
Grail Quest: A New Proposal for Hardware-assisted Garbage Collection
Martin Maas Krste Asanović John Kubiatowicz

University of California, Berkeley

ABSTRACT
Many big data systems are written in garbage-collected languages
and GC has a substantial impact on throughput, responsiveness
and predicability of these systems. However, despite decades of
research, there is still no “Holy Grail” of GC: a collector with no
measurable impact, even on real-time applications. Such a collec-
tor needs to achieve freedom from pauses, high GC throughput
and good memory utilization, without slowing down application
threads or using substantial amounts of compute resources.

In this paper, we propose a step towards this elusive goal by
reviving the old idea of moving GC into hardware. We discuss
the trends that make it the perfect time to revisit this approach
and present the design of a hardware-assisted GC that aims to
reconcile the conflicting goals. Our system is work in progress
and we discuss design choices, trade-offs and open questions.

1. INTRODUCTION
A substantial portion of big data frameworks – and

large-scale distributed workloads in general – are writ-
ten in languages with Garbage Collection (GC), such as
Java, Scala, Python or R. Due to its importance for a
wide range of workloads, Garbage Collection has seen
tremendous research efforts for over 50 years. Yet, we
arguably still don’t have what has been called the “Holy
Grail” of GC [1]: a pause-free collector that achieves
high memory utilization and high GC throughput (i.e.,
sustaining high allocation rates), preferably without a
large resource cost for the application.

Many recent GC innovations have focused on the
first three goals, and modern GCs can be made effec-
tively pause-free at the cost of slowing down application
threads and using a substantial amount of resources.
Moreover, these approaches oftentimes ignore another
factor that is very important in warehouse-scale com-
puters: energy consumption. Previous work [2] has
shown that GC can account for up to 25% of energy
and 40% of execution time in common workloads (10%
on average). Worse, as big data systems are processing
ever larger heaps, these numbers will likely increase.

We believe that we can reconcile low pause times and
energy efficiency by revisiting the old idea of moving
GC into hardware. Our goal is to build a GC that si-
multaneously achieves high GC throughput, good mem-
ory utilization, pause times indistinguishable from LLC
misses and energy efficiency. We build on an algo-
rithm that performs well on the first three criteria but
is resource-intensive [3]. Our key insight is that this al-
gorithm can be made energy efficient by moving it into
hardware, combined with some algorithmic changes.

We are not the first to propose hardware support for
GC [3–7]. However, none of these schemes has been
widely adopted. We believe that there are three reasons:

Garbage-collected languages are widely used, but
they are rarely the only workload on a system.
Systems designed for specific languages mostly lost out
to general-purpose cores, partly due to Moore’s law and
economies of scale allowing these cores to quickly out-
perform the specialized ones. This is changing today, as
the slow-down of Moore’s law makes it more attractive
to use chip area for accelerators to improve common
workloads, such as garbage-collected applications.

Most garbage-collected workloads run on servers
(note that there are exceptions, such as Android appli-
cations). Servers traditionally use commodity CPUs
and the bar for adding hardware-support into such a
chip is very high (take Hardware Transactional Memory
as an example). However, this is changing: cloud hard-
ware and rack-scale machines in general are expected to
switch to custom SoCs, which could easily incorporate
IP to improve GC performance and efficiency.

Many proposals were very invasive and would re-
quire re-architecting of the memory system or other
components [5, 7, 8]. We believe an approach has to
be relatively non-invasive to be adopted. The current
trend to accelerators and processing near memory may
make it easier to adopt similar techniques for GC with-
out substantial modifications to the architecture.

We therefore think it is time to revisit hardware-assisted
GC. In contrast to many previous schemes, we focus on
making our design sufficiently non-invasive to incorpo-
rate into a server or mobile SoC. This requires isolating
the GC logic into a small number of IP blocks and lim-
iting changes outside these blocks to a minimum.

In this paper, we describe our proposed design. It ex-
ploits two insights: First, overheads of concurrent GCs
stem from a large number of small but frequent slow-
downs spread throughout the execution of the program.
We move the culprits (primarily barriers) into hardware
to alleviate their impact and allow out-of-order cores
to speculate over them. Second, the most resource-
intensive phases of a GC (marking and relocation) are a
poor fit for general-purpose cores. We move them into
accelerators close to DRAM, to save power and area.

