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1. Introduction 

Having just presented Silicon-Photonic Clos Networks for Global On-Chip Communication in the 

3rd ACM/IEEE International Symposium on Networks-on-Chip conference, our research group found the 

usefulness of silicon photonics in core-to-core communications somewhat limited and wanted to 

explore a more viable use of monolithic silicon photonics.  We determined that silicon photonics in 

DRAM architecture was a natural progression from our previous studies because the DRAM system 

included long-distance communication that photonics could easily improve. 

The Parameterized DRAM Model (PDM) was initially a summer project intended to be used to 

explore the use of monolithic silicon photonics in the DRAM system.  PDM is a robust DRAM simulator 

written using Chris Batten’s cycle-accurate micro architectural C++ Hardware Simulator framework 

(HSIM)  described in Appendix A.   When PDM was first designed, we were not certain if we would 

completely rebuild the DRAM system architecture or modify an existing solution today.  Because we 

wanted to explore a potentially large scope of designs, PDM was designed to maximize customizability 

and adaptability.   Although this document is ultimately intended to show how to use PDM, it also 

outlines design decisions as well as missing features for anyone interested in developing future DRAM 

simulation frameworks. 

In this report, we first discuss current DRAM technology as well as the general memory system 

architecture and we isolate an interesting set of design spaces.  We show how PDM deals with these 

design spaces and show how to implement an existing DRAM interface using PDM.  Lastly, we discuss 

what is not included in PDM currently and why they were omitted.  PDM has been proven to be a very 

useful tool in designing and analyzing new DRAM architectures. 

2. DRAM Technology 

 The fundamental blocks used in DRAM are the same regardless of which DRAM interface (DDR, 

SD, RAMBUS) is used.  In this section, we outline the DRAM chip technology and various key terms as 

written in our ISCA publication (Beamer, et al., 2010).   Figure 1 shows the structure of modern DRAMs 

which employ multiple levels of hierarchy to provide fast, energy-efficient access to billions of storage 

cells.  At the lowest level, each cell contains a transistor and a capacitor and holds one bit of storage. 

 Cells are packed into 2D arrays and combined with the periphery circuitry to form an array core 

(Figure 1 (a)).  Each row of the array core shares a wordline with peripheral wordline drivers, and each 
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column shares a bitline with peripheral sense-amplifiers.  Differential sense-amplifiers are used to 

amplify and latch low-swing signals when reading from the bitlines and to regenerate full-rail voltages to 

refresh the cell or write new values into the cell.  The array core is sized for maximum cell density for a 

reasonable delay and energy per activation or refresh.  Even though every cell in the activated row is 

read on an activation of an array core, only a few bits will be transferred over the array core I/O lines 

during a column access.  

 An array block is a group of array cores that share circuitry such that only one of the array cores 

is active at a time (Figure 1 (b)). Each array core shares its sense-amplifiers and I/O lines with the array 

cores physically located above and below it, and the array block provides its cores with a global 

predecoder and shared helper flip-flops for latching data signals entering or leaving the array block. As a 

result, the access width of an array block is equivalent to the number of I/O lines from a single array 

core. 

A bank is an independently controllable unit that is made up of several array blocks working 

together in lockstep (Figure 1 (c)).  The number of array blocks per bank sets the bank's access width. 

Array blocks from the same bank do not need to be placed near each other, and they are often striped 

across the chip to ease interfacing with the chip I/O pins. When a bank is accessed, all of its array blocks 

are activated, each of which activates one array core, each of which activates one row. The set of 

activated array cores within a bank is the sub-bank and the set of all activated rows is the page. 

A chip includes multiple banks that share the chip's I/O pins to reduce overheads and help hide 

bank busy times (Figure 1 (c)). Figure 2 shows how the I/O strip for the off-chip pads and drivers 

connects to the array blocks in each bank. The DRAM command bus must be available to every array 

block in the chip, so a gated hierarchical H-tree bus is used to distribute control and address information 

from the centralized command pins in the middle of the I/O strip (Figure 2 (a)). The read- and write-data 

      (a) Array Core                          (b) Array Block                  (c) Bank and Chip                     (d) Channel 

Figure 1:  DRAM Memory System - Each inset shows detail for a different level of current electrical DRAM memory systems. 
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buses are striped across the chip such that all array blocks in a column are connected to the same data 

bus pin in the I/O strip (Figure 2 (b)).  

