MULTICORE COMPUTING

The MANYCORE
Revolution: Will HPC
LEAD or FOLLOW?

Rumors of the death of Moore’s Law are greatly exaggerated, according to a
team of computer scientists from Lawrence Berkeley National Laboratory (LBNL)
and the University of California (UC)—Berkeley. In their view, Gordon Moore’s
observation that the amount of computing power packed onto a chip doubles
about every 18 months while the cost remains flat is alive and well. But the

Recent trends in the
microprocessor industry
have important
ramifications for the
design of the next
generation of high-
performance computing
systems as we look
beyond the petascale.

physics is changing.

Industry clung to the single-core model for as
long as possible, arguably over-engineering the
cores to eke out a few percentage points of
increased performance. But the complex core
designs of the past required enormous area,
power, and complexity to maximize serial per-
formance. Now, heat density and power con-
straints have all but ended 15 years of exponential
clock frequency growth. The industry has
responded by halting clock rate improvements
and increases in core sophistication, and is
instead doubling the number of cores every 18
months. The incremental path towards “multi-
core” chips (two, four, or eight cores) has already
forced the software industry to take the daunting
leap into explicit parallelism. Once you give up
on serial code, it is much easier to take the leap
towards higher degrees of parallelism—perhaps
hundreds of threads. If you can express more par-
allelism efficiently, it opens up a more aggressive
approach, termed “manycore,” that uses much
simpler, lower-frequency cores to achieve more
substantial power and performance benefits than
can be achieved by the incremental path. With the
manycore design point, hundreds to thousands
of computational threads per chip are possible.
Ultimately, all of these paths lead us into an era of
exponential growth in explicit parallelism.
However, fully unleashing the potential of the
manycore approach to ensure future advances in
sustained computational performance will

require fundamental advances in computer archi-
tecture and programming models—advances
that are nothing short of reinventing computing.
This in turn will result in a new parallel program-
ming paradigm, which is already being explored
by Berkeley researchers in a five-year program
funded by Microsoft, Intel, and California’s UC
Discovery program.

Recent trends in the microprocessor industry
have important ramifications for the design of the
next generation of high-performance computing
(HPC) systems as we look beyond the petascale.
The need to switch to an exponential growth path
in system concurrency is leading to reconsidera-
tion of interconnect design, memory balance, and
I/O system design that will have dramatic conse-
quences for the design of future HPC applications
and algorithms. The required reengineering of
existing application codes will likely be as dramatic
as the migration from vector HPC systems to mas-
sively parallel processors (MPPs) that occurred in
the early 1990s. Such comprehensive code re-engi-
neering took nearly a decade for the HPC commu-
nity, so there are serious concerns about
undertaking yet another major transition in our
software infrastructure. However, the mainstream
desktop and handheld computing industry has
even less experience with parallelism than the HPC
community. The transition to explicit on-chip par-
allelism has proceeded without any strategy in
place for writing parallel software.
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Although industry is making moves in this
direction and starting to get its feet wet, the HPC
community has yet to take up the cause. But as
one member of the Berkeley team puts it, “To
move forward in HPC, we're all going to have to
get on the parallelism crazy train.”

The Berkeley team laid out their ideas in a paper
entitled “A View of the Parallel Computing Land-
scape” published in late 2006. Known informally
as “The Berkeley View,” the paper continues to
draw interest and spur discussion. When co-
author David Patterson of UC—Berkeley presented
an overview at the SCO8 conference in Austin in
November 2008, hundreds of attendees turned
out for his invited talk, which addressed “the mul-
ticore/manycore sea change.”

A Shift Driven by Industry

The trend toward parallelism is already underway
as the industry moves to multicores. Desktop sys-
tems featuring dual-core processors and even
HPC are getting in on the act. In the past year, the
Cray XT supercomputers at Oak Ridge National
Laboratory (ORNL) and NERSC were upgraded
from dual-core to quad-core processors. The
upgrade not only doubled the number of cores, it
also doubled parallelism of the SIMD floating-
point units to get a net 3.5x increase in peak flop
rate for a 2x increase in core count. While these
swaps were relatively quick paths to dramatic
increases in performance, the conventional mul-
ticore approach (two, four, and even eight cores)
adopted by the computing industry will eventu-
ally hit a performance plateau, just as traditional
sources of performance improvements such as
instruction-level parallelism (ILP) and clock fre-
quency scaling have been flattening since 2003,
as shown in figure 1.