2. BACKGROUND
An extensive body of work has been published on GC.

Jones and Lins [9] provide a general introduction.
There are two fundamental GC strategies: tracing

and reference counting. Tracing collectors start from a
set of roots (such as static or stack variables), perform a

1

while (!q.empty()):
node = q.dequeue(); if (!marked(node)):

mark(node); q.enqueue(get_references(node))

Figure 1: Tracing is typically a BFS where the current frontier is
kept in a mark queue and per-object mark bits indicate whether
an object has been visited. Every step, we take an object refer-
ence off the mark queue, identify all outgoing references stored
in object fields and add them to the queue. Once the BFS has
finished, the set of mark bits indicates the reachable objects.

breadth-first search (BFS) to find all reachable objects
and then recycle those that are not (Figure 1). Refer-
ence counting updates reachability data on the fly but
still requires a tracing backup collector to handle cycles.
It can therefore be seen as an optimization of tracing.

We distinguish between stop-the-world and concur-
rent collectors. A stop-the-world collector requires to
stop all mutators (parlance for application thread) and
can only continue once GC has completed, while a con-
current collector operates in parallel to the mutators.
Traditionally, concurrent collectors incur high overheads
over stop-the-world collectors, as they have to keep the
mutators and collector in sync using barriers1.

Another fundamental distinction is whether or not a
collector is relocating – whether or not it moves objects
in memory. Many basic GC algorithms (such as Mark &
Sweep) are non-relocating – memory therefore gets frag-
mented over time and locality is poor, which is why pro-
duction environments often eschew non-relocating GCs.
Many popular collectors therefore compact memory to
reduce fragmentation, increase locality and enable fast
bump-pointer allocation (instead of free lists). However,
relocation in concurrent collectors is very difficult.

2.1 Related Work
Our work has similarities to Azul System’s Vega [3], a

commercial processor specialized for Java applications.
Vega uses the same basic GC algorithm as we do, but
executes most of it in software. Its main hardware sup-
port is a read barrier instruction that delivers a fast
user-level trap to respond to relocation. Azul has since
stopped producing hardware, implementing the read
barrier in software on commodity CPUs. We believe
that by moving much more of the algorithm into hard-
ware, we can substantially improve over Vega in terms
of energy efficiency, and potentially mutator and GC
throughput. This is a different design point than Vega’s,
which appears to prioritize generality and flexibility.

In 2008, Sun worked on a very similar idea to ours [8],
with specialized GC units close to memory and hard-
ware support for barriers. The design provides a fully
concurrent GC but relies on an object-based memory

1This is a different use of the term than in memory con-
sistency or synchronization. A barrier is code that is added
around certain reference operations; for example, a read bar-
rier is executed whenever a reference is loaded from memory.

system which requires changes to the caches and mem-
ory hierarchy. The system was never released, but has
been described in an unpublished report [10].

There exists work on GC coprocessors in the embed-
ded and real-time space, including an extensive body
of work on Java processors [4]. Other work proposes
support for barriers [4, 11] and reference counting in
hardware [5] (the latter is non-relocating and requires a
backup tracing collector). Our work has similarities to
many of these projects, but its focus on energy efficiency
and server workloads is somewhat different.

Finally, a hardware tracing unit was presented by Ba-
con et al. [6]. However, this work was in the context of
GC of Block RAMs on FPGAs, which is a special case
and very different from conventional GC on DRAM.

3. THE GC ALGORITHM
Our design is a concurrent, relocating mark-compact

collector. We believe this is the right design point for
most modern server applications, as many of them are
affected by GC pauses (even when short) and fragmen-
tation is a problem for long-running workloads. If such
a GC can be made efficient, it may replace OpenJDK’s
CMS and G1 (which still have pauses) as the default.

Our collector builds on the Pauseless GC algorithm
from Azul [3]. Pauseless almost fully eliminates GC-
related pauses (making them indistinguishable from OS
context switches), but adds overheads to the mutators,
decreasing application throughput. While this is often-
times an acceptable trade-off for applications that are
sensitive to GC pauses, it may not be suitable for gen-
eral deployment, in part due to the resulting energy and
resource overheads. We hypothesize this is a key reason
why Azul’s market share is not higher, despite arguably
being the state-of-the art in concurrent collectors.