A channel uses a memory controller to manage a collection of banks distributed across one or 

more DRAM chips (Figure 1 (d)). The channel includes three logical buses: the command bus, the read-

data bus, and the write-data bus. To increase bandwidth, multiple DRAM chips are often ganged in 

parallel as a rank, with a slice of each bank present on each chip. To further scale bandwidth, the system 

can have multiple memory channels. To increase capacity, multiple ranks can be placed on the same 

channel, but with only one accessed at a time.   

3. Memory System Architecture 

 A diagram of a modern day memory system is outlined in Figure 3.  At the most abstract level, a 

memory system is three logical modules (CPU, memory controller and DRAM) connected with two 

logical interconnects.  These modules and interconnects are described as ‘logical’ because they might be 

implemented with many different physical entities or combined as one.  A memory request originates at 

the CPU (which includes an arbitrary number of caches) and travels to the memory controller using the 

request interconnect.  Within the memory controller, a series of memory requests are converted to 

DRAM commands and DRAM write-data which are sent to the DRAM using the DRAM interconnect.  The 

data produced by the DRAM module (DRAM read-data) take the reverse route through the DRAM 

interconnect to the memory controller where they are converted into memory responses which are 

directed to the CPU through the response network.  Different DRAM interfaces are created by varying 

three basic components in the described memory system architecture.  These basic variables can be 

                                                                    (a) Command Bus                    (b) Read & Write Data Bus 

Figure 2: DRAM Chip Organization – Example DRAM chip with eight banks and eight array blocks per bank: (a) command 
bus is often implemented with an H-tree to broadcast control bits from the command I/O pins to all array blocks on the 
chip, (b) the read- and write-data buses and array blocks are bit-sliced across the chip to match the data I/O pins. (C = off-
chip command I/O pins, D = off-chip data I/O pins, on-chip electrical buses shown in red) 
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summarized by asking three questions:  what is being transported, when is it being transported, and 

how is it being transported. 

What is being transported?  Within the three logical interconnects, we have a total of five 

different payload types found in the DRAM system: request, response, DRAM command, DRAM read 

data, and DRAM write data.  Because the request and response packets are generally defined by the 

CPU, these payloads are assumed to be unchanged across different DRAM interfaces.  The DRAM data is 

generally raw bits and does not require further customizability besides bit width.  Therefore, the first 

interesting parameters are the DRAM commands because they define how the memory controller will 

interface with the DRAM. 

 When is it being transported? The second interesting parameter is the timing and delay 

associated with DRAM commands and data.  Not only are the timing and delay widely different based on 

a specific DRAM part, but the same DRAM part can be initialized with different timing and delay 

parameters.  In order for PDM to be able to support a wide array of DRAM interfaces, it must be able to 

deal with a wide variety of timing parameters necessary to run the DRAM interface correctly. 

How is it being transported? The third interesting parameter determines the implementation of 

the two logical interconnects that bridge between the CPU, memory controller and DRAM.  Not only can 

these interconnects be implemented with any physical topology, but two separate physical interconnect 

networks can be used to implement each logical interconnect.  For example, the DRAM interconnect, 

which is simply a collection of channels, is commonly separated into command and data interconnects.  

However, this is not always the case since the original implementation of Rambus had command and 

data shared the same physical link. 

 To be robust enough to implement a wide variety of DRAM interfaces, the DRAM simulator 

needs to be able to easily deal with all three parameters. 

Figure 3: Top Level DRAM System Architecture – The three logical modules of a DRAM system (CPU, memory controller, 
and DRAM) and the two logical interconnects that connect them. 
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4. Building the Memory Simulator 

Figure 4 shows a high level block diagram of PDM.  The simulator was designed with 

modularized components to maximize sharing between implementations of DRAM interfaces.  The 

reason PDM can be used to implement such a large design space is that each block is independent and 

does not assume a specific operation about any other blocks in the system.  The following subsection 

discusses how PDM’s modular architecture efficiently deals with the three parameters discussed in the 

previous section. 

Making DRAM Commands Configurable  

 The ultimate vision for configurable DRAM commands is for a user to be able to reuse the same 

basic components across many different sets of DRAM commands.  For example, let’s assume that we 

want to add a new power saving command into an already existing DRAM interface.  If we were to add 

the new command into an already existing implementation of the original DRAM interface, it should 

keep the behavior of the simulation unchanged. 

