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Abstract
For the software industry to take advantage of multi-
core processors, we must allow programmers to arbi-
trarily compose parallel libraries without sacrificing per-
formance. We argue that high-level task or thread ab-
stractions and a common global scheduler cannot pro-
vide effective library composition. Instead, the operat-
ing system should expose unvirtualized processing re-
sources that can be shared cooperatively between parallel
libraries within an application. In this paper, we describe
a system that standardizes and facilitates the exchange
of these unvirtualized processing resources between li-
braries.

1 Introduction

Despite the rapid spread of parallel hardware, parallel
software will not become commonplace without support
for efficient composition of parallel libraries. Compos-
ability is essential for programmer productivity, allow-
ing applications to be constructed from reusable libraries
that can be developed and maintained independently, and
possibly even written in different languages.

Unfortunately, when current parallel libraries are com-
posed within the same application, they will generally in-
terfere with each other and degrade overall performance.
This is because, unlike sequential libraries, parallel li-
braries encapsulate resource management in addition to
functionality. A parallel library decomposes computa-
tion into independent tasks that it executes using some
abstraction of the hardware resources of the underlying
machine, typically kernel-scheduled virtual threads. The
threads used by various libraries within the application
are then time-multiplexed by the operating system sched-
uler onto thesamehardware resources, potentially caus-
ing cache interference, gratuitous synchronization con-
tention, and other performance-degrading conflicts.

Current libraries supply ad hoc solutions to this com-
posability problem. For example, Intel’s Math Kernel

Library (MKL) instructs its clients to call the sequen-
tial version of the library whenever it might be running
in parallel with another part of the application [1]. This
places a difficult burden on programmers who have to
manually choose between different library implemen-
tations depending on the calling environment. Worse,
a programmer writing a new parallel library that calls
MKL will export the exact same problem to its users.

We claim the problem will not be solved by attempting
to coerce all parallel libraries to map their computation to
some universal task or thread abstraction, with the hope
that some standard global scheduler (either at user-level
or in the operating system) can map these to available
hardware processors efficiently. First, there has been no
agreement on the best parallel practices, as evidenced by
the proliferation of new parallel languages and runtimes
over the years. Second, it is also unlikely that a compet-
itive general-purpose scheduler even exists, as they have
been repeatedly outperformed by code optimizations that
leverage domain or application-specific knowledge (e.g.
[10, 7]). Finally, even if a competitive task or thread ab-
straction emerges, it is unlikely that the growing body of
legacy parallel libraries will be rewritten to suit.

We argue that using a common high-level parallelism
abstraction fundamentally impairs the composability and
efficiency of parallel libraries, and that instead libraries
should cooperatively share the underlying physical pro-
cessing resources. In this way, the physical resources are
never oversubscribed, and each library can customize its
own mapping on to the parallel execution substrate.

Our proposal has two main components. First, we ex-
port a new low-level unvirtualized hardware thread ab-
straction, orhart, from the operating system to appli-
cations. Second, we provide a new resource manage-
ment interface,Lithe, that defines how harts are trans-
ferred between parallel libraries within an application.
Lithe is fully compatible with sequential code, and can
be inserted underneath the runtimes of legacy parallel
software environments to provide “bolt-on” composabil-
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ity. Lithe also enables the construction of new paral-
lel libraries using customized task representations and
scheduling policies.

2 Towards a Better Processing Abstraction

Virtualized kernel threads have become the central ab-
straction in modern operating systems, providing a pro-
cessing substrate for application programmers and the
schedulable unit for the OS. In this section, we motivate
our move towards unvirtualized hardware threads as the
primary processing abstraction in a parallel system.

Historically, kernel threads were criticized for being
too heavyweight for parallel programs. This gave rise
to N:M style user-level thread libraries, which had ac-
ceptable performance provided the application eschewed
blocking system calls (specifically I/O). Scheduler acti-
vations [2] were proposed to handle this particular de-
ficiency of N:M user-level threading, but the approach
was not widely adopted. Instead, kernel threads were
improved to bridge the performance gap and are now the
de factochoice on which to build modern parallel appli-
cations and libraries.