Figure 2 shows the improvements in processor
performance as measured by the SPEC integer
benchmark over the period from 1975 to present.
Since 1986 performance has improved by 52%
per year with remarkable consistency. During
that period, as process geometries scaled down-
ward according to Moore’s Law, the active capac-
itance of circuits and supply voltages also scaled
down. This approach, known as constant electric
field frequency scaling, fed the relentless increases
in CPU clock rates over the past decade and a half.
As manufacturers have shrunk chip features
below the 90 nm scale, however, this technique
began to hit its limits as the transistor threshold
voltage could not be scaled ideally without losing
large amounts of power to leakage, and this in
turn meant the supply voltage could not be
reduced correspondingly. Processors soon started
hitting a power wall, as adding more power-
hungry transistors to a core gave only incremen-
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Figure 1. This graph shows that Moore’s law is alive and well, but the traditional sources
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Figure 2. The performance of processors as measured by SpecINT has grown 52% per
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year with remarkable consistency, but improvements tapered off around 2002.

tal improvements in serial performance—all in a
bid to avoid exposing the programmer to explicit
parallelism. Some chip designs, such as the Intel
Tejas, were ultimately cancelled due to power
consumption issues.

“With the desktop, the mantra was perform-
ance at any cost and there really was no interest
in computational efficiency—brute force won the
day,” says John Shalf of LBNL. “But the move to
multicore shows that computational efficiency
matters once again.”

This issue of power density has now become
the dominant constraint in the design of new

The trend toward
parallelism is already
underway as the industry
moves to multicores.
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Figure 3. Even some experts in the field were taken by surprise with the sudden end of
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clock speed scaling. This graph shows the roadmap for processor performance from the
International Technology Roadmap for Semiconductors (ITRS), which has been remarkably
accurate in their predictions, until recently. In 2005, the group predicted clock rates of
over 12 GHz by 2009, but the 2007 roadmap dramatically curtailed those predictions and
put them close to what Intel, among other companies, were producing by then.

New algorithms and
programming models will
need to stay ahead of a
wave of geometrically
increasing system
concurrency—a tsunami
of parallelism.

processing elements, and ultimately limits clock
frequency growth for future microprocessors.
The direct result has been a stall in clock fre-
quency that is reflected in the flattening of the
performance growth rates starting in 2002. In
2006, individual processor cores are nearly a fac-
tor of three slower than if progress had contin-
ued at the historical rate of the preceding decade.
This has led to a significant course correction in
the IT semiconductor roadmap, as shown in
figure 3.

Other approaches for extracting more per-
formance such as out-of-order instruction pro-
cessing to increase ILP have also delivered
diminishing returns (figure 1, p41). Having
exhausted other well-understood avenues to
extract more performance from a uniprocessor,
the mainstream microprocessor industry has
responded by halting further improvements in
clock frequency and increasing the number of
cores on the chip. In fact, as Patterson noted in
his presentation at the SCO8 conference in
Austin, AMD, Intel, IBM, and Sun now sell more
multicore chips than uniprocessor chips.
Whether or not users are ready for the new
processors, Patterson and John Hennessy—Pres-
ident of Stanford and co-author of the famous
architecture textbook with Patterson—estimate
the number of cores per chip is likely to double
every 18-24 months henceforth. Hennessy has
commented, “if I were still in the computing
industry, I'd be very worried right now.” New
chips currently on the drawing boards and which

will appear over the next five years are parallel,
Patterson notes. Therefore, new algorithms and
programming models will need to stay ahead of
a wave of geometrically increasing system con-
currency—a tsunami of parallelism.

The stall in clock frequencies and the industry’s
comparatively straightforward response of dou-
bling cores has reinvigorated study of more rad-
ical alternative approaches to computing such as
Field-Programmable Gate Arrays (FPGAs), gen-
eral-purpose programming of Graphics Process-
ing Units (GPGPUs), and even dataflow-like tiled
array architectures such as the TRIPS project at
the University of Texas—Austin. The principal
impediment to adapting a more radical approach
to hardware architecture is that we know even
less about how to program efficiently such
devices for diverse applications than we do paral-
lel machines composed of multiple CPU cores.
Kurt Keutzer puts this more elegantly when he
states, “The shift toward increasing parallelism is
not a triumphant stride forward based on break-
throughs in novel software and architectures for
parallelism; instead, this plunge into parallelism
is actually a retreat from even greater challenges
that thwart efficient silicon implementation of
traditional uniprocessor architectures.” To get at
the heart of Keutzer’s statement, it is necessary to
deconstruct the most serious problems with cur-
rent CPU core designs.