For this reason, a standard enumeration cannot be used to implement polymorphic commands. 

Standard C++ enumerations have some problems including type-safety issues, lack of a containing 

namespace, inability to easily read/write enumerations to streams, and no support for extending on 

enumerations.  In C++, enumerations are essentially names bound to integer values.  Standard enums 

are incredibly difficult to pass between namespaces and finding all available enum values from an enum 

type is virtually impossible to do. 

PDM uses a custom enumeration implementation called stdxEnum2 to bypass the problems 

caused by traditional enumeration types.  A wrapper class (currently called DramCommand) instantiates 

a stdxEnum2 type that contains all the wanted commands as well as some helper methods used to 

Figure 4: Simulator Block Diagram – This is a diagram of a single channel in the simulator.  Notice how the simulator 
structure is essentially implements the Top Level Dram System Architecture shown in Figure 3.  (R-to-C = Request to 
Command, D-to-R = Data to Response) 
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access other meta data such as address.  All modules which deal with the DRAM command now have 

convenient access to a list of all possible commands through the wrapper class. 

The ability to add new commands at will is a powerful tool for incremental development.  We 

can first implement a small subset of available commands in a DRAM interface and incrementally add 

new commands to verify correct behavior of the added commands.   

Making Timing Configurable  

 In a DRAM system, there are multiple locations that require checking the timing of commands.  

One location is the memory controller because it will need a way to verify correct timing to issue 

commands at the correct time.  We also might want to place timing checks in the banks and ranks to 

make sure our memory controller is not violating any timing.  Because PDM is designed to be modular, 

not all components are required to be written in C++.  Any single block in Figure 4 can be replaced with a 

Verilog simulation without compromising the behavior of the simulation.  Checking timing in the bank 

and rank is essential if your software simulator is able to replace individual modules with Verilog 

modules because we could easily verify any problems in timing caused by the RTL block.  

 Because we might want to verify the timing in multiple locations, PDM uses an easily modifiable 

verifier that can be instantiated anywhere.  When the verifier is declared, the user passes in two 

template arguments that list all the commands and states the DRAM interface uses.  Once the verifier is 

declared, the user passes in a series of transitions and constraints to configure the verifier.  A transition 

is composed of a source state, a destination state, and a trigger command that allows the verifier to 

transition from the source to destination state.    The transitions successfully define a state machine for 

the DRAM and allow the verifier to determine what commands are legal at any state.  A constraint is 

composed of two commands and a cycle number that signifies how many cycles after the first command 

one needs to wait until the second command is valid.  The constraint also contains two Boolean 

variables that define whether the timing constraint is placed in the same or different ranks and banks.  

By using both transitions and constraints, we can successfully define when and if a command can be 

issued.  By changing what transitions and constraints are entered into the verifier, we can define a very 

large array of DRAM interfaces. 

 Once all the transitions and constraints have been correctly set in the verifier, the verifier can be 

exercised with two methods: check and set.  The check method is called when we want to check if a 

specific command is valid.  For example, we can use the check method in the memory controller to poll 
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if we can issue the next command in the queue.  Another use is to place a verifier in the bank or rank 

and check to see if the incoming command meets the timing requirements.  The set method is used 

once we verify that the command is valid and we either issued it or accepted the command.   

Making Interconnects Configurable  

 Making the interconnect in the DRAM implementation configurable does not require much in 

PDM.  Since all the modules in PDM use the same handshaking interface, we can place any kind of 

interconnect between the modules and guarantee correct behavior.  One obvious caveat is that if the 

packet transported is time sensitive (such as a DRAM command), the interconnect will require a 

Figure 5: DDR3 State Machine – State machine found in the Micron DDR3 datasheet (Micron) 
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predictable amount of latency for the source to time the packet correctly.  This means we generally do 

not want interconnects that introduce variance in latency due to congestion and routing.   

5. Configuring the Simulator 

 In this section, we describe how a specific DRAM interface is implemented in PDM.  Because it is 

commonly used in modern day systems, the DDR3 interface is outlined in the following subsection and 

implemented in PDM. 