Unfortunately, because the OS performs oblivious
multiplexing of virtualized kernel threads onto available
physical processors, there is often serious interference
between parallel libraries executing within an applica-
tion. This makes it difficult for programmers to reason
about performance and drastically reduces the utility of
well-known optimizations such as software prefetching
and cache blocking.

Instead of kernel threads, we argue an operating sys-
tem should export a low-level unvirtualized hardware
thread abstraction that we call ahart, a contraction of
hardware thread. A hart abstracts a single physical pro-
cessing engine, i.e., an entire single-threaded core or one
hardware thread context in a multithreaded core (e.g. a
SMT core [13]). As far as an application is concerned, a
hart is continually “beating”, i.e., advancing a program
counter and executing code. Harts have a one-to-one
mapping to a physical processing engine while the appli-
cation is running, and hence cannot be oversubscribed.
An application is allocated an initial hart and must re-
quest subsequent harts from the operating system, which
is free to postpone, perhaps indefinitely, the granting of
additional harts.

The hart abstraction is sufficiently low level that
within an application a programmer need not be con-
cerned with possible oversubscription. However, the hart
abstraction is sufficiently high level that it enables an OS
to do both space and time multiplexing of applications on
a parallel system. For example, an operating system can
space-multiplex applications by never allocating a pro-
cessing engine to more than one hart of one application

at a time. An operating system may time-multiplex ap-
plications by gang-scheduling all harts of one applica-
tion onto the physical engines after swapping off all harts
of another application. Combinations of both space and
time multiplexing are also possible [11].

The set of harts allocated to an application is analo-
gous to the virtual multiprocessor allocated to an appli-
cation with scheduler activations. However, harts were
designed to faithfully represent the underlying parallel
hardware to prevent oversubscription, while scheduler
activations were designed to handle the problems caused
by blocking system calls in user-level threading. We are
exploring how to best handle system calls with harts, ei-
ther with an approach based on scheduler activations or
by moving to a non-blocking system call interface.

Although we believe future parallel operating systems
should export some form of harts to applications instead
of kernel threads [11], the concept of harts is still ef-
fective even without OS support. In fact, many paral-
lel libraries and frameworks approximate harts today by
never creating more threads than the number of process-
ing engine in the underlying machine. Some operating
systems even allow threads to be pinned to different pro-
cessing engines so that the threads don’t interfere. In
essence, the hart abstraction is meant to capture this dis-
cipline, both within different libraries in an application
and across multiple applications in a system.

3 Composable Hart Management

In this section, we present our key design decisions on
how to share the finite number of harts allocated to an
application among all the libraries within the application.

As a concrete example, consider an application
containing libraries written using POSIX Threads
(Pthreads), Cilk [3], Intel’s Threading Building Blocks
(TBB) [12], and OpenMP [4], with the call graph shown
in Figure 1(a). The call graph emphasizes the hierarchy
created by the caller/callee relationship of the libraries
(Figure 1(b)). For example, the library written using
Pthreads calls the library written using TBB which in
turn calls the library written using OpenMP.

Our first design decision is thatcallers should be re-
sponsible for providing harts to callees. Interestingly,
this is already the standard mechanism in the sequential
world, where a caller implicitly grants its processing re-
source to a callee until the callee returns. The justifica-
tion is that when a caller invokes a callee, it is asking
it to perform work on the caller’s behalf. More impor-
tantly, a routine that makes calls in parallel might exploit
local knowledge (e.g., about a critical path) to prioritize
giving harts to one callee over another. Such knowledge
would in general be difficult to communicate if we in-
stead relegated the decision to some non-local or even
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(a) Example application call graph. (b) Hierarchical relationship of libraries.

