r4 # r7 = r2 + r4

103 sub r5, r1, r4 # r5 = r1 - r4
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104 add r8, r8, 1 # r8 = r8 + 1

105 sub r1, r7, r8 # r1 = r7 - r8

Register r1 is written with a new value when the instruction count is 100. It is then

read in two of the next three instructions, and the last read of the value occurs when

the instruction count is 103. A new value is then written to r1 when the instruction

count is 105. Thus, the lifetime length of the value in r1 for this particular code

segment is:

lifetime length = 103 � 100 = 3

It is possible for a register value to have a zero-length lifetime if the value is written

and never read. This can occur if the value is written in one basic block and only

used in another basic block. A conditional branch at the end of the �rst block can

cause the program to never enter the second block, and thus the value will never be

read. A high-level example of this is shown by the following C code segment, which

tries to �nd the �rst non-zero bit in an integer value stored in memory.

temp = a[0];

for (i = 0; i < 8*sizeof(int); i++) f

if (temp & 1 == 1)

break;

temp = temp >> 1;

g

If the value stored in a[0] is 0, then during the last iteration of the loop the value

in temp will be shifted to the right by 1 but will never be read, as the loop will end.

This illustrates how a value can have a lifetime length of 0.

Bypass Latches

The bypass latches are used to store values that either come from the register �le or

are forwarded through the bypass network from the result of a previous computation.
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Values that are to be written to the register �le are also stored in these latches. Figure

3-1 shows the part of the Vanilla Pekoe pipeline that contains the bypass network.

We intend to target the RS, RT, SD, and X latches in our study.
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Figure 3-1: Vanilla Pekoe bypass network

3.3.2 Results

Register Lifetime Length Distribution

We gathered statistics on the distribution of lifetime lengths of register values in the

programs in our workload. Figure 3-2 shows a distribution of the lifetime lengths

for selected benchmarks. As can be seen from the �gure, most values have a short

lifetime. We do not base our analysis on statistics for average lifetime length because

a few values have extremely long lifetime lengths, and this distorts the average. For

example, MIPS convention categorizes register 28 as the global pointer (gp) register.

This register points to the middle of the region that contains any global or static data

in the program. The gp register is loaded at the beginning of the program with the

correct address, and then it is not written again while the program executes. Since

the gp register is typically referenced throughout the program, the value it holds

is live. Thus, the value's lifetime length is on the same order of magnitude as the

number of instructions in the program, as shown in Figure 3-3, which displays the
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average lifetime length for each register in the gcc benchmark. Across all registers,

the global average lifetime length in gcc is about 15, in spite of the fact that the

majority of register values in the benchmark have a lifetime length of less than 15,

as shown in Figure 3-2. This illustrates that the average lifetime length does not

provide much insight into the behavior of the program. Note that accesses of register

0 are not included in any of our statistics because it always has a constant value of

0. Also, MIPS convention categorizes registers 26 and 27 as kernel registers, only to

be used when executing kernel-level code. Since we only take statistics for user-level

code, those registers have average lifetime lengths of 0 in Figure 3-3.
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delays can frequently be avoided, either by having the compiler schedule instructions

to avoid interlocks, or by changing the microarchitecture to remove these delay slots

completely. Figure 3-4 shows the percentage of values that have lifetime lengths of

2 or less.
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Figure 3-4: Percentage of values that have lifetime lengths of 2 or less

Dynamic Read Bypassing

When an instruction needs a value that has not yet been written back to the register

�le, it is forwarded by the bypass network. Control logic is used to detect when

a value should be forwarded. This improves performance, but also increases the

datapath's complexity. In addition, in many processors, the register �le will still be

read even though the value it provides will not be used. This can be avoided through

a technique called bypass skip [25], but this requires extra control logic|not only

does this add hardware complexity, but if this logic is inserted into the processor's

critical path, the cycle time can increase. Ideally, we would like to eliminate these

unnecessary reads and shift the complexity of the bypass network into software, but
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�rst we must determine an upper bound on how much bene�t we can expect to gain.

Figure 3-5 shows the percentage of read values that are provided from the bypass

network instead of the register �le.

0

5

10

15

20

25

30

35

40

45

50

P
er

ce
nt

ag
e 

of
 a

ll 
re

ad
 v

al
ue

s 
th

at
 a

re
 d

yn
am

ic
al

ly
 b

yp
as

se
d

adpcm_dec 
adpcm_enc 

bzip2 
g721_dec 

g721_enc 
gcc 

gsm_dec 
gsm_enc 

gzip 
jpeg_dec 

jpeg_enc 
mcf 

parser 
pegwit_dec 

pegwit_enc 
vortex 

Average 

Benchmark 

42.8% 42.4% 

37.8% 
39.0% 39.4% 

35.4% 

47.7% 

43.3% 
41.9% 42.1% 

46.5% 
45.9% 

42.5% 42.9% 
42.2% 

30.5% 

41.3% 

Figure 3-5: Percentage of read values that are provided from the bypass network

Dynamic Read Caching

Another technique that can eliminate register �le reads is read caching [25]. For ex-

ample, when a procedure is called, it may save registers on the stack before using

them, as shown in the following code segment:

sw r3, 8(sp)

sw r2, 4(sp)

sw r1, 0(sp)

The value in the stack pointer register does not change in the above sequence, yet it

is read from the register �le and clocked into the RS bypass latch for each instruc-
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tion. As with dynamic read bypassing, avoiding the read of the register �le requires

additional hardware complexity. Figure 3-6 shows the percentage of reads that can

be dynamically cached.
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Summary

The register lifetime analysis indicates that there are multiple opportunities to reduce

register �le tra�c. By exposing the bypass latches to the compiler, the potential exists

to achieve a signi�cant bene�t.

3.4 Related Work

The idea of exposing machine organization to software and thus trading hardware

complexity for software complexity is not new. VLIW microprocessors are built

around this concept, as the compiler is responsible for extracting ILP from programs.

Vector machines and recon�gurable computers are other examples of systems that
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shift some of the complexity into software. But traditionally, these types of pro-

cessors have had di�culties handling exceptions. To successfully expose datapath

elements and also reduce energy consumption in a way that is applicable to today's

microprocessors, this problem must be dealt with. We present a solution in the next

chapter.

An interesting extension of the VLIW paradigm can be found in transport-triggered

architectures (TTAs) [2]. These architectures attempt to reduce the complexity of

high-performance VLIW machines by making data transports visible to software.

In this type of architecture, an instruction speci�es a data move to a functional

unit, which can implicitly trigger an operation. TTAs implement the register �le

optimizations discussed in this chapter: elimination of unnecessary writes, software

bypassing, and read caching (which is referred to as operand sharing). We di�er

from the work on TTAs in three ways. First, we intend to show the feasibility of

these techniques for traditional operation-triggered architectures, which still dominate

the microprocessor market. Second, we draw comparisons between the dynamic and

static versions of these techniques where possible. Third, we present a method for

handling the exception management overhead that comes from exposing additional

machine state.