New IC Design Constraints

The problem of current leakage, which limits
continued performance improvements based on
clock frequency scaling, is not the only con-
straint helping to push the semiconductor indus-
try in new directions. The other problem facing
the industry is the extremely high cost of new
logic designs, which creates pressure to simplify
and shrink core designs. In order to squeeze
more performance out of processor cores at high
frequencies, a considerable amount of surface
area is devoted to latency hiding technology, such
as deep execution pipelines and out-of-order
instruction processing. The phenomenally com-
plex logic required to implement such features
has caused design costs of new chips to sky-
rocket to hundreds of millions of dollars per
design. It has also become impractical to verify
all logic on new chip designs containing hun-
dreds of millions of logic gates due to the combi-
natorial nature of the verification process.
Finally, with the move to smaller feature sizes for
future chips, the likelihood of chip defects will
continue to increase, and any defect makes the
core that contains it non-functional. Larger and
more complex CPU logic designs place a higher
penalty on such defects, thereby lowering chip
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yield. Industry can and does sell chips in which
a core is disabled, but such chips are more attrac-
tive if the missing core is a small fraction of the
overall performance. These key problems ulti-
mately conspire to limit the performance and
practicality of extrapolating past design tech-
niques to future chip designs, regardless of
whether the logic implements some exotic non-
von Neumann architecture, or a more conven-
tional approach.

In the view of the Berkeley team, here are the
remedies for these problems:

© Power—parallelism is an energy-efficient way
to achieve performance. Many simple cores
offer higher performance per unit area for
parallel codes than a comparable design
employing smaller numbers of complex cores.

e Design Cost—the behavior of a smaller,
simpler processing element is much easier to
predict within existing electronic design-
automation workflows and more amenable to
formal verification. Lower complexity makes
the chip more economical to design and
produce.

o Defect Tolerance—smaller processing elements
provide an economical way to improve defect
tolerance by providing many redundant cores
that can be turned off if there are defects. For
example, the Cisco Metro chip contains 188
cores with four redundant processor cores per
die. The STI Cell processor has eight cores, but
only six are enabled in its mainstream consumer
application—the Sony PlayStation 3—in order
to provide additional redundancy to better
tolerate defects.

Getting Around the Constraints:
Manycore versus Multicore
The industry buzzword “multicore” captures the
plan of doubling the number of standard cores
per die with every semiconductor process gener-
ation starting with a single processor. Multicore
will obviously help multiprogrammed work-
loads, which contain a mix of independent
sequential tasks, and prevent further degradation
of individual task performance. But how will indi-
vidual tasks become faster? Switching from
sequential to modestly parallel computing will
make programming much more difficult without
rewarding this greater effort with a dramatic
improvement in power-performance. Hence,
multicore is unlikely to be the ideal answer.

The alternative approach moving forward is to
adopt the “manycore” trajectory, which employs
simpler cores running at modestly lower clock
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Figure 4. The diagram shows the relative size and power dissipation of different CPU

core architectures. Simpler processor cores require far less surface area and power with
only a modest drop in clock frequency. Even if measured by sustained performance on
applications, the power efficiency and performance per unit area is significantly better

when using the simpler cores.

frequencies. Rather than progressing from two to
four to eight cores with the multicore approach,
a manycore design would start with hundreds of
cores and progress geometrically to thousands of
cores over time. Figure 4 shows that moving to
a simpler core design results in modestly lower
clock frequencies, but has enormous benefits in
power consumption and chip surface area. Even
if you presume that the simpler core will offer
only one-third the computational efficiency of the
more complex out-of-order cores, a manycore
design would still be an order of magnitude more
power- and area-efficient in terms of sustained
performance.