The DDR3 Interface 

 Figure 5 outlines a simple state machine for the DDR3 interface.  PDM does not simulate the 

initialization of the DRAM.  Initialization of the DRAM is used to configure certain parameters such as 

timing and command behavior and is not interesting for analysis because it is always constant and 

predictable.  Because we are using a C++ simulation, parameters can be passed into the DRAM module 

upon instantiation. 

 Assuming the DRAM is already initialized, there are six core commands that the DRAM can 

recognize: activate, read, write, precharge, refresh, and power down.  These DRAM commands use the 

command bus to broadcast to all the banks and ranks and therefore most commands require a few bits 

to specify which rank and bank the command is intended for.  Some of the power down commands 

utilizes this broadcasting ability to target a group of banks to power down. 

The activate command takes a row number and opens a row in a particular bank for a 

subsequent access.  Opening a row essentially stores an entire row of data into the sense amps such 

that a later access can be used to retrieve a small chunk of the preloaded row. This row remains open 

for further accesses until a precharge command is issued to that bank.   

A read command is used to initiate a burst read access to an active row while a write command 

is used for a burst write access.  A burst is defined as either four or eight columns depending on a status 

bit and cannot be interrupted once the command is issued.  Both read and write commands require the 

use of the data bus.  The data bus, like the command bus, is shared across all banks and ranks.  However, 

the data bus is bidirectional while the command bus is unidirectional.  With a read command, a burst of 

data is placed on the data bus a set number of cycles after the read command and conversely a burst of 

data is required on the data bus a set number of cycles after a write command.  The timing of DRAM 
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commands must be very precise for the data bus to be utilized by only a single bank at any given time.  

Any read or write commands can be instructed to automatically precharge after the operation is 

complete.  If auto precharge is not selected, the opened row will remain open after the read/write 

operation.  When the auto precharge is selected this is referred as a closed read or write as opposed to 

an open read or write. 

A precharge command is used to deactivate the open row in a particular bank or in all banks.  

During a precharge, the bit lines are recharged such that a new row can be loaded with an activate 

command.  During this precharge period, all reads and writes to other banks can be successfully issued 

without disturbing the precharge.  After the precharge period, the bank is returned to the idle state 

where it waits for another activate command.   

Since DDR3 is a dynamic memory, a cell requires regular refreshing for the data to remain 

uncorrupted.  For DDR3 this refresh process is invoked by the refresh command.  A refresh can be 

targeted to one bank or all banks and no addresses are needed because the addresses are computed 

using an internal counter.   

The power down command can be issued to shut down the DRAM device to save power.  If the 

DRAM device is not to be used for a long duration, the memory controller can decide to issue the power 

down command. 

PDM Implementation of DDR3 

 This section shows how PDM is set up for the DDR3 DRAM interface.  Using PDM we can easily 

create an implementation of any other DRAM interface using similar techniques. 

CPU 

 In PDM, the CPU is emulated with a combined source and sink module which injects preset 

traffic patterns into the memory system.  Two different groups of traffic patterns are currently 

implemented in PDM: random and streaming.  The random traffic pattern generates a random base 

address and uses an offset of the base address for a given number of accesses.  After a “stream size” 

number of memory accesses, the random traffic pattern generates a new random base address and the 

process continues.  If the stream size is set to one, the traffic pattern would be a true random traffic 

pattern where the address is randomized for each access.  The request is randomly chosen to be a load 

or store based on a parameterized load to store ratio.    
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 With the streaming traffic pattern, the user defines either a traditional triad or mem copy 

operation.  In mem copy, the pattern defines two streams: one to read and one to write, a common 

operation when copying a long vector.  Triad is a stream operation which defines two read streams and 

one write stream, simulating an arithmetic operation on two vectors and storing to a third. 

 Since a synthetic traffic pattern is generally representative of a single core operation, we can 

create a simulated multicore traffic pattern by connecting many sources with a crossbar.  PDM allows an 

arbitrary number of sources to be bundled to represent any number of threads being run at the same 

time.  A creative mix of different traffic patterns can be grouped easily to generate new traffic patterns 

as needed. 

DRAM 

 The PDMDramBank module simulates a DDR3 DRAM part by instantiating a 2D array of bytes 

the size of the DRAM component.  PDM instantiates this large array to make sure the correct data is 

being written and read back.  Not only does this allow for comprehensive tests, but if PDM were to 

eventually support any RTL model, storing and reading the correct data will be a valuable resource for 

verifying correct behavior.    