There has also been work speci�cally aimed at reducing register �le accesses by

exploiting register values with short lifetimes. Yung and Wilhelm [27] present a

scheme for replacing the register �le with a smaller register cache, with the idea of

taking advantage of the frequent use of the bypass network. However, this method is

designed to improve performance in a processor with a large number of registers, not

to reduce energy, and thus it does not consider the possibility of avoiding writes to

the register cache. Martin et al. [19] propose compiler support to take advantage of

dead register values, but their scheme requires additional instructions to be inserted

into the program executable. Lozano and Gao [17] examine the feasibility of exposing

hardware to the compiler to eliminate register �le commits of short-lived variables,

and propose a compiler register allocation method for these variables. However, their

proposed schemes for committing an instruction either require additional hardware
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complexity in a superscalar processor's reorder bu�er or impose the restriction that

a minimum number of instructions must be kept in the bu�er. In addition, they

focus on how to improve performance through their register allocation scheme, not

on how to reduce energy consumption. Hu and Martonosi [9] explore the reduction

in register �le power consumption made possible by values with short lifetimes, but

their method requires more hardware complexity in the datapath.

We propose to both reduce register �le accesses and hardware complexity simul-

taneously, and thus lower energy consumption. But before that is possible, the issue

of exception management overhead must be addressed.
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Chapter 4

Software Restart Markers

4.1 Motivation

Our register lifetime analysis in Chapter 3 indicates the potential for signi�cant energy

savings if we can reduce register �le accesses by exposing the bypass latches in the

datapath. We can use the lifetime information stored by the compiler to explicitly

target latches instead of the register �le when processing values with short lifetimes.

However, exposing more machine state to the compiler introduces the problem of

exception management overhead. Many ISA implementations are required to provide

precise exceptions, which means that all earlier instructions must have committed

state updates, no later instructions have a�ected architectural state, and the saved

program counter points to the faulting instruction [24]. Each time an exception

occurs, the process state must be saved before handling the exception. Exposing

the bypass latches|and more generally, any datapath elements|means that they

must be preserved across exceptions by saving and restoring them. Not only does

this impact performance, it can also negate much of the energy savings we hope to

achieve, as the circuitry required to support saving and restoring the additional values

during each exception will cost energy on each instruction, not just during exception

events.

We would also like our techniques to be applicable to various types of micro-

processors, not just simple pipelines. However, the problem becomes worse when
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considering more advanced processors such as out-of-order machines, as the hardware

required to support precise exceptions can become quite complex. Various techniques

such as reorder bu�ers, history bu�ers, future �les, shadow registers, and checkpoint-

ing hardware have been devised to implement precise exceptions [26], but they all

entail additional hardware overhead, which is magni�ed by the fact that we intend

to expose much of the processor state.

One way to handle the problem is to avoid supporting precise exceptions. This

is the approach traditionally used for vector processors, recon�gurable computers,

and classical VLIW machines. However, the problem with this approach is that

certain features expected on today's microprocessors can not be implemented in the

absence of precise exception support. For example, debugging and IEEE oating-

point arithmetic support require precise exceptions. Even features that only require

restartability and not fully precise exceptions, such as demand-paged virtual memory,

have not been implemented on traditional state-exposed processors. This has begun to

change in recent years, as techniques have been developed to handle precise exceptions

in systems such as vector processors [3] and VLIW machines [21]. However, these

techniques do entail some additional hardware complexity. We propose to handle the

exception management problem entirely in software.

4.2 Software Exception Management

In the precise exception model, each instruction is implicitly marked as a trap barrier;

if an instruction causes an exception, the process will restart from that instruction.

This constraint can be relaxed by allowing software to explicitly mark points in the

instruction stream where restart is required. The last instruction in a restart region

will be marked as a barrier instruction|it acts as a trap barrier that will commit

and update the machine state only if it does not raise an exception and no preceding

instructions raise an exception. Also, if an exception occurs before the barrier in-

struction commits, no state updates or exceptions from subsequent instructions will

be visible. When the barrier instruction commits, it updates a kernel visible register,
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the restart program counter (PC), to point to the next instruction to be executed.

The code in the restart region must be such that the kernel can restart a process

after an exception by simply jumping to the restart PC. This imposes the requirement

that each region must contain idempotent code (except for the barrier instruction)|

i.e. the code can be re-executed multiple times without changing the result. This

restriction still allows for very large restart regions. For example, several functions in

the standard C library can each be entirely contained within one restart region. The

prototypes for some of those functions are given below.

int sprintf(char *s, const char *format, ...);

int sscanf(char *s, const char *format, ...);

char *strcpy(char *s1, const char *s2);

To illustrate how a function can be placed into a single restart region, consider the

sprintf() function. This function uses the format string as an input argument to

write to the string pointed to by s. The number of bytes written into s is returned.

The sprintf() prototype shows that the data pointed to by format is const and

thus is not modi�ed by the function. As long as the input arguments to the function

are passed in stack memory and are not altered by the routine (meaning that the

memory space containing the input arguments can not overlap the memory space for

the output arguments), the function can be restarted multiple times and still produce

the same result. This is true of any function that does not modify its arguments: it

can use an arbitrary amount of local read/write workspace and still be idempotent.

Figure 4-1 shows an example of restart regions. On the left is the original code

with the exception model implemented on our baseline MIPS processor|each in-

struction is within a separate restart region. Note that the MIPS instruction set

[12] already incorporates a limited form of expanded restart regions in the form of

its architected branch delay slot. Branches are never marked as barriers so that if

the instruction in the delay slot causes an exception, the process will restart at the

branch itself to recreate the next PC, which is not saved by the kernel. On the right of
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Figure 4-1 is the same code divided into larger restart regions. If an exception occurs

within a region, the kernel will restart the process from the beginning of the region.

In the �rst region, the store is marked as a barrier because it updates the memory

location read by the load in a non-idempotent manner. The second region contains

a store that is not marked as a barrier, but the region is still idempotent because

the store writes to a di�erent memory address than those accessed previously by the

load instructions. The third region contains a single instruction and shows that the

compiler can revert to marking each instruction as a barrier as in the baseline model,

and thus can implement precise exceptions in this manner.

A su�cient, but not necessary, condition for idempotency is that the set of all

external sources (registers and memory) read by the region is disjoint from the set

of destinations written by the region (however, a value that is produced within the

region can be overwritten). This is not a necessary condition as shown by the last

region in Figure 4-1. The store to memory changes input source data, but the

operation is still idempotent|the bottom two bits are masked out. Note that the

above condition requires one of two methods to handle exception-causing instructions

such as breakpoints or system calls. Either these instructions must be marked as trap

barriers or there must be a guarantee that the exception handler will preserve the

idempotency of the restart region. Because the latter approach is extremely di�cult,

we adopt the former method of imposing the constraint that all exception-causing

instructions are trap barriers.