The Pauseless GC Algorithm: Pauseless GC has
two key components: a mark and a relocation phase.
The mark phase regularly performs BFS passes over
the heap to produce a fresh set of mark bits that tell
whether each object is reachable or not (multiple mark
bits are maintained for each object). The relocation
phase uses the newest set of mark bits to pick pages in
memory that are mostly garbage (i.e., unreachable ob-
jects) and compacts them into a fresh page (page sizes
are chosen to be large). The key idea of the algorithm is
how to perform both of these phases concurrently with
respect to each other and the mutators (Figure 2).

One challenge is that the mark phase can mistake a
reachable object as unreachable if a concurrently run-
ning mutator moves an unvisited reference from mem-
ory into a register and therefore “hides” it from the
mark phase. Like other schemes, Pauseless GC solves
this problem through a read barrier: whenever a refer-
ence is loaded into a register, it is also passed to the
mark queue to be marked through (added to the BFS).

2

Mark	Bits	#1

Mark	Phase		#1 Mark	Phase	#2

Mark	Bits	#2

Relocate/Remap

Forwarding	Table

Mark	Phase	#3

Relocate/Remap

Mark	Bits	#1

Mutators

if not_visited(MSB(rd)):
mark_queue.push(rd)
SW flip_msb(rd), 4(r1)

if invalid(rd):
mov rd, forward_tbl(rd)
SW rd, 4(r1)

Relocate/Remap

Marked-through	 check LW rd, 4(r1)

Re
ad
	B
ar
rie

r Relocation	check

Figure 2: Overview of the Pauseless GC Algorithm. Red code
indicates read-barriers following reference loads.

To avoid passing the same reference many times, the
barrier is “self-healing”: it tags the reference in its orig-
inal memory location such that next time it is encoun-
tered, we know that it was already communicated to
the marker. This works by using the MSB of references
to store an NMT (not-marked-through) bit. The bit
indicates whether we have already encountered this ref-
erence during the current mark. The barrier is only
triggered if the bit does not match the current mark
phase, and once it is triggered, it flips the NMT of the
reference that triggered it. This way, the read barrier
is only triggered once for each reference.

Azul proposed three ways of implementing the bar-
rier: in software by interleaving it with the instruction
stream, on the Vega platform (which delivers a fast user-
level trap if the NMT bit is wrong), or reusing Virtual
Memory (mapping all pages into the half of the virtual
address space with the right NMT bit and trapping if
the barrier is triggered). This results in a trade-off be-
tween either incurring the cost of barrier traps or in-
creasing code size, mutator and energy overheads (the
effect on code size and instruction cache pressure can be
particularly substantial, as the barrier adds instructions
each time a reference is loaded from memory).

The relocation phase uses the same mechanism: when
an object is moved to another page, many places still
contain stale references to the old location. To remap
these references to the new location, another self-healing
read barrier is used. When evacuating a page, it is first
marked as protected, which will trigger the barrier when
it is accessed (depending on the barrier implementation,
this may involve updating the page table to cause a trap
when the page is accessed). The relocation phase main-
tains a forwarding table outside the original page, which
maps the old location of each object to its location in
the new page. If a mutator tries to access the old page
(due to a stale reference), it will trigger the read barrier,
use the forwarding table to determine the new location
of the object (potentially copying the object if it hasn’t
yet), and update the location where the reference that
caused the barrier to trigger came from.

c a HEAD (✔ #REFS) b d e

HEAD a b c d eType	
Descriptor

Reference	Offsets
Object	Reference

Object	Reference

(a)

(b)

Class	A
int a
Object b

Class	B
int c
Object d

Object e
#REFS

Figure 3: Traditionally, language runtimes lay out fields sequen-
tially, starting with a header, then all parent classes’ fields and
finally the classes’ fields themselves (a). This facilitates casting
an object to its parent class. However, it means that references
are interspersed throughout the object and the marker will have
to look up a table to determine which fields contain references.
While this causes little overhead on an out-of-order core, a bidi-
rectional layout (b) allows us to build a more efficient marker in
hardware that requires much less area and power.

The mark phase also remaps relocated references when
it encounters them, to guarantee that all references to
an object have been remapped after the next mark pass
and the old page (and forwarding table) can be freed.