Memory Controller 

 A high level block diagram of the memory controller (pdmDramMemoryController) is shown in 

Figure 6.  The memory controller can be divided into three units: the translator, the arbiter, and the 

scheduler (verifier).  The translator takes the memory requests and converts them into an optimal 

sequence of DRAM commands.  These commands are then placed in buffers based on the intended bank.  

The verifier checks whether the bank buffers with commands are able to be issued on the next cycle.  

The arbiter then uses some arbitration scheme to determine which bank buffers to issue.  The 

Figure 6:  Memory Controller – High level block diagram of the KDM DDR3 memory controller implementation 
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arbitration scheme currently used in PDM for DDR3 is round robin among the banks that have been 

filtered by the verifier.  In this case, PDMDramSimpleDDRVerifier implements a simple DDR3 verifier 

using timing parameters in Table 1.   

Table 1: DDR3 Timing Constraints – The list of DDR3 Constraints (as defined in Section 4).  The tCONSTANT values can be 
extracted from the DDR3 data sheet (Micron). 

Last 
Command 

Next 
Command 

Rank Bank Timing 

Activate Activate Same Same tRC 

Activate Activate Same Different tRRD 

Precharge Activate Same Same tRP 

Refresh Activate Same Same tRFC 

     

Activate Read Same Same tRCD-tAL 

Read Read Same Any tCCD 

Read Read Different Any tCCD-tRTRS 

Write Read Any Any tCCD-tWTR 

     

Activate Write Same Same tRCD-tAL 

Read Write Any Any tCAS+tCCD+tRTRS-tCWD 

Write Write Any Any tCCD 

     

Activate Precharge Same Same tRAS 

Read Precharge Same Same tRTP+tAL 

Write Precharge Same Same tCWD+tCCD+tWR 

     

Refresh Refresh Same Any tRFC 

Precharge Refresh Same Any tRP 

Interconnect 

 The DRAM interconnect described previously is simply a collection of channels.  A channel is 

implemented as a collection of buses in a DDR3 system.  PDM uses two different types of buses to 

create this DRAM interconnect: a unidirectional bus and a bidirectional bus.  The unidirectional bus is 

used to transport the necessary commands from the memory controller to the appropriate bank while 

the bidirectional bus is used for data.  Both buses are designed such that only one input is allowed 

access at the same time.  
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6. Future Work 

 PDM’s representation of the DDR3 DRAM interface is not complete.  In this section we outline 

some missing components that are required for a more robust DRAM interface implementation.   The 

verifier used in the DDR3 implementation only implements the most commonly used commands.  As of 

yet, PDM’s implementation of DDR3 lacks the ability to do broadcast commands as well as any type of 

closed read/write commands because using such commands require a smarter memory controller.  

PDM’s memory controller implementation is still very basic and not customizable.  For instance, the 

arbitration scheme is not modular and only round robin is currently possible.  For PDM to implement an 

ever larger array of DRAM interfaces, the memory controller will need to be reworked to allow more 

customization and extensions.   

 The bus implementations in PDM also need to be improved.  Currently, the entire PDM DRAM 

system shares the same clock and there is no way to fine tune the bus speeds.  The only way to 

accomplish this is to access a larger chunk of data per cycle to simulate a faster bus speed.  However, 

this is not always easy to accomplish if the desired bus speedup is not a whole number.  Also, the 

command bus bandwidth is currently difficult to scale up because of this limitation.  If we were to 

double the command bandwidth, we would have to instantiate two command buses for our 

implementation to work. 

7. Results 

As the simulation runs, PDM keeps track of various events such as latency and outputs the 

aggregated results once the simulation completes.  Dividing the number of cycles our data bus carries 

data by the total simulation cycle count gives us the data bus utilization rate.  The data bus utilization 

rate of a large number of configurations is graphed in Figure 7.  In Figure 7 (a)(b)(c), we vary the load to 

store ratio (or “loadRate”) with a stream size of one in our random traffic generator.  Figure 7 (d)(e)(f) 

plots the same but with a stream size of four.  Within each graph, we graph a series of data utilization 

versus the number of banks per channel for varying number of capped memory requests in flight.  
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 There are two interesting observations we can make from these results.  Taking a look at Figure 

7 (a) and Figure 7 (d), we can see that our memory controller is unable to utilize the data bus at full 

capacity with a stream size of one because our timing parameters place limits on consecutive activates 

to different banks (refer to Table 1).  We are able to fully saturate the data bus with four streams 

because each activate command is timed four read burst apart, giving the next activate command 

enough time to meet the activate–to-activate timing constraint.    