The use of software restart markers introduces the notion of three di�erent types

of machine state: checkpointed, stable, and temporary. Checkpointed state is copied

into checkpoint registers when a barrier instruction commits, and is recoverable if an

exception occurs. In our scheme, the only checkpointed state is the PC. Stable state

is preserved across an exception by the kernel: registers and memory fall into this

category. Finally, temporary state is only valid within a restart region, and is not

preserved across an exception. Exposed bypass latches are an example of temporary

state. This shows the power of software restart markers: we can expose a great

deal of machine state and not impose additional exception management overhead in
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hardware if the state is temporary. Instead, the complexity is shifted into software.

Figure 4-1: Restart region example

4.3 Related Work

The Transmeta Crusoe processor has software-controlled exception barriers at the

borders of x86 code that have been translated into the native VLIW format [13].

It maintains shadow registers and a speculative store bu�er so that if an exception

occurs, a rollback operation undoes any state updates. When a barrier is reached and

no exceptions have occurred, state updates are committed to the architectural state.

Our scheme di�ers from theirs in that it does not require any state bu�ers, because

it allows irrevocable state changes in the middle of a restart region. Also, our scheme

allows for the inclusion of temporary state.

The Alpha oating-point architecture has imprecise oating-point traps that re-
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quire the user to insert trap barrier instructions to delimit safe regions to allow code to

resume after the trap [23], but this scheme does not consider other types of exceptions

or allow irrevocable state updates.

The Inmos transputer family has a three-register temporary evaluation stack that

is not saved on hardware context switches [10]. However, the transputer does not pro-

vide demand-paged virtual memory and delays context switches until certain software-

de�ned descheduling points, whereas our scheme allows interrupts at any point.

There are some similarities with our idempotent region analysis and sentinel

scheduling for a speculative processor [18]. The instruction sequence between a spec-

ulative instruction and its sentinel, which ags an exception, must be idempotent.

To ensure idempotency, sentinel scheduling imposes the constraint that instructions

such as system calls must end an idempotent sequence. Additionally, the constraint

is imposed that an instruction's inputs are never overwritten, either by itself or by a

subsequent instruction in the same sequence. However, as we showed earlier, this lat-

ter constraint is not necessary. Also, the sentinel scheduling technique still requires

signi�cant hardware complexity and does not allow for the exposing of temporary

state.

4.4 Software Restart Marker Implementation

We made modi�cations to our assembler to add support for software restart markers,

so that we could subsequently enable the bypass latch optimizations. The restart

region analysis operates at a basic block level. For our initial implementation, we

adopt the approach proposed earlier of marking all exception-causing instructions as

trap barriers and keeping a read set and write set for all of the registers, with a single

bit being used in each set to represent memory. If an instruction causes a conict

between the two sets, that instruction is marked as a trap barrier. Since we operate

at the basic block level, all branch delay slot instructions are marked as trap barriers

as well. We make a slight extension to this model to incorporate a limited form of

memory analysis. Although we represent memory with a single bit, we also separately
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track the base register and o�set for each memory instruction. When the �rst memory

instruction in a restart region is encountered, we store the base register, and we create

a linked list to hold the o�set. For each subsequent memory instruction, if the same

base register is used, we can look at the o�set to determine whether the access is to

a distinct memory location from all previous memory operations. If the base register

is modi�ed, or a di�erent base register is used, we revert to treating all of memory as

a single location.

Note that just because the read and write sets overlap does not mean that a

conict has occurred. For example, if a register is written and then the value is read,

the read and write sets overlap|however, a read is harmless and thus there is no

conict. Also, we only mark conicts as occurring between external sources read and

destinations written within the region. This means that if a value is written into a

register and subsequently read, and then the same register is overwritten with a new

value, there is no conict, because the �rst value is not external to the region|it can

be recreated by executing the region from the beginning.

Table 4.1 shows an example of how our restart marker implementation operates.

Initially, our read set, write set, and memory information (base register and o�sets)

are all clear. When the �rst instruction|lw r1,(r4)|is processed, we determine

which registers it reads and which register it writes. If the register it writes conicts

with either one of the registers it reads or the current read set, and that same register

has not been previously written, we mark the instruction as a barrier. Thus, the

�rst instruction is not a barrier instruction. The second instruction|sw r1,4(r4)|

writes memory, but it writes to a di�erent location than the one read by the previous

lw instruction. Thus, it is not marked as a barrier either. The third instruction|sw

r1,(r5)|also writes memory, but it uses a di�erent base register than the previous

two instructions, so we revert to treating all of memory as a single location, and

the instruction is marked as a barrier. We clear all of our state information and

process the fourth instruction|addu r1,r2,r3|which is not a barrier instruction.

The �fth instruction|srl r1,r1,2|writes a register (r1) that is read by the same

instruction, but because this register was written by the previous instruction, the
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Read Write Base Read Write Code Read Write Barrier?
Set Set Reg O�sets O�sets Regs Reg

fg fg - fg fg lw r1,(r4) r4,mem r1 No

fr4,memg fr1g r4 f0g fg sw r1,4(r4) r1,r4 mem No

fr4,mem,r1g fr1,memg r4 f0g f4g sw r1,(r5) r1,r5 mem Yes

fg fg - fg fg addu r1,r2,r3 r2,r3 r1 No

fr2,r3g fr1g - fg fg srl r1,r1,2 r1 r1 No

fr1,r2,r3g fr1g - fg fg addiu r2,r2,1 r2 r2 Yes

Table 4.1: Software restart marker implementation example

value can be recreated by restarting at the addu instruction, and thus the srl is not

marked as a barrier. However, the last instruction|addiu r2,r2,1|writes a value

that has been previously read but not written, so it must be marked as a barrier. This

implementation is somewhat restricted because of the very coarse memory analysis

as well as the fact that we operate at the basic-block level. A more sophisticated

analysis would allow us to place an entire function into a single restart region.

4.5 Results

We present the results of our restart region analysis in this section for an energy-

exposed processor, codenamed Yellow Pekoe, that has software restart markers en-

abled, and for a baseline processor that has restart markers disabled. Our programs

are compiled using a version of gcc that has branch delay slot �lling disabled|this

was necessary to avoid a problem with our exposed bypass latch implementation de-

scribed in the following chapter. Figure 4-2 shows the percentage of instructions that

are marked as barriers in both our baseline and energy-exposed processors. As noted

previously, branches and jumps are the only instructions not marked as barriers in

our baseline processor, and thus on average 86% of all instructions are barriers. For

our energy-exposed processor, only 34% of all instructions are barriers on average,

corresponding to about 3 instructions in each restart region. With more aggressive

compiler analysis, we expect to generate even larger regions.
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Chapter 5

Compiler-Visible Bypass Latches

Software restart markers make it possible for us to expose datapath elements without

introducing additional exception management overhead. This enables us to pursue

our original goal of making the bypass latches in the datapath visible to the compiler.