Challenges: By building on the Pauseless GC algo-
rithm, we hope to avoid correctness problems and focus
on performance and efficiency (as it is very difficult to
get a concurrent GC right). We address two challenges:
1) a substantial amount of precious CPU time is used
to trace the heap and relocate objects, and 2) mutator
threads incur overheads from barrier code or traps to
stay in sync with the collector. These are the main areas
we are aiming to improve with hardware support. On
the software side, we modify the object layout, which
allows our hardware to operate more efficiently.

Object Layout: The object layout can have a strong
effect on performance and energy consumption. We use
a bidirectional layout (Figure 3) inspired by the Sable
VM [12] (Sun’s proposal used a similar idea [8]). The
header is in the middle of the object, all non-reference
fields are to the left of the header, and reference fields
are to the right. The advantage of this layout is that
the marker only needs to read and mark the header
(which we extend with the number of references) and
then read all references in a single unit-stride access.
This also maps well to data-parallel architectures [13].

4. THE GC HARDWARE
We observe that both the mark and relocation phase

in the Pauseless GC algorithm are a poor fit for general-
purpose CPUs – as such, they inefficiently use cores
that could otherwise be used for the application. We
also hypothesize that taking a trap for each triggered
read barrier is inefficient, similar to the argument for
refilling TLBs with a hardware page-table walker.

For the mark’s BFS traversal to be efficient, we need
to keep as many memory requests in flight as possible
to maximize memory bandwidth. While an out-of-order
core is very good at this, it adds overheads in terms
of power and area, since most of its logic, including
instruction fetch, decode, issue window, reorder buffer,
etc. are not required for a BFS. Further, the caching
behavior of the mark phase is unfavorable for a general-

3

Mark	Unit

CPUCPU

Mark	Queue

Tracer

Atomic	OR

IF	unmarked
AND	#refs>0

Memory	Controller/
DRAM

CPU

La
st
-L
ev
el
	C
ac
he

PC

L2	Cache

I-T
LB

IC
ac
he

D
ec
od

e

Ex
ec
ut
e

Load/storeTLB DCache

INST	=	LD/ST	r1,	N(r2)	
&	protection	fault

INST	=	RB	r1,	N(r2)
& protection	fault

INST	=	RB	r1,	N(r2)
&MSB(r1)	!=	expected

Write-
back

Mark	Bit	
Cache

Relocation	Unit

Reader Marker

Address	Range

Old address (request)

New address (response)

L1	Cache

Forwarding	
Table

Relocation	
Logic

Spill	to	memory

Spill	to
memory

Store	r1

Store
r1

Load

Load

Lookup

Update
r2

Address	Range

Mark-through
references…

Ar
bi
te
r

Ar
bi
te
r

Store
r1

Update
[r2+N]

q

w

r

t
y

u

i

o a

s

e

TLB

TLB

Figure 4: Overview of our GC hardware. We show our CPU changes in a 5-stage pipeline, but they also apply to out-of-order cores.

purpose core: no data is ever reused except the mark
bits (as we mark through every object once). Since
caches cannot hold individual bits, this leaves a choice of
not caching the mark bits by using non-allocating loads
(wasting locality and performance) or caching the entire
cache line (wasting space). The latter also pollutes the
cache, potentially slowing down mutators.

Analogously, the relocation phase is mainly a copy
operation, which does not benefit from caching or out-
of-order execution (and, in fact, can be implemented
and parallelized well in hardware).

In addition, both phases benefit from being executed
close to memory, reducing energy consumption from
data movement between memory and the cores. We
therefore implement these two phases in hardware, com-
bined with minimal changes to the processor pipeline
(Figure 4). We add a mark and a relocation unit that
sit beyond the LLC, share the virtual address space with
the process they are operating on (i.e., have their own
TLBs) and are cache-coherent with the cores. Both
units carve out a small range of the physical address
space (3 / 7) for communication with the CPUs.

4.1 The Mark Unit
The mark unit consists of three parts. After launch-

ing a mark phase, the Reader 1 first loads all roots into
the on-chip Mark Queue 2 . It communicates with the
CPUs through a range of the physical address space 3 .
This range is cacheable and each CPU can write to it,
to send addresses of reachable objects to the mark unit.
The reader polls the range until it has received all roots
(CPUs terminate root lists with a special word). Roots
are collected in software, an infrequent operation that
can be implemented without stalling [14].