Another interesting observation is the dip in data bus utilization as we vary the load-to-store 

ratio.  When we only issue loads (load rate is 0), we see maximum data bus utilization because there are 

no timing constraints placed between consecutive loads.  However, as we get an even mix of loads and 

stores, we start to experience the read to write and write to read timing constraints eventually driving 

data bus utilization down. 

                                         (a)                                                                        (b)                                                                       (c) 

                                         (d)                                                                        (e)                                                                       (f) 

Figure 7: Example Event Data 2 – (DataUtil = data utilization rate, numBank = number of banks per channel, loadRate = load-
to-store ratio, StreamSz = size of the traffic pattern stream,  numIF = number of in-flight messages) 
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8. Conclusion 

The data in the evaluation section of Re-Architecting DRAM Memory Systems with Monolitically 

Integrated Silicon Photonics was generated using a combination of PDM and a heavily modified version 

of the CACTI-D DRAM modeling tool.  A series of events generated from PDM was used in conjunction 

with the modified CACTI-D tool to generate energy and power numbers for analysis.  Although PDM is 

not complete, it a tool robust enough to explore new DRAM architectures.  With small modifications to 

the memory controllers to allow more customization, PDM can become a very powerful tool for 

exploring DRAM system architectures. 
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Appendix A: HSIM 

 PDM is implemented as a project in Chris Batten’s Hardware Simulator (HSIM).  This appendix 

outlines the basic usage of HSIM by showing how to configure and run PDM.  This is not intended to be a 

full tutorial on using HSIM but a quick guide to getting started. 

Folder Hierarchy 

 The top level directory of HSIM contains two directories named build and sims.  

Sims Directory 

 The sims directory is where all the projects and their relevant source code is located.  Taking a 

look into pdm project shows a series of header and source files as well as a module.mk file used to build 

the project.  File extensions used are universal throughout the project where *.u.cc corresponds to a 

unit test of the *.cc/h file and the *.t.cc is the templated member function definitions of the *.h file.   

 The module.mk file in each project is required to build the project.  The module_deps variable 

lists which project in the sims directory this project depends on.  The hdrs, srcs, tmpl_srcs, and utst_srcs 

each corresponds to the header, source, template, and unit test files for each module in the PDM 



15 
 

project.  Finally, the prog_srcs variable defines all non-unit-test project files that are executable.  Notice 

the only prog_srcs file is pdm-system-numbanks.cc. 

Build Directory 

 The build directory is used to compile and run all unit tests and project executables.  Any scripts 

and configuration files used for the project is also contained in the build directory.  All compilations are 

done in the gcc-comp-sims directory.  To compile, we run the configuration script in the sims directory 

from gcc-comp-sims via ‘../../sims/configure’ and ‘make.’  Several useful make arguments are available: 

run-all-tests (compile and run all unit tests) and *-unit-test (compiles a specific unit test which can be 

run via ./*-unit-test).  To compile PDM and all dependent projects and files, invoke ‘make pdm-system-

numbanks.’ 

Configuration and Running PDM 

 Once PDM has been successfully compiled, we can simply run ./pdm-system-numbanks with 

appropriate command line variables to set parameters.  However, this is a very cumbersome process 

that can be simplified using configuration files and scripts to run the simulation.  A set of example scripts 

can be found in the build directory under isca10 (the project file for the ISCA 2010 submission from our 

research group).  There are two important scripts in the isca 2010 directory.  One is the gen-cfg.pl perl 

script which generates a series of configuration files and the Makefile which runs many instance of the 

project with the configuration files from the perl script.   

 The Makefile has been set up such that invoking the command ‘make cfgs’ will run the perl 

script to generate configuration files.  Once the configuration files have been created, we can then run 

‘make’ to  run all the tests.  All outputs will be saved as .out and .event files once we run the project.  

The project has also been set up to display useful traces with the command –log-level=moderate.   