We implement the exposed bypass latches in a modi�ed version of the Vanilla Pekoe

pipeline that is codenamed Yellow Pekoe. Figure 5-1 shows the Yellow Pekoe bypass

network. The RS, RT, SD, and X latches are explicitly targeted at compile-time. We

map the latches to temporary state so that they do not need to be preserved across

exceptions. Thus, in the following code sequence to increment a memory variable,

lw r1, (r3) # Load value.

add r1, r1, 1 # Increment.

sw r1, (r3) # Update memory.

the load and add instructions can be changed to target the RS and SD bypass latches,

as the values being written are each only used once by the subsequent instructions.

This leads to the following transformed code sequence:

lw RS, (r3) # Load RS latch with memory value.

add SD, RS, 1 # Increment and place result into SD latch.

sw.bar SD, (r3) # Update memory with barrier instruction.

The explicit use of the bypass latches in the above code allows us to eliminate two

register �le writes and two register �le reads.
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Figure 5-1: Yellow Pekoe bypass network

5.1 Compiler and Assembler Modi�cations

We make modi�cations to both the GNU compiler and assembler to implement the

exposed bypass latches. Our compiler changes take advantage of the static liveness

information that is already maintained by gcc. When the compiler determines that

a value read by an instruction is being referenced for the last time|i.e. the value

will be dead after the instruction executes|we have it append a \.l" su�x to the

assembly opcode with a corresponding operand number to indicate the last use of the

value. For example, consider the following code sequence:

add r3, r1, r2

sub r4, r3, r5

or r1, r3, r6

If the value in r3 will not be referenced again after the or instruction, the com-

piler will output or.l1. If the value in r6 will not be referenced again after the or

instruction, the compiler will output or.l2. If neither value will be referenced again,

the compiler will output or.l12.

Our use of gcc's liveness information does pose one problem. The last compiler
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pass before generating an assembly �le �lls branch delay slots; unfortunately, gcc does

not fully update its liveness information during this pass. As a result, to enable correct

operation of all programs, we disable branch delay slot �lling in the compiler. This

decreases performance, as fewer branch delay slots are �lled. However, our results

should be similar to those that would be obtained using a compiler that does not have

this problem as it should be frequently possible to �ll delay slots with instructions

that could not use a bypass latch.

The liveness information generated for each instruction is used by an instruction

scheduler that we added to the assembler. The scheduler reorders instructions within

a basic block. It performs several passes on the code. First, it attempts to maximize

performance by reordering instructions to mask latencies that can cause pipeline

stalls|in particular, it tries to �ll load-use delay slots with independent instructions.

It also attempts to �ll the branch delay slot. Next, the scheduler uses the lifetime

information generated by the compiler to determine if bypass latches can be used in

place of general-purpose registers to statically bypass a value. The scheduler then

looks for static read caching opportunities in its next pass, after which it tries to

perform additional static bypassing from the memory stage of the pipeline, and then

creates the restart regions discussed in the previous chapter.

Note that static bypassing from the memory stage raises additional constraints

not required for bypassing from one instruction to a subsequent instruction. Consider

the following example:

add r1, r2, r3

sub r4, r5, r6

and.l1 r7, r1, r5

In the above code segment, r1 is read for the last time by the and.l1 instruction.

This would appear to provide an opportunity for static bypassing by having the sched-

uler write to the X latch. However, in this scenario, if there is an instruction cache

miss for the and.l1 instruction, the sub instruction will overwrite the value in the
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X latch. To avoid this problem, we must either require strict pipeline sequencing,

so that instructions go down the pipeline together, or not permit the intermediate

instruction (in the above example, the sub instruction) to overwrite the X latch. We

choose the latter option, as this places no additional constraints on the hardware

implementation.

For our simulations, we model the bypass latches by reserving four general-purpose

registers in the compiler and using their speci�ers in the scheduler when modifying

an instruction to target a bypass latch. The loss of these registers in the compiler's

register allocator does not have an adverse e�ect on performance. However, in the

ideal case, the use of the bypass latches would be encoded in the instruction set.

Figure 5-2 shows how a program ows through our toolchain.

5.2 Results

We present statistics for programs run on our energy-exposed Yellow Pekoe processor

in this section. We also draw some comparisons between these statistics and those

derived from a baseline case of running modi�ed versions of these programs with

the use of software restart markers and bypass latches disabled in the instruction

scheduler (but with branch delay slot �lling still disabled in the compiler so that

performance will be comparable).

5.2.1 Bypass Latches

Bypass Latch Reads

We show the percentage of values that are statically bypassed in Figure 5-3 and

compare against the percentage of values that could be dynamically bypassed. Note

that dynamic bypassing will generally be more e�ective than static bypassing because

compilers can not always statically guarantee whether a value is live across basic

blocks. As shown in [25], however, turning o� unnecessary reads of the register

�le using the bypass skip technique may increase processor cycle time. With static
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Figure 5-2: Sample compilation of a program
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bypassing, this does not occur.

The percentage of values that are statically read cached is shown in Figure 5-4, and

this is compared against the percentage of values that could be dynamically cached.

Once again, dynamic caching can eliminate a greater number of register �le reads,

because the scheduler can not read cache across a barrier instruction. However, the

additional hardware required has been shown to remove most of the potential energy

savings [25].

Finally, we compare the percentage of reads that can be statically eliminated

through both bypassing and read caching to the percentage of reads that can be dy-

namically eliminated in Figure 5-5. Note that bypassing and read caching are not

completely orthogonal. In the following instruction sequence,

add r3, r1, r2

sub r4, r3, r5

or r1, r3, r6

the value in r3 for the last instruction can be both bypassed and read cached. In our

statistics, we count this scenario as a case of read caching, as that avoids the clocking

of the bypass latch in addition to eliminating the register �le access.

Bypass Latch Writes

Figure 5-6 shows the percentage of register �le writes that we eliminate in our

energy-exposed processor. Note that these can not be easily eliminated with a purely

hardware scheme as this requires knowledge of register value lifetime.

5.2.2 Instruction Chains

To understand how the compiler uses bypass latches, we track the most common

instruction chains for each program. An instruction chain is started when a bypass

latch is written, and each subsequent instruction in the chain reads the previously
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computed value and writes a new value to a latch. The chain is terminated when an

instruction reads a value from a latch, but does not write a new value into a latch.