Consumer Electronics Core Design

Meets High-End Computing

The approach of using simpler lower-frequency
core designs has been used for many years by the
embedded-computing industry to improve bat-
tery life, lower design costs, and reduce time to
market for consumer electronics. In the past the
design targets for embedded applications were
nearly the opposite of the performance-driven
requirements of high-end computing. However,
the needs of the high-end computing market have
converged with the design motivation of the
embedded-computing industry as a result of their
common need to improve energy efficiency and
reduce design costs. With regard to energy effi-
ciency, the embedded-computing industry has
the most accumulated expertise and technology.

The needs of the high-end
computing market have
converged with the design
motivation of the
embedded-computing
industry as a result of
their common need to
improve energy efficiency
and reduce design costs.
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revenue share in microprocessor-based electronic designs.

Taking a historical
perspective on HPC
system design, Bell's Law
is likely as important to
the development of HPC
system design as
Moore’s Law.

Whereas past design innovations in high-end
computing, such as superscalar execution and
out-of-order instruction pipelines, trickled down
to consumer applications on PCs, we are starting
to see innovations that emerged in the embedded
space trickling up into high-end server designs.
This flow of innovation is likely to increase in the
future.

Designing a core that does no more than you
need it to do makes sense and the tools used to
design embedded chips revolve around tailoring
the core design for the specific application. This
really changes the meaning of “commodity com-
puting technology,” from repurposing a complete
computer node designed for a broader desktop
market to repurposing a core designed for a
broader consumer electronics market—it takes
the meaning of commodity and moves it onto the
chip.

The Revolution is Already Underway
There are already examples of the convergence
between embedded computing and HPC in the
design of the Blue Gene and SiCortex supercom-
puters, which are based on embedded-processor
cores that are more typically seen in automobiles,
cell phones, and toaster ovens. Parallelism with
concurrencies that have formerly been associated
with HPC applications are already emerging in
mainstream embedded applications. The Metro
chip in new Cisco CRS-1 router contains 188 gen-
eral-purpose Tensilica cores, and has supplanted
Cisco’s previous approach of employing custom
Application-Specific Integrated Circuits (ASICs)
for the same purpose.

Surprisingly, the performance and power effi-
ciency of the Metro for its application are com-
petitive with full-custom ASIC, which themselves

are more power- and area-efficient than could be
achieved using FPGAs (dimming hopes that
FPGAs offer a more energy efficient approach to
computation). The Motorola Razor cell phone
also contains eight Tensilica cores. The NVidia
G80 (CUDA) GPU replaces the semi-custom
pipelines of previous generation GPUs with 128
more general-purpose CPU cores. The G80 in
particular heralds the convergence of manycore
with mainstream computing applications.
Whereas traditional GPGPUs have a remarkably
obtuse programming model involving drawing
an image of your data to the framebuffer (the
screen), the G80’s more general-purpose cores
can be programmed using more conventional C
code and will soon support IEEE-standard dou-
ble-precision arithmetic.

The motivation for using more general-pur-
pose cores is the increasing role of GPUs for accel-
erating commonly required non-graphical game
calculations such as artificial intelligence (Al) for
characters in games, object interactions, and even
models for physical processes. Companies such
as AlSeek’s Intia and Ageia’s (recently acquired by
NVidia) PhysX have implemented game physics
acceleration on GPUs that use algorithms that are
very similar to those used for scientific simulation
and modeling (Further Reading, p49). ATI
(recently acquired by AMD) has proposed offer-
ing GPUs that share the same cache-coherent
HyperTransport fabric of their mainstream CPUs.
Intel’s experimental Polaris chip uses 80 simpler
CPU cores on a single chip to deliver one
teraflop/s of peak performance while consuming
only 65 watts and this design experience may feed
into future GPU designs from Intel. Both Intel and
AMD roadmaps indicate that tighter integration
between GPUs and CPUs is the likely path toward
introducing manycore processing to mainstream
consumer applications on desktop and laptop
computers.