The mark queue is implemented as an on-chip SRAM,
and is expected to be small (a few KB). There is a design
space in that the smaller the queue, the more often
its middle part has to be spilled to memory. Based
on simulations, we anticipate spilling to account for no
more than 1/3 of the mark unit’s memory requests.

Once the roots have been loaded, the Marker 4 and
the Tracer 5 perform the mark phase. The marker is
responsible for taking an object pointer from the mark
queue, sending out an atomic fetch-and-or request to
mark and read the object’s header and, if the object
was unmarked before and has at least one outgoing ref-
erence, put it into a Trace Queue 6 that stores pairs of
object pointers and the number of references associated
with them. The tracer then takes elements from this
queue and issues read requests to load the references
within the object into the mark queue as they return.

This design decouples the different types of mem-
ory access necessary for the mark phase. If the tracer
is busy copying one long object, the marker can run
ahead and queue up additional objects. Similarly, if the
marker is busy marking objects that have been marked
before, the tracer can work through the remainder of
the trace queue. As such, the marker and tracer work
together to maximize memory bandwidth. This design
is enabled by our object layout, which allows the marker
to fetch all the data that the tracer needs to do the copy-
ing with the same memory request used for marking.

In addition to the basic design, the tracer has to check
for relocated references as they are added to the mark
queue and remap them (Section 4.3). Furthermore,
based on the observation that only the mark bits need
to be cached, the mark unit can implement a bit cache
as an optimization (e.g., using the design from [11]).

4

4.2 The Relocation Unit
The relocation unit’s task is to regularly 1) find pages

that are mostly garbage and should therefore be evacu-
ated, 2) build a side-table 8 of forwarding pointers, 3)
protect the original page in the page table, and 4) move
objects over to the new page. At the same time, the
relocation unit receives requests from CPUs when they
need to find the new location of an object 7 . If the
data has already been relocated, the relocation unit will
respond immediately with the new address, otherwise it
will relocate the object and then respond. CPUs hence
always get a response with the new location, but it may
be delayed (which is seen by the CPU as a long mem-
ory load). One advantage over the software approach is
that this makes concurrency much simpler.

Like the mark queue, the forwarding table may have
to be spilled to memory, but part of it can be cached
by the relocation unit. This gives rise to a large design
space (e.g., whether to use a CAM or hash table).

Once the relocation unit has finished relocating a
page and remapping has completed, it frees the physi-
cal memory and writes the addresses of available blocks
into a free-list in memory, which can be accessed by
conventional bump-pointer allocators on the CPUs.

4.3 CPU Modifications
Changes to the CPUs are confined to adding a simi-

lar read barrier mechanism as Pauseless GC. However,
we fully implement the barrier in hardware instead of
triggering a user-level trap. While taking only a few
cycles, these traps can be frequent, redirect the instruc-
tion stream (dropping out-of-order state) and cannot
be speculated over. Note that the latter is also true for
software barriers. A hardware barrier avoids both the
cost of trapping and the energy and resource overheads
from implementing the barrier in software.

Like Azul, we reuse the virtual memory system to im-
plement the barrier. Our key difference is the way we
handle stale references in registers. Read barriers are
only added when reading a reference into a register; the
challenge remains how to handle the case where an ob-
ject was relocated afterwards. Pauseless handles this by
scrubbing references from registers during checkpoints,
before relocation can begin. However, this can lead to
occasional pauses. An alternative would be not to use
explicit read barriers and trap when accessing a relo-
cated object’s data, but then we could not self-heal the
reference, as we do not know where it originally came
from (plus we would lose temporal locality).

We get around these problems by using a hybrid: in
addition to the read barrier, we catch accesses to stale
(i.e., relocated/protected) pages and self-heal the ad-
dress stored in the register used for the access.