We present the most common instruction chains (those that make up at least 1% of

all chains) for selected benchmarks in Tables 5.1, 5.2, and 5.3. Figure 5-7 shows

the percentage of instructions which are in a chain across all benchmarks. Our results

show that there is considerable variety in the instruction chains that are generated

for each program. This indicates that a small number of instruction patterns will not

su�ce when designing a new instruction set|generality is needed. RISC architectures

typically have �xed-length instructions with a limited number of instruction formats.

By comparison, CISC architectures typically support variable-length instructions, and

a single instruction may represent several operations. For the purposes of encoding

instruction chains, which can vary widely in length and trigger multiple operations,

a typical RISC architecture is too inexible. A CISC-style variable-length encoding

would be better able to represent instruction chains. A possible area for future work

is to explore more compact instruction set encodings which should enable energy

savings in instruction fetch. Additionally, more portable de�nitions of bypass latches

that support a wider variety of processor implementations can be explored.

Another interesting observation is that several of the instruction chains contain a

bypass of a value from a lw instruction to the following instruction. For our pipeline,

this results in a load interlock. There are some situations in which this is unavoidable

due to dependencies that prevent reordering of instructions. Removing the load-use

delay slot from the pipeline could result in both improved performance and more

opportunities for chaining. One way to achieve this is by splitting the pipeline into

two parts: one to handle memory operations and one to process data operations [5].

This has advantages and disadvantages, which will be considered in the next chapter.

5.2.3 Energy Savings

We ran the Yellow Pekoe benchmarks on our energy simulator and compared the

results to those generated by running the same benchmarks with the software restart

marker and bypass latch optimizations turned o� on our low-power baseline processor.
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Instruction Number of Percentage of Percentage of All
Chain Occurrences All Chains User-Level Instructions

andi,beq 442560 27.66 13.06
sll,addu 295040 18.44 8.71
slti,beq 147520 9.22 4.35
nor,sra,and 147520 9.22 6.53
slti,bne 147520 9.22 4.35
lw,addu 147520 9.22 4.35
slt,beq 147520 9.22 4.35
sra,addu 124162 7.76 3.66

Table 5.1: Most common instruction chains for adpcm dec benchmark
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Figure 5-7: Percentage of instructions that are in chains
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Instruction Number of Percentage of Percentage of All
Chain Occurrences All Chains User-Level Instructions

sll,addu 122611 16.76 4.77
addu,addiu,sra 67200 9.18 3.92
addu,addu 66604 9.10 2.59
sltu,bne 34438 4.71 1.34
lw,or 34040 4.65 1.32
lw,addu,addu 33823 4.62 1.97
addu,sra,addu,addu 33823 4.62 2.63
sll,addu,sll,subu 24531 3.35 1.91
addu,addu,sra,andi,addu 23996 3.28 2.33
subu,addu,sra,andi,addu 23996 3.28 2.33
slti,bne 20072 2.74 0.78
sll,subu,sll,subu, 10355 1.42 1.81
sll,addu,sll,addu,subu
slti,beq 9841 1.34 0.38
lw,mult 9472 1.29 0.37
addu,addiu,sra,sw 8712 1.19 0.68
subu,addiu,sra,sw 8712 1.19 0.68
sll,subu 8689 1.19 0.34
addu,sll 8201 1.12 0.32
sll,addu,sll,addu,sll, 8177 1.12 1.27
subu,sll,addu
sll,addu,sll,subu,sll 8177 1.12 0.79
sll,subu,sll,addu,sll,addu 8177 1.12 0.95
sll,addu,sll,subu,sll, 8177 1.12 1.59
subu,sll,addu,sll,subu
sll,addu,sll,addu,sll, 8177 1.12 1.27
addu,sll,subu
sll,addu,sll,addu,sll, 8177 1.12 1.27
subu,sll,subu
sll,subu,sll 8177 1.12 0.48
addiu,mult 8177 1.12 0.32
addiu,srav,andi 8061 1.10 0.47
lw,addu 8009 1.09 0.31
slt,beq 7783 1.06 0.30

Table 5.2: Most common instruction chains for jpeg dec benchmark
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Instruction Number of Percentage of Percentage of All
Chain Occurrences All Chains User-Level Instructions

lw,slt,beq 2694018 14.62 3.58
subu,addu 2602817 14.12 2.30
lw,slt,bne 2391340 12.97 3.17
slt,bne 1840607 9.99 1.63
slt,beq 1686240 9.15 1.49
sll,addu 1353098 7.34 1.20
lw,beq 784234 4.25 0.69
lw,bne 685775 3.72 0.61
slti,bne 480697 2.61 0.43
lui,lw 452129 2.45 0.40
lw,addu,slt,bne 416670 2.26 0.74
lui,addiu 403404 2.19 0.36
slt,and,beq 388318 2.11 0.52
lui,addu,lw 388318 2.11 0.52
srl,addu,sra,sll 388318 2.11 0.69
sltu,bne 359946 1.95 0.32
lw,sw 232696 1.26 0.21
lw,subu 210731 1.14 0.19
lw,addu 209129 1.13 0.19

Table 5.3: Most common instruction chains for mcf benchmark
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Our baseline design still implements the bypass skip technique of turning o� the

register �le read when a value is provided by the bypass network. Figures 5-8, 5-9,

5-10, and 5-11 show the energy breakdowns in selected benchmarks for the pipeline

stages in the baseline and energy-exposed processors. The energy-exposed processor

typically saves energy in the PC generation and coprocessor 0 stages (since it does

not have to propagate the exception PC through the pipeline as often), the decode

stage (through the avoidance of register �le reads), the execute stage (by avoiding

the clocking of bypass latches when a value is read cached), and the writeback stage

(by avoiding register �le writes). Table 5.4 shows the energy savings across most

of our benchmarks. Our energy simulator could only execute a limited number of

processor cycles for a given program, so we do not have the results for the bzip2,

parser, or vortex benchmarks. We observe an average energy savings of 7.0% across

the remaining benchmarks. Our savings would likely be even greater if the same

optimizations are implemented on a processor that is not already targeted for low-

power uses.