Step Aside PCs—Consumer Electronics

Are Now Driving CPU Innovation

Taking a historical perspective on HPC system
design, Bell’s Law is likely as important to the
development of HPC system design as Moore’s
Law. Bell’s Law is the corollary of Moore’s Law
and holds that by maintaining the same design
complexity you can halve the size and costs of the
chip every 18 months. The TOP500 project has
documented a steady progression from the early
years of supercomputing, from exotic and spe-
cialized designs towards clusters composed of
components derived from consumer PC applica-
tions. The enormous volumes and profits of desk-
top PC technology led to huge cost/performance
benefits for employing clusters of desktop CPU
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designs for scientific applications despite the
lower computational efficiency. As we move in to
the new century, the center of gravity for the mar-
ket in terms of unit volume and profit has shifted
to handheld consumer electronics. This move-
ment has some significant implications for the
future of the HPC.

As can be seen in figure 5, the market share of
the consumer electronics applications for CPUs
surpassed that of the desktop PC industry in 2003
and the disparity continues to grow. Shortly after
2003, revenue in the PC business flattened (figure
6), and IBM subsequently sold off its desktop and
portable personal computer units. During that
same period, Apple moved into the portable elec-
tronic music player market with the iPod, then
into the cellular phone business and eventually
dropped “Computer” from its corporate name.
This may be the most dramatic twist yet for the
HPC industry if these trends continue (and they
likely will). Although the desktop computing
industry has been leading a major upheaval in
HPC system design over the past decade (the
movement to clusters based on desktop technol-
ogy), that industry segment is no longer in the dri-
ver’s seat for the next revolution in CPU design.
Rather, the market volume, and hence design tar-
gets, are now driven by the needs of handheld
consumer electronics such as digital cameras, cell
phones, and other devices based on embedded
processors.

The next generation of desktop systems, and
consequent HPC system designs, will borrow
many design elements and components from the
consumer electronics devices. Namely, the base
unit of integration for constructing new chip
designs targeted at different applications will be
the CPU cores derived from embedded applica-
tions rather than the transistor. Simpler CPU
cores may be combined together with some spe-
cialization to HPC applications (such as different
memory controllers and double-precision float-
ing point), just as transistors are currently
arranged to form current CPU designs. Indeed,
within the next three years, there will be many-
core chip designs that contain more than 2,000
CPU cores, which is very close to the number of
transistors that was used in the very first Intel
4004 CPU. This led Chris Rowen, CEO of Tensil-
ica, to describe the new design trend by saying
“the processor is the new transistor.” This is a
brave new world, and we do not know where it
will take us.

Ramifications for the HPC Ecosystem

Given current trends, petascale systems delivered
in 2011 are projected to have the following char-
acteristics:
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Figure 6. This graph shows how revenues for IBM’s PC business have flattened in
response to the increasing dominance of consumer electronics applications in the

electronics industry.
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e Systems will contain between 400,000 and
1,500,00 processors (50,000 to 200,000 sockets).
Each socket in the system will be a chip that
contains multiple cores.

e In 2011 these multicore chips will contain
between 8 and 32 conventional processor cores
per chip. Technology based on manycore will
employ hundreds to thousands of CPU cores
per chip. Consider that the Cisco CRS-1 router
currently employs a chip containing 188
processor cores using conventional silicon
process technology, so “1,000 cores on a chip” is
not as far off as one might expect. A System on
Chip (SoC) design, such as Blue Gene or SiCortex,
may still use the simpler embedded cores
(manycore design point), but sacrifice raw core
count to integrate more system services onto the
chip (such as interconnect fabric and memory
controllers).

e As microprocessor manufacturers move their
design targets from peak clock rate to reducing
power consumption and packing more cores
per chip, there will be a commensurate trend
towards simplifying the core design. This is
already evidenced by the architecture of the
Intel Core-Duo processors that use pipelines
that are considerably shorter than those of its
predecessor, the Pentium4. The trend towards
simpler processor cores will likely simplify
performance tuning, but will also result in
lower sustained performance per core as
out-of-order instruction processing is dropped
in favor of smaller, less complex and less
power-hungry in-order core designs. Ultimately
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Keeping abreast of
geometrically increasing
concurrency is certainly
the most daunting
challenge as we move
beyond the petascale in
the next few years.
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Figure 7. The graph shows the dramatic increase in system concurrency for the Top 15 systems in the annual TOP500

List

list of HPC systems. Even if BG/L systems are removed from consideration, the inflection point of system concurrency is

still quite dramatic.

this trend portends a convergence between the
manycore and multicore design points.

e Asthe number of cores per socket increase,
memory will become proportionally more
expensive and power hungry in comparison to
the processors. Consequently, cost and power-
efficiency considerations will push memory
balance (in terms of the quantity of memory
put on each node) from the current nominal
level of 0.5 bytes of DRAM memory per peak
flop, down below 0.1 bytes/flop (possibly even
less than 0.02 bytes/flop).

o Cost scaling issues will force fully-connected
interconnect topologies, such as the fat-tree and
crossbar, to be gradually supplanted at the high
end by lower-degree interconnects such as the
n-dimensional torii, meshes, or alternative
approaches, such as hierarchical fully-con-
nected graphs.