Figure 1: An example parallel application that consists of libraries implemented using Pthreads, Cilk, TBB, and
OpenMP.

global scheduling entity.
Our second design decision is thatlibraries should

cooperatively share harts. Callers should not preempt
harts already granted to a library. Instead, callees should
cooperatively return harts when (a) they are done with
them, (b) have diminishing returns in their effective use
of them, or (c) can not currently use them because, for
example, they are waiting on a synchronization event
(see Section 4.3). We believe preemption is only neces-
sary for servicing events like I/O or timers, a task better
supported at the operating system level. A cooperative
model does not imply that a programmer needs to take a
defensive strategy against losing harts—a sequential li-
brary might contain a misbehaving infinite loop but pro-
grammers do not generally protect against this possibility
at every call site.

4 Lithe

Lithe standardizes and facilitates the sharing of harts be-
tween parallel libraries. Much like how the applica-
tion binary interface (ABI) enables interoperability of
libraries by defining standard mechanisms for invoking
functions and passing arguments, Lithe enables the effi-
cient composition of parallel libraries by defining stan-
dard mechanisms for exchanging harts.

Lithe consists of two components – a callback inter-
face and a runtime. The Lithe callback interface defines a
standard set of functions that must be implemented by all
libraries that want to manage their own set of harts. The
Lithe runtime keeps track of all parallel libraries in an ap-
plication, and invokes the appropriate library’s callback
on behalf of libraries that want to request or share harts.

Table 1 enumerates the callback interface and the corre-
sponding runtime functions, which we next describe in
detail. Note that the Lithe runtime functions have the
lithe prefix.

4.1 Lithe Callback Interface and Runtime

We define ascheduleras an object (i.e. code and state)
that implements the Lithe callback interface for a library.
At any point in time, each hart is managed by exactly one
scheduler, itscurrentscheduler. The Lithe runtime keeps
track of the current scheduler for every hart.

Whenever a library wants to manage harts for parallel
execution, it instantiates and registers its scheduler with
Lithe using the runtime functionlithe register.
This establishes the scheduler as thechild of the execut-
ing hart’s current scheduler (theparent). The Lithe run-
time in turn invokes the parent scheduler’sregister
callback, which records the new child scheduler as want-
ing to manage harts for its associated computation.

To request additional harts, a scheduler invokes
lithe request, which invokes its parent scheduler’s
request callback. If the parent does not have enough
harts to service the child, it can in turn request harts from
its own parent (i.e., the child’s grandparent).

To grant a particular hart to a child scheduler, the par-
ent scheduler callslithe enter with that hart, pass-
ing the child as an argument. The Lithe runtime then in-
vokes the child scheduler’senter callback, effectively
giving the child control of the hart.

When a scheduler is done with a particular hart,
it returns the hart to its parent scheduler by calling
lithe yield with that hart. The Lithe runtime then
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invokes the parent scheduler’syield callback, effec-
tively returning control of the hart back to the parent.

When a child scheduler eventually completes its com-
putation and no longer needs to manage harts, it calls
lithe unregister, which in turn invokes the par-
ent scheduler’sunregister callback. The parent then
knows not to give any more harts to this child, and can
clean up any associated state.

The Lithe runtime provides a base scheduler for the
application, which acts as an intermediary between the
application and the operating system. It has at most one
child scheduler, the root scheduler of the application.
When the root scheduler invokeslithe request, the
base scheduler requests additional harts from the operat-
ing system, and passes all harts allocated by the operating
system to the root scheduler usinglithe enter.

Theregister, unregister, andrequest call-
backs return to their callers immediately, whereas the
enter andyield callbacks do not return but instead
cause the hart to flow to a new code path within a differ-
ent library.

4.2 Parallel Quicksort Example

To illlustrate how a library can manage its own paral-
lel execution using Lithe, consider the parallel quick-
sort example in Figure 2. The top-level function is
sort (lines 1–16). Since our sort library wants to man-
age its own harts, it instantiates apar sort sched
scheduler object (line 6). Assume that the scheduler
object contains an internal queue and a function dis-
patch table for the Lithe runtime to find its callbacks.
For simplicity, we have only shown one of its callbacks,
par sort enter (line 30).