Altogether, our modifications to the CPU restrict
themselves to adding a RB rd, N(rs) read barrier in-

LD rd, 4(r1) # Load ref from field in r1
RB rd, 4(r1) # Read barrier (might fix up [r1+4])
SD $0, 8(rd) # Use ref, store a value into a field

Figure 5: Code to load and use a reference on our architecture

struction that checks whether rd contains a valid refer-
ence loaded from rs and if not, fixes the reference and
stores the updated value back to address rs+n. Figure 5
shows how it is used. We then add logic to the pipeline
to intercept and handle the three cases from above (the
changes may be contained to a single component):

9 NMT fault: When executing a read barrier and
the MSB is wrong, write the reference to the buffer that
is used to communicate reachable addresses to the mark
unit, flip the mark bit, fix the original address and con-
tinue. When the buffer’s cache line is evicted, the mark
unit sees the update as it owns that physical memory.
When the mark queue is empty, that memory is polled
directly (which ensures that we see all references).

10 Relocation fault: When executing a read barrier
and we get a protection fault, the object is being relo-
cated and we need to determine its new location. To do
so, we write the old address to a physical address under
the control of the relocation unit and then load from
another. The load will stall until the relocation unit re-
sponds (reusing the cache coherence protocol) and when
it completes, we write the location back to the original
location associated with the barrier. This is better than
trapping, since the out-of-order processor can speculate
over this stall, and does not have to discard any out-
of-order state. Note that the mark unit also needs this
check for every pointer it puts into the mark queue.

11 Stale reference fault: When getting a protection
fault from a regular access, request the new location
from the relocation unit as in the previous case but fix
up the value in the original register rather than memory.

In summary, our design offloads phases that are a poor
fit for general-purpose cores to accelerators close to mem-
ory, and allows CPUs to speculate over triggered barri-
ers. The approach is non-invasive, as it reuses the exist-
ing coherence network and only adds moderate changes
to the CPU. There is, of course, a large design space as-
sociated with each aspect of this proposal, and we are
planning to evaluate a wide range of these trade-offs.

5. DISCUSSION AND PROGRESS
Evaluating our design is challenging, as system per-

formance and power is determined by very fine-grained
interactions between components. As such, high-level
simulators are unlikely to give credible results. At the
same time, cycle-accurate architectural simulators are
too slow to run full Java applications for minutes of
simulated time and large numbers of threads.

5

0

50

100

150

200

250
M
ar
k	
Ph
as
e	
Ex
ec
ut
io
n	
Ti
m
e	
(m

s)

Benchmark	(Dacapo	 2012,	n-th	GC	pass)

Rocket BOOM HW

(a) Completion Times

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

To
ta
l	D

RA
M
	E
ne
rg
y	
(J)

Benchmark	(Dacapo	 2012,	n-th	GC	pass)

Rocket BOOM HW

(b) DRAM Energy

Figure 6: Comparison between Mark Unit (with 512KB mark
queue), Rocket in-order and BOOM out-of-order core (both with
512KB L2 cache, 16/32KB L1D caches) all simulated at 1 GHz.
DRAMSim Model: 256MB DDR3, 667MHz, 8 banks.

The established standard for evaluation of GC re-
search are the Jikes RVM [15] and the Dacapo bench-
marks [16]. Dacapo is designed to stress the memory
management layer with a set of real-world workloads,
and Jikes provides state-of-the-art GCs as a baseline.
We therefore decided to build on this infrastructure.

In contrast to most existing work, we implement our
GC into a real SoC. This allows us to evaluate it at high
clock rates on an FPGA and achieve much higher fi-
delity than a simulator, including detailed energy mod-
els [17]. We use the Rocket Chip [18] infrastructure,
which provides a customizable in-order core (Rocket)
and out-of-order core (BOOM) as well as an SoC gen-
erator that can generate flexible topologies including
cores, caches, accelerators, etc. Rocket Chip has been
taped out eleven times and supports a large software
ecosystem (we are in the process of porting Jikes).

We now show preliminary, unscientific numbers from
our work-in-progress prototype running in RTL-level
simulation with DRAMSim [19]. As our Jikes port is
not complete yet, we take heap snapshots from several
Dacapo benchmarks running on x86 and rewrite them
to our object layout. We first focussed on the mark
unit, which we implemented in RTL and integrated into
Rocket Chip. Figures 6 and 7 demonstrate the impact
of a dedicated mark unit relative to executing an (un-
tuned) implementation of the mark phase on traditional
CPUs. The main benefit is a much better utilization of
memory bandwidth, which substantially reduces overall
DRAM and core energy. Note that we report DRAM
energy (as it currently dominates) and that we do not
spill the mark queue into memory yet. With spilling,
the mark queue size can be decreased to 10s of KBs.