The consequence will be that HPC software
designers must take interconnect topology and
associated increased non-uniformity in band-
width and latency into account for both algo-
rithm design and job mapping. Currently, the
interconnect topology is typically ignored by
mainstream code and algorithm implementa-
tions. Blue Gene/L programmers already have to
grapple with the topology mapping issues—it is
merely a harbinger of the broader challenges fac-
ing all HPC programmers in the near future. Pro-
gramming models that continue to present the
illusion of a flat system communication cost will
offer increasingly poor computational efficiency.

Whether the HPC community is convinced or
not that the future is in multicore or manycore

technology, the industry has already retooled to
move in the direction of geometrically scaling
parallelism. If the levels of concurrency that result
from a transition directly to manycore appear
daunting, the trends on the TOP500 list in figure
7 show that within just three years multicore will
take us to the same breathtaking levels of paral-
lelism. With either path, the HPC community
faces an unprecedented challenge to existing
design practices for system design, OS design, and
our programming model. The issue of program-
mability looms large as computer scientists won-
der how on Earth will they stay abreast of
exponentially increasing parallelism? If no one
can program a manycore computer system pro-
ductively, efficiently and correctly, then there is
little benefit to this approach for maintaining his-
torical per-socket performance improvements for
future HPC systems.

Time to Get with the Programming
Keeping abreast of geometrically increasing con-
currency is certainly the most daunting challenge
as we move beyond the petascale in the next few
years. Most HPC algorithms and software imple-
mentations are built on the premise that concur-
rency is coarse-grained and its degree will
continue to increase modestly, just as it has over
the past 15 years. The exponentially increasing
concurrency throws all of those assumptions into
question. At a minimum, we will need to embark
upon a campaign of re-engineering our software
infrastructure that may be as dramatic and broad
in scope as the transition from vector systems to
massively parallel processors (MPPs) that
occurred in the early 1990s.

However, the heir apparent to current pro-
gramming practice is not obvious, in large part
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dual- to quad-core processors.

because the architectural targets are not clear.
There are two major questions, one involving off-
chip memory bandwidth and access mecha-
nisms, and the second being organization of the
on-chip cores. Some of the initial forays into
multicore have kept both of theses issues at bay.
For example, the upgrades from dual- to quad-
core processors at NERSC and ORNL (figure 8)
upgraded memory density and bandwidth at the
same time, and the cores were familiar x86 archi-
tectures. So using each core as an MPI processor
was a reasonable strategy both before and after
the upgrades. As with the introduction of shared-
memory nodes into clusters in the late 1990s, the
message-passing model continued to work well
both within and between nodes, which has
allowed programmers to avoid rewriting their
codes to take advantage of the changes. The rea-
son? The architectures were still relatively hefty
cores with their own caches, floating-point units
and superscalar support, so programs were best
designed with coarse-grained parallelism and
good locality to avoid cache coherence traffic.
But the incremental changes to chip architecture
seen to date may give HPC programmers a false
sense of security.

Limited off-chip bandwidth—sometimes
referred to as the “memory wall’—has been a
problem for memory-intensive computations
even on single-core chips that predate the move
to multicore. The shift to multiple cores is signif-
icant only because it continues the increase in
total on-chip computational capability after the
end of clock frequency scaling allowing us to con-
tinue hurtling towards the memory wall. The
memory bandwidth problem is as much eco-
nomic as technical, so the HPC community will
continue to be dependent on how the commod-

Figure 8. In the past year the Cray XT supercomputers at ORNL (Jaguar, left) and NERSC (Franklin, righ

ity market will move. Current designs are unlikely
to sustain the per core bandwidth of previous
generations, especially for irregular memory
access patterns that arise in many important
applications. Even the internal architecture of
memory chips is not organized for efficient irreg-
ular word-oriented accesses.