5.2.4 Summary

By exposing the bypass latches to the compiler and implementing software restart

markers, we reduce the energy consumption of a low-power processor by 7.0% on

average. These techniques are easily implemented and require few hardware modi�-

cations. Our results show the feasibility of making datapath elements visible to the

compiler for the purpose of lowering energy consumption, and indicate that further

experiments are warranted.
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Figure 5-8: Energy breakdown for adpcm dec benchmark

Base Energy−Exposed
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

E
ne

rg
y 

(J
)

coprocessor 0
writeback    
load/store   
execute      
decode       
fetch        
pc gen       

Figure 5-9: Energy breakdown for jpeg dec benchmark
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Figure 5-11: Energy breakdown for mcf benchmark
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Benchmark Baseline Energy-Exposed Energy
Processor Processor Savings

Energy (mJ) Energy (mJ) (Percentage)

adpcm(decode) 0.5247 0.4818 8.2
adpcm(encode) 0.6411 0.6055 5.6
g721(decode) 25.83 24.88 3.7
g721(encode) 26.58 25.17 5.3
gcc 175.1 157.7 9.9
gsm(decode) 10.01 9.606 4.0
gsm(encode) 29.10 26.65 8.4
gzip 294.43 266.66 9.4
jpeg(decode) 0.4880 0.4391 10.0
jpeg(encode) 1.509 1.398 7.4
mcf 18.15 17.36 4.4
pegwit(decode) 1.946 1.812 6.9
pegwit(encode) 3.478 3.221 7.4

Average 7.0

Table 5.4: Energy comparison between baseline and energy-exposed processor
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Chapter 6

Split-Pipeline Processor

6.1 Motivation

One of the factors that limits performance in the Vanilla Pekoe and Yellow Pekoe

pipelines is the load-use delay slot. Table 6.1 shows the percentage of all load-use

delay slots in our Vanilla Pekoe pipeline that are un�lled, and the percentage of user-

level processor cycles that are load interlocks as a result. On average, about 9% of all

user-level processor cycles are load interlocks. Table 6.2 shows the same data for our

Yellow Pekoe pipeline. Even though the Yellow Pekoe programs are passed through

an instruction scheduler that tries to place independent instructions in load-use delay

slots, frequently the percentage of load-use delay slots that are un�lled is basically

unchanged (and in some cases is slightly worse). (Note that the percentages of user-

level cycles listed in Table 6.2 are lower than if branch delay slot �lling was enabled

in the compiler, as this would reduce the total number of processor cycles.)

The prevalence of load interlock cycles has caused some processor designers to re-

structure the pipeline so that the load-use delay slot is removed. This is accomplished

by splitting the pipeline into two parts: one to handle memory address computations

and memory accesses, and the other to handle data computations. This approach

is adopted in the TFP microprocessor [8], and was considered in the design of the

MultiTitan CPU [11]. A split pipeline has the advantage of removing the load-use

delay slot, but introduces an address-generation delay slot and causes branches to
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be resolved one cycle later than they would be in the single pipeline organization.

However, as shown in [5], the performance of the split pipeline should be equivalent

to or better than the performance of the standard single pipeline organization, as long

as a static branch predictor is used that is at least 80% accurate. The split-pipeline

organization is also potentially appealing from an energy perspective. By separating

address and data computations, there might be greater correlation between the values

that are processed by the data ALU and the adder for memory addresses. This can

result in less bitline switching energy. Additionally, splitting the pipelines introduces

more latches into the bypass network, resulting in more temporary state to expose.

This can also be viewed as a disadvantage as the extra latches and adder will consume

energy. However, if we can show that our bypass latch use signi�cantly increases, that

will indicate that splitting the pipelines is probably worth the energy cost.

Figure 6-1 shows the bypass network for our split-pipeline processor, which we

codename Tangerine Pekoe. We target the AX1, AY1, AX2, AY2, DX, DY, SD1, and

SD2 bypass latches. A similar methodology is used for the Tangerine Pekoe toolset

as for the Yellow Pekoe toolset. Eight general-purpose registers are removed from

gcc's register allocation pool to represent the latches. Additionally, branch delay slot

�lling is disabled in the compiler. The assembly-level instruction scheduler tries to �ll

the address-generation delay slot whenever possible. The Tangerine Pekoe processor

also implements static bypassing, static read caching, and the elimination of register

�le writes. Clock gating is used to conserve energy and to avoid clobbering the values

in the latches when they are not being used. For example, if a load instruction is

proceeding down the pipeline, the AX2, AY2, DX, and DY latches do not have to be

clocked, as they are not used for this instruction. This split-pipeline organization al-

lows static bypassing possibilities that can not be achieved dynamically, as illustrated

by the following code sequence:

lui r1, 0x8003

addu r2, r3, r4

srl r3, r5, 2
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lw r1, 16(r1)

The lw instruction uses r1 as a base register and then overwrites the value in r1.

If the lw instruction was swapped with the srl instruction, the value placed into r1

by the lui instruction could be dynamically bypassed to the lw instruction. In the se-

quence as written, this bypassing is not possible. However, the value can be statically

bypassed, as the instructions between the lui and lw instruction are processed by the

data section of the pipeline, and thus do not clobber the latches in the memory sec-

tion of the pipeline. We can therefore rewrite the code sequence to use a bypass latch.

lui AX1, 0x8003

addu r2, r3, r4

srl r3, r5, 2

lw r1, 16(AX1)

This example shows that statically bypassed read values are not necessarily a subset

of dynamically bypassed read values in the Tangerine Pekoe processor.

6.2 Results

We executed programs on the Tangerine Pekoe processor so that we could compare

it to the Yellow Pekoe processor in terms of performance as well as the usage of

bypass latches. We make the performance comparison because although the focus of

this study is energy consumption, we do not want to adversely a�ect performance

when implementing our techniques. The bypass latch usage analysis should give an

indication as to whether the Tangerine Pekoe processor is more appealing from an

energy perspective than the Yellow Pekoe processor. Since the same technique is used

to create restart regions for both Yellow Pekoe and Tangerine Pekoe programs, we

do not compare the two processors in terms of percentages of instructions that are

barriers.
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Benchmark Percentage of Load-Use Percentage of User-Level
Delay Slots That Are Un�lled Cycles That Are Interlocks

adpcm(decode) 66.62 4.35
adpcm(encode) 74.92 5.22
bzip2 48.12 13.12
g721(decode) 65.10 10.64
g721(encode) 67.87 10.92
gcc 39.58 8.54
gsm(decode) 18.11 1.47
gsm(encode) 38.15 4.93
gzip 33.45 7.84
jpeg(decode) 63.83 13.23
jpeg(encode) 73.01 14.06
mcf 45.22 7.20
parser 30.77 7.33
pegwit(decode) 45.82 11.61
pegwit(encode) 50.24 12.27
vortex 31.61 7.60

Average 49.53 8.77

Table 6.1: Vanilla Pekoe load interlocks
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Benchmark Percentage of Load-Use Percentage of User-Level
Delay Slots That Are Un�lled Cycles That Are Interlocks

adpcm(decode) 66.54 3.93
adpcm(encode) 74.86 5.07
bzip2 47.39 11.70
g721(decode) 66.02 10.78
g721(encode) 68.77 11.06
gcc 37.71 7.55
gsm(decode) 21.12 1.67
gsm(encode) 15.58 2.45
gzip 32.82 6.95
jpeg(decode) 45.81 9.76
jpeg(encode) 43.12 7.77
mcf 44.54 6.38
parser 30.40 6.46
pegwit(decode) 46.66 11.31
pegwit(encode) 50.97 11.88
vortex 29.21 6.39

Average 45.10 7.57

Table 6.2: Yellow Pekoe load interlocks
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Figure 6-1: Tangerine Pekoe bypass network