There are many open questions and we are hoping to
investigate some of them as part of our research:

1. Is there hardware support for root scanning and gen-
erational GC? Azul’s C4 collector is generational and
Sun’s Maxwell project has worked on both [8].

2. Can the system generalize to other GCs by making it
configurable and handle parts in software if necessary?

0 20 40 60 80 100 120 140 160 180

Time since start of mark phase (ms)

0.0

0.5

1.0

1.5

2.0

D
R

A
M

 B
an

dw
id

th
 (

G
B

/s
)

Rocket BOOM HW

Figure 7: DRAM bandwidth over time (avrora3 benchmark).

3. Is it possible to support other object layouts? One
approach could be to replace the mark unit’s marker
with a small micro-coded RISC-V CPU.

4. How are multiple processes supported?

5. We focus on object-oriented languages. What would
it take to support functional languages?

Conclusion: We think it is time to revisit hardware
support for GC to build a pause-free collector that is
much more energy efficient than the state of the art. We
believe our design is a promising step in this direction
and are implementing our GC in a real system.

References
[1] E. Moss, “The Cleanest Garbage Collection: Technical

Perspective,” CACM, vol. 56, p. 100, Dec. 2013.
[2] T. Cao et al., “The yin and yang of power and performance

for asymmetric hardware and managed software,” ISCA ’12.
[3] C. Click et al., “The Pauseless GC Algorithm,” VEE ’05.
[4] M. Meyer, “A True Hardware Read Barrier,” ISMM ’06.
[5] J. A. Joao et al., “Flexible Reference-counting-based

Hardware Acceleration for Garbage Collection,” ISCA ’09.
[6] D. F. Bacon et al., “And then there were none: A stall-free

real-time garbage collector for reconfigurable hardware,”
[7] G. Wright, M. L. Seidl, and M. Wolczko, “An object-aware

memory architecture,” SCP, vol. 62, no. 2, 2006.
[8] M. Wolczko, G. Wright, and M. Seidl, “Methods and

apparatus for marking objects for garbage collection in an
object-based memory system.” US Patent 8,825,718.

[9] R. Jones and R. Lins, Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley, 1996.

[10] G. Wright, “A Hardware-Assisted Concurrent & Parallel
Garbage Collection Algorithm,” Tech. Rep. (unpublished),
Sun Microsystems, Dec 2008.

[11] T. Harris, S. Tomic, A. Cristal, and O. Unsal, “Dynamic
Filtering: Multi-purpose Architecture Support for
Language Runtime Systems,” ASPLOS ’10.

[12] E. M. Gagnon et al., “SableVM: A Research Framework for
the Efficient Execution of Java Bytecode,” JVM ’00.

[13] M. Maas et al., “GPUs As an Opportunity for Offloading
Garbage Collection,” in ISMM ’12.

[14] W. Puffitsch and M. Schoeberl, “Non-blocking Root
Scanning for Real-time Garbage Collection,” JTRES ’08.

[15] B. Alpern et al., “The Jikes Research Virtual Machine
Project: Building an Open-Source Research Community,”
IBM Systems Journal, vol. 44, no. 2, pp. 399–417, 2005.

[16] S. M. Blackburn et al., “The DaCapo benchmarks: Java
benchmarking development and analysis,” in OOPSLA ’06.

[17] D. Kim et al., “Strober: Fast and Accurate Sample-Based
Energy Simulation for Arbitrary RTL,” in ISCA ’16.

[18] K. Asanovic et al., “The Rocket Chip Generator,” Tech.
Rep. UCB/EECS-2016-17, UC Berkeley, Apr 2016.

[19] D. Wang et al., “DRAMsim: A Memory System
Simulator,” SIGARCH Comput. Archit. News, Nov 2005.

Acknowledgements: We want to thank Ben Keller for contributing to the pro-
totype and Tim Harris, Eric Love, Philip Reames, Mario Wolczko and the review-
ers for their feedback. Research was partially funded by DARPA Award Number
HR0011-12-2-0016, DOE grant #DE-AC02-05CH11231, the STARnet Center for
Future Architecture Research (C-FAR), and ASPIRE Lab sponsors and affiliates
Intel, Google, HPE, Huawei, LGE, NVIDIA, Oracle, and Samsung.

6