Figure 3 shows how harts move in and out of the sort
scheduler. First,sort registers the new scheduler with
the Lithe runtime (line 3-6), effectively transferring the
ownership of the current hart tosort, and notifying the
parent scheduler of its intent to parallelize. Once the
scheduler is registered, we request as many harts as pos-
sible (line 8).

Our quicksort example is based on the standard recur-
sive divide-and-conquer algorithm that partitions a vec-
tor of elements into two halves that are sorted in parallel
(par sort, called in line 10, defined in lines 18–28).
The base case is when the partitions become too small
to be split any further, and are simply sorted sequentially
(lines 20–21).

To parallelize, we utilize a queue to store partitions
that have not been sorted. As shown in lines 25 and 27,
we sort the left half of the partition, while enqueuing the
right half to be executed by the next available hart. In
contrast, a Pthread implementation might create a virtu-
alized thread to sort the right half in parallel, which may

1 void sort(vector *v)
2 {
3 par sort sched sched;
4 sched.q.init();
5

6 lithe register(&sched);
7

8 lithe request(MAX NUM HARTS);
9

10 par sort(v, &sched.q);
11 vector *next;
12 while (sched.q.dequeue(&next))
13 par sort(next, &sched.q);
14

15 lithe unregister();
16 }
17

18 void par sort(vector *v, queue *q)
19 {
20 if (v->length < 1000)
21 seq sort(v);
22

23 vector *left, *right;
24 v->partition(&left, &right);
25 q->enqueue(right);
26

27 par sort(left, q);
28 }
29

30 void par sort enter(par sort sched *sched)
31 {
32 vector *next;
33 while (sched->q.dequeue(&next))
34 par sort(next, &sched->q);
35 lithe yield();
36 }

Figure 2: Parallel quicksort pseudocode example.

result in many virtualized threads competing counterpro-
ductively for a limited set of processors.

The main hart will continue to process the enqueued
partitions one-by-one until the queue is empty, i.e. all
partitions have been sorted (lines 12–13). This means
that the sort can be completed on a single hart if neces-
sary. However, if thepar sort sched is granted ad-
ditional harts by its parent scheduler, each of these new
harts will executepar sort enter and help the main
hart finish sorting the remaining partitions (lines 33–34).

When the vector is completely sorted, we yield all of
our additional harts back to our parent scheduler (line
35), and unregister (line 15) using the main hart so that
the parent scheduler can stop granting more harts.

4.3 Synchronization

Synchronization across libraries within Lithe requires
extra care because the system might deadlock if one of
the libraries is not allocated a hart. Therefore, harts are
forbidden from spinning indefinitely on synchronization
objects. Instead, Lithe provides synchronization primi-
tives (mutexes, barriers, and semaphores) which can be
used directly or from which other synchronization ob-
jects can be created.

The Lithe synchronization primitives are imple-
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Table 1: The Lithe runtime and callback interface.
Runtime Function Callback Description

lithe register(scheduler) register(child) install this scheduler as the current scheduler
lithe unregister() unregister(child) terminate the current scheduler and reinstall its parent
lithe request(nharts) request(child, nharts) request additional harts for the current scheduler from itsparent
lithe enter(child) enter() grant this hart from the current scheduler to its chosen child
lithe block(context) save current context & reenter current scheduler to do something else
lithe yield() yield(child) return this hart from the current scheduler to its parent
lithe unblock(context) unblock(context) signal to this context’s scheduler that it is ready to run

Figure 3: Possible execution of quicksort example.

mented using thelithe block runtime routine. The
lithe block routine saves the current execution con-
text, and re-enters the current scheduler by invoking
its enter callback. When the synchronization prim-
itive is ready to resume an execution context (for ex-
ample, because the mutex was released), it invokes the
lithe unblock runtime routine with the resumable
execution context as an argument. This in turn invokes
theunblock callback on the scheduler that owned the
execution context when it was blocked. Note that the hart
invoking theunblock callback may be from a different
scheduler and can not be used to resume the execution
context, but that hart may be used to request additional
harts from within theunblock callback (for example,
if the scheduler had already yielded all of its own harts).
Like register, unregister, and request, the
unblock callback does not indicate a transfer of hart
management, but should just return to the caller.