6.2.1 Performance

Tables 6.3 and 6.4 show the number of user-level instructions and processor cycles for

programs run on both the Yellow Pekoe and Tangerine Pekoe processors. We present

the user-level instruction counts because the assembler code generated by gcc for

each processor (before the software restart marker and bypass latch optimizations are

performed) will not necessarily be identical due to the di�erent number of registers

available to the compiler's register allocator, and this may have an e�ect on the

number of program cycles. Table 6.3 shows that the Tangerine Pekoe programs have

slightly fewer instructions. The cycle count di�erence is more noticeable, as there is

about a 2% total reduction in processor cycles for Tangerine Pekoe. Note that we are

still using a simple branch prediction strategy|all conditional branches are predicted

as taken. This results in relatively high branch misprediction rates, as illustrated by

Figure 6-2. With a more accurate branch predictor, the performance improvement

for Tangerine Pekoe would be even greater.
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A similar study comparing the single pipeline organization of Vanilla and Yellow

Pekoe to the split-pipeline organization of Tangerine Pekoe in terms of performance

was conducted in [14]. That study concluded that splitting the pipelines actually

resulted in slightly worse performance. We account for the di�erences in our conclu-

sions in the following ways. First, although our methodology is similar to the one

used in [14]|we both use the same type of instruction scheduler in the assembler

that tries to maximize performance|the scheduler used for this study is more recent

than the one used in [14], and does a better job of removing address-generation inter-

locks. Second, as shown in Table 6.3, reserving additional general-purpose registers

for the Tangerine Pekoe programs actually results in a slight decrease in the number

of instructions, which probably contributes to the performance improvement. Finally,

some of the benchmarks we use in this study di�er than those used in [14]. In par-

ticular, we use SPECint2000 benchmarks which the other study does not use. Table

6.4 shows that many of the biggest performance gains on Tangerine Pekoe occur for

the SPECint2000 benchmarks. Thus, these factors all account for the di�erence in

our conclusions.

6.2.2 Bypass Latches

Figure 6-3 shows the percentage of register �le reads that are statically eliminated in

Tangerine Pekoe because the corresponding values are taken from the bypass latches.

Figure 6-4 shows the percentage of register �le writes that are eliminated. We

observe that on average, the percentage of eliminated register �le reads is slightly less

than the corresponding percentage for Yellow Pekoe|27% of reads are eliminated for

Tangerine Pekoe as opposed to 28% for Yellow Pekoe. The percentage of eliminated

register �le writes is the same on average for both processors at 34%. It appears that

the additional bypass latches and the split pipeline found in Tangerine Pekoe do not

help eliminate register �le accesses; in fact, they slightly degrade our results. The

slight degradation in the statistics on register �le reads can probably be attributed

to our scheduling algorithm|more �ne-tuning should allow us to achieve at least the

same results that were seen for the Yellow Pekoe processor. The more pressing issue
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Benchmark Yellow Pekoe Tangerine Pekoe % Di�erence From
Instruction Count Instruction Count Yellow Pekoe

adpcm(decode) 6,777,414 6,631,374 -2.15
adpcm(encode) 7,776,642 7,778,270 +0.02
bzip2 10,929,985,995 10,955,264,579 +0.23
g721(decode) 299,896,064 300,486,172 +0.20
g721(encode) 307,477,742 308,067,834 +0.19
gcc 2,008,399,517 1,992,580,495 -0.79
gsm(decode) 93,565,719 93,505,772 -0.06
gsm(encode) 243,171,726 243,606,473 +0.18
gzip 3,357,103,233 3,379,505,713 +0.67
jpeg(decode) 5,145,100 5,190,717 +0.89
jpeg(encode) 17,721,228 17,682,135 -0.22
mcf 226,051,602 226,042,537 0.00
parser 4,207,856,366 4,122,900,228 -2.02
pegwit(decode) 20,410,353 20,416,696 +0.03
pegwit(encode) 36,067,836 36,114,430 +0.13
vortex 10,500,922,643 10,434,546,033 -0.63

Average -0.21

Table 6.3: User-level instruction count comparison for Yellow Pekoe and Tangerine
Pekoe processors
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Benchmark Yellow Pekoe Tangerine Pekoe % Di�erence From
Cycle Count Cycle Count Yellow Pekoe

adpcm(decode) 7,518,302 7,447,906 -0.94
adpcm(encode) 8,735,487 8,809,436 +0.85
bzip2 12,703,422,435 11,865,898,973 -6.59
g721(decode) 383,565,226 385,314,390 +0.46
g721(encode) 394,406,640 396,064,495 +0.42
gcc 2,468,749,329 2,436,496,890 -1.31
gsm(decode) 144,690,193 148,325,159 +2.51
gsm(encode) 444,967,285 439,616,850 -1.20
gzip 3,985,268,606 3,965,489,064 -0.50
jpeg(decode) 6,380,858 6,065,456 -4.94
jpeg(encode) 21,886,650 21,151,311 -3.36
mcf 280,385,809 271,438,698 -3.19
parser 5,126,436,845 4,972,638,717 -3.00
pegwit(decode) 24,037,245 23,905,095 -0.55
pegwit(encode) 42,970,788 42,458,130 -1.19
vortex 12,972,417,102 12,380,997,088 -4.56

Average -1.69

Table 6.4: User-level cycle count comparison for Yellow Pekoe and Tangerine Pekoe
processors
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Figure 6-2: Percentage of conditional branches that are mispredicted for Tangerine
Pekoe processor

is why the reorganization of the pipeline had little e�ect overall on bypass latch usage.

This is probably due to the fact that we are scheduling instructions within a basic

block. For our set of Tangerine Pekoe benchmarks, about 14% of all instructions on

average are branches or jumps. This means that a basic block consists of at most 7

instructions on average. That leaves little freedom for our assembly-level scheduler

to reorder instructions and take advantage of the bypass latches, especially since

dependencies between instructions frequently exist which impose further restrictions.

As a result, we can not take full advantage of the additional exposed state in the

Tangerine Pekoe pipeline without scheduling across basic block boundaries. This

indicates the need for operating at a higher level than the assembler in order to

achieve the maximum bene�t.