There are promising avenues to sustain the
growth in bandwidth, such as chip stacking and
photonic interfaces, but this will require eco-
nomic pressure from the mass market to make
it happen. That pressure will depend on what
applications will drive consumers to buy many-
core chips and whether those applications are
written in a manner that requires high bandwidth
in a form that is usable by the HPC community.
A new parallel computing laboratory at Berkeley
is working on parallel applications for handheld
devices and laptops, and these have revealed some
of the same memory bandwidth needs as scien-
tific applications, which means the HPC commu-
nity will not be on its own in pushing for more
bandwidth. For both HPC and consumer applica-
tions, the first problem is to make the bandwidth
available to the applications through a set of opti-
mizations that mask the other memory system
issue—latency. The Berkeley group applies auto-
matic performance tuning techniques to maxi-
mize effective use of the bandwidth through
latency-masking techniques such as pre-fetching,
and is planning on technology innovations to
supply the necessary bandwidth. But to hedge
their bets on the bandwidth problem, they are
also developing a new class of communication-
avoiding algorithms that reduce memory band-
width requirements by rethinking the algorithms
from the numerics down to the memory accesses
(sidebar “Dwarfs” p48).
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MULTICORE COMPUTING

Dwarfs

Benchmarks are useful tools for measuring
progress on computing performance over
generations of machines. However,
benchmarks can also inhibit progress because
they are reflections of current programming
models and hardware technology. Given the
current trends in computer architecture, it is
clear that parallel programming cannot
continue along the incremental path of
improving existing benchmarks and code
bases. Enabling a fundamental rethinking of
both hardware and programming models
requires a move away from concrete
implementations of applications (benchmarks)
and towards a higher-level patterns of
computation and communication to drive our
decisions about future programming models
and parallel hardware architectures. Patterns
are conceptual tools that help a programmer
to reason about a software project and
develop an architecture, but they are not
themselves implementation mechanisms for
producing code.

Tim Mattson observes in his book on
parallel programming that patterns are not
invented, but mined from successful software
applications. We began our mining expedition
with Philip Collela’s observations about
algorithms in parallel computing, nicknamed
the Seven Dwarfs, that gave us the first
insights into the structural patterns observed in
HPC codes. Then, over a period of two years,
we surveyed other application areas, including
embedded systems, general-purpose
computing (SPEC benchmarks), databases,

games, artificial intelligence/machine learning,
and computer-aided design of integrated
circuits to search for more patterns of
computation. Through this process the seven
dwarfs grew to thirteen. More dwarfs may need
to be added to the list. Nevertheless, we were
surprised that we only needed to add six
dwarfs to cover such a broad range of
important applications.

Meet the Next Six Dwarfs

Figure 9 shows the original seven dwarfs, plus
some that were added as a result of the
team’s investigations. Although 12 of the 13
dwarfs possess some form of parallelism, finite
state machines (FSMs) look to be a challenge,
which is why we made them the last dwarf.
Perhaps FSMs will prove to be embarrassingly
sequential. If it is still important and does not
yield to innovation in parallelism, that will be
disappointing, but perhaps the right long-term
solution is to change the algorithmic
approach. In the era of multicore and
manycore, popular algorithms from the
sequential computing era may fade in
popularity.

In any case, the point of the 13 dwarfs is
not to identify the low-hanging fruit that are
highly parallel. The point is to identify the
kernels that are the core computation and
communication for important applications in
the upcoming decade, independent of the
amount of parallelism. To develop
programming systems and architectures that
will run future applications as efficiently as

possible, we must learn the limitations as well
as the opportunities. We note, however, that
inefficiency on embarrassingly parallel code
could be just as plausible a reason for the
failure of a future architecture as weakness on
embarrassingly sequential code.

From Dwarfs to Patterns

Over time, we have worked to take patterns of
parallel programming embodied in the dwarfs
to create a formal pattern language. A book by
Timothy Mattson et al., Patterns for Parallel
Programming, was the first such attempt to
formalize elements of parallel programming
into such a pattern language. Thus the dwarfs
form a critical link between the structural
patterns described in Mattson’s book and the
idioms for parallelization developed through
years of experimentation by the software
development community.