Note that synchronization within a scheduler often
does not need to use these primitives. For example, a
Lithe-compliant TBB scheduler implementation would
use the Lithe synchronization primitives to implement
external synchronization objects (i.e. their reentrant
queuing mutex), but internally use spinlocks to protect
scheduler data structures.

4.4 Discussion

Lithe was designed to reinforce a clear separation of in-
terface and implementation so that a programmer can call
a library routine without knowing whether the routine is
sequential or parallel. This enables incremental paral-

lization of sequential libraries.
Lithe was also designed such that only libraries desir-

ing parallel execution need to interact with Lithe, pro-
viding backwards compatibility with existing sequential
libraries without adding any execution overhead.

Most application programmers will not need to know
the details of Lithe. Rather, they can leverage parallel li-
braries, frameworks, or languages that have already been
modified to be Lithe-compliant.

5 Related Work

Several other systems support multiple co-existing
schedulers, but with varying motivations. The most simi-
lar to Lithe is the Converse system [8], which also strives
to enable interoperability between different parallel run-
times. Converse also built synchronization mechanisms
on top of the scheduling interface. However, the two
systems are fundamentally different in how schedulers
cooperate. In Lithe, a parent scheduler grants harts to
a child scheduler to do with as it pleases. In Converse,
the child scheduler must register individualthreadswith
a parent scheduler, effectively breaking modularity and
forcing the parent to manage individual threads on its
behalf; the child only gets harts implicitly when its par-
ent decides to invoke these threads. Furthermore, Con-
verse does not facilitate the plug-and-play modularity
supported by Lithe, since a scheduler in Converse must
know its parent’s specific interface in order to register
its threads, effectively limiting with which codes it can
interoperate. In addition, the hierarchical relationship
of the schedulers does not follow the call graph, mak-
ing it harder to use local knowledge to prioritize between
schedulers.

The CPU inheritance scheme [6] allows both op-
erating system and application modules to customize
their scheduling policies, although the focus is more
on OS schedulers. As in Converse, CPU inheritance
schedulers cooperate by scheduling another scheduler’s
threads rather than by exchanging resources. Moreover,
all blocking, unblocking, and CPU donations must go
through a “dispatcher,“ which is in the kernel, forcing
inter-scheduler cooperation to be heavyweight even if all
of the schedulers are within the same application.
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The Manticore [5] framework consists of a compiler
and runtime that exposes a small collection of scheduling
primitives upon which complex interoperable schedul-
ing policies can be implemented. However, unlike un-
virtualized harts, thevprocabstraction is designed to be
time-multiplexed by default, thus cannot prevent sched-
uler oversubscription of hardware resources. Further-
more, schedulers do not interact with each other to share
resources but rather all request additional vprocs from a
global entity.

The Concert framework [9] is designed to achieve bet-
ter load balancing of large irregular parallel applications.
It defines the same threading model across all schedulers,
but allows them to customize their load-balancing poli-
cies. Concert’s root FIFO scheduler time-multiplexes
its child schedulers, causing the same potential oversub-
scription problem as with virtualized kernel threads.

6 Conclusion

There cannot be a thriving parallel software industry
unless programmers can compose arbitrary parallel li-
braries without sacrificing performance. We believe that
the interoperability of parallel codes is best achieved by
exposing unvirtualized hardware resources and sharing
these cooperatively across parallel libraries within an ap-
plication. Our solution, Lithe, defines a standardized re-
source sharing interface which is added unobtrusively to
the side of the standard function call interface, preserving
existing software investments while enabling incremen-
tal parallelization.
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