70



0

5

10

15

20

25

30

35

P
er

ce
nt

ag
e 

of
 r

ea
ds

 th
at

 a
re

 e
lim

in
at

ed

adpcm_dec 
adpcm_enc 

bzip2 
g721_dec 

g721_enc 
gcc 

gsm_dec 
gsm_enc 

gzip 
jpeg_dec 

jpeg_enc 
mcf 

parser 
pegwit_dec 

pegwit_enc 
vortex 

Average 

Benchmark 

29.0% 

22.6% 22.3% 

24.0% 
24.7% 

28.1% 

29.5% 

34.3% 

32.5% 

27.5% 
28.2% 

15.7% 

26.2% 
25.5% 25.2% 

29.7% 

26.6% 

Figure 6-3: Percentage of reads that are eliminated for Tangerine Pekoe processor
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6.2.3 Summary

Although the Tangerine Pekoe processor appears somewhat promising in terms of

performance, the additional bypass latches do not lead to better results in terms of

eliminating register �le accesses. A scheduler that can operate across basic blocks

might be able to achieve greater bene�ts. However, based on our current results,

the additional hardware required for Tangerine Pekoe does not seem to be worth the

advantages it provides. A de�nite conclusion can not be drawn until a full energy

analysis is conducted.
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Chapter 7

Conclusion

In this thesis we evaluated the feasibility of making datapath elements visible at the

compiler level in order to reduce microprocessor energy consumption. For our initial

experiments, we selected the register �le and associated bypass network as targets

for our study, as these elements are easily exposed to software and are typically

responsible for a signi�cant fraction of datapath power in today's microprocessors.

We conducted a register lifetime analysis which indicated that a large percentage of

register �le reads and writes are unnecessary and can be avoided using information

available at compile-time. The results of our analysis showed that the techniques of

static read bypassing, static read caching, and elimination of register �le writes in

our baseline Vanilla Pekoe processor warranted further investigation.

Exposing additional machine state to the compiler introduced a new problem

in the form of exception management overhead. Traditional hardware-based imple-

mentations of precise exception support are costly in terms of energy. We needed a

method that would allow us to handle exceptions in a simple, energy-e�cient manner.

Our proposed solution to this problem was the use of software restart markers. This

technique makes the compiler responsible for dividing code segments into idempotent

restart regions, with a barrier instruction at the end of each region. If an exception

such as a page fault occurs anywhere within the region, the kernel can restart the

process at the beginning of the region. This allows for the use of temporary state

which does not have to be preserved across exceptions. In addition, the processor
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can make permanent updates to stable state without consequences, as the idempo-

tent nature of restart regions guarantees correct execution. Software restart markers

solved our exception management overhead problem and made the exposing of by-

pass latches possible. A simple assembly-level implementation of restart markers in

our energy-exposed Yellow Pekoe processor allowed us to create restart regions which

contained about 3 instructions on average. We expect a higher-level analysis to allow

us to place entire functions within a single restart region.

Software restart markers allowed us to make bypass latches visible at the compiler

level by mapping them to temporary state. We made modi�cations to the compiler

and assembler to support static read bypassing, static read caching, and elimination

of register �le writes. On average, we statically eliminated 28% of register �le reads.

This fell short of the 49% of register �le reads that could be dynamically eliminated,

but was still a signi�cant �gure, especially since many processors do not implement

the techniques of bypass skip or dynamic read caching required to avoid reads using

a hardware-based method. Even those processors that already implement dynamic

elimination of reads could bene�t from our techniques. For example, if the control

logic necessary to implement bypass skip is on a processor's critical path, the cycle

time could be decreased by switching to a static method of eliminating register �le

reads. Also, the hardware necessary to support bypass skip and dynamic read caching

consumes additional energy, while our methods are software-based and therefore the

only complexity added to the processor is the control logic necessary to recognize

the use of a bypass latch. Thus, our static elimination of register �le reads could be

useful in many processor designs. We were also able to eliminate 34% of register �le

writes on average. When compared against a low-power processor that implemented

bypass skip, our energy-exposed processor reduced energy consumption by an average

of 7.0%.

A signi�cant percentage of cycles in both our baseline and energy-exposed pro-

cessors were due to interlocks caused by un�lled load-use delay slots. One way to

remove these interlocks is to split the pipeline into two parts|one to handle mem-

ory operations and one to handle data computations. However, this introduces an
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address-generation delay slot and causes conditional branches to be resolved a cycle

later. Overall, this new pipeline organization has the potential to improve perfor-

mance. We surmised that it could also be attractive from an energy perspective, as

the separation of address and data computations could reduce bitline switching en-

ergy. Additionally, the split pipeline would introduce more temporary state because

of the increased number of bypass latches. We explored the implications of this latter

point in our Tangerine Pekoe processor. Our results showed that although the per-

formance of Tangerine Pekoe improved over that of Yellow Pekoe, the bypass latch

usage actually slightly decreased. It appeared that our instruction scheduler needed

to operate at a higher level than the assembler to take full advantage of the additional

exposed state.

7.1 Future Work

Most of our modi�cations were made to the assembler and we operated at the granu-

larity of a basic block. This conservative implementation achieved signi�cant bene�ts;

however, we expect that better results can be attained by operating at the compiler

level. For example, compiler modi�cations could allow an entire function to be placed

in a restart region. The usage of temporary state such as bypass latches could span

basic blocks, possibly eliminating a greater number of register �le accesses.

Another area for future work is to determine the e�ect of eliminating the restric-

tions that we placed on gcc. We modeled the bypass latches by reserving general-

purpose registers. The implications of removing registers from gcc's register alloca-

tion pool could be further explored. For example, if reducing the number of registers

still results in comparable performance across a variety of benchmarks, future micro-

processor designs could incorporate smaller register �les, which could lead to faster

performance and lower energy consumption. We also disabled branch delay slot �ll-

ing in gcc because the register lifetime information was not correctly updated after

this pass. If this problem was �xed, a direct comparison could be made between the

Vanilla Pekoe and Yellow Pekoe programs.
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We selected bypass latches as datapath elements to expose in this study, but there

are other components that can be explored as well, such as instruction and data caches

or other latches in the datapath. These elements could all conceivably be mapped to

temporary state, and compile-time knowledge could be used to eliminate unnecessary

microarchitectural operations.

Our examination of the split-pipeline Tangerine Pekoe processor was limited to

measuring performance and the frequency of bypass latch usage. Conducting an

energy analysis of the processor is warranted before determining whether the design

should be used.

Although we focused on simple pipelines in our investigation, our techniques could

be extended to apply to more complex processors, such as superscalar or out-of-

order machines. The complexity of these processors tends to result in higher energy

consumption, so exposing datapath elements to the compiler could have a greater

impact.

We took an existing architecture and implementation and made various changes

in our e�orts to reduce energy consumption. Better results could be achieved by

designing a new architecture with energy in mind as well as performance. An energy-

exposed architecture would have low-power features built into it, and could be ideal

for use in future embedded processors. One statistic of interest is the fact that 41% of

instructions were in chains in our Yellow Pekoe processor. A new architecture could

employ variable-length encodings to represent instruction chains as well as regular

instructions. Ironically, computer architects have migrated from CISC architectures

to RISC architectures in order to achieve higher performance; now, as we try to

lower energy consumption, we advocate a shift back towards the direction of CISC

architectures. To achieve a high-performance, low-power microprocessor, a hybrid

CISC-RISC architecture may be ideal.
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