The patterns define the structure of a
program, but they do not indicate what is
actually computed, whereas the computational
patterns embody the generalized idiom for
parallelism used to implement these structural
patterns. Using the analogy from civil
engineering, structural patterns describe a
factory’s physical structure and general
workflow. Computational patterns describe
the factory’s machinery, flow of resources, and
work-products. Structural and computational
patterns can be combined in the “pattern
language” to provide a template for
architecting arbitrarily complex parallel
software systems.

If the HPC community
cannot succeed in
selecting a scalable
programming model to
carry us for the next 15
years, we will be forced to
reckon with multiple
phases of ground-up
software rewrites, or a
hard limit to the useable
performance of future
systems.

The architectural organization question is even
more critical to the future of MPI. The notion of
a core as a traditional processor may not be the
right building block. Instead, the exponentially
growing concurrency may come from wider
SIMD or vector units, multithreaded architectures
that share much of the hardware state between
threads, very simple processor cores, or proces-
sors with software-managed memory hierar-
chies. MPI expresses coarse-grained parallelism
but is not helpful in code vectorization (or
SIMDization). Even if there are many full-fledged
cores on a chip, the memory overhead of MPI
may make it an impractical model for manycore.
Consider a simple nearest-neighbor computation

on a 3D mesh—if each of the manycores holds
a 10x10x10 subgrid, roughly half of the points
are on the surface and will be replicated on neigh-
boring cores. Similarly, any globally shared state
will have to be replicated across all cores, because
MPI does not permit direct access to shared
copies. This has reopened consideration of the
hybrid OpenMP+MPI programming model,
although that model has shown more failures
than successes over the past decade. The prob-
lems with the hybrid model have included the
lack of locality control in OpenMP, and the inter-
action between the multiple threads within
OpenMP communicating through a shared net-
work resource to other nodes. Even if these
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across areas of application.

deficiencies can be overcome, OpenMP’s use of
serial execution as the default between loops will
be increasing stymied by Amdahl’s law at higher
on-chip concurrencies.

If we simply treat a multicore chip as a tradi-
tional shared memory multiprocessor—or worse
still, treat it as a flat MPI machine—then we may
miss opportunities for new architectures and
algorithm designs that can exploit these new fea-
tures.

Settling on a stable and performance-portable
programming model that accommodates the
new course of evolution for chip multiprocessors
is of utmost importance as we move forward. If
the HPC community cannot succeed in selecting
a scalable programming model to carry us for the
next 15 years, we will be forced to reckon with
multiple phases of ground-up software rewrites,
or a hard limit to the useable performance of
future systems. Consequently, the programming
model for manycore systems is the leading chal-
lenge for future systems.

Manycore Opportunities

Most of the consternation regarding the move to
multicore reflects an uncertainty that we will be
able to extract sufficient parallelism from our
existing algorithms. This concern is most pro-
nounced in the desktop software development
market, where parallelism within a single appli-
cation is almost nonexistent, and the perform-
ance gains that have enabled each advance in
features will no longer be forthcoming from the
single processor. The HPC community has con-
cerns of its own, remembering well the pain

Figure 9. An illustrated summary of the growing list of dwarfs—algorithmic methods that each capture a pattern of computation and communication—

There is a real opportunity
for HPC experts to step
forward and help drive the
innovations in parallel
algorithms, architectures,
and software needed to
face the multicore
revolution.

associated with rewriting their codes to move
from vector supercomputer to commodity-
based cluster architectures. The vector machines
were designed specifically for HPC, whereas
commodity microprocessors and associated
software tools lacked many of the features they
had come to rely upon. But there is a real oppor-
tunity for HPC experts to step forward and help
drive the innovations in parallel algorithms,
architectures, and software needed to face the
multicore revolution. While the application driv-
ers of the multicore designs will be different from
the scientific applications in HPC, the concerns
over programming effectiveness, performance,
scalability and efficiency and the techniques
needed to achieve these will largely be shared.
Rather than sitting back to await the inevitable
revolution in hardware and software, the HPC
community has an opportunity to look outside
its normal scientific computing space and ensure
that the years of hard-won lessons in effective use
of parallelism will be shared with the broader
community. °
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Further Reading
AlSeek
http://www.aiseek.com/

PhysX
http://www.nvidia.com/object/physx_new.html
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