
Energy-Efficient Register File Design

by

Jessica Hui-Chun Tseng

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrial Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 1999

c Jessica Hui-Chun Tseng, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part.

Author .
Department of Electrical Engineering and Computer Science

December 22, 1999

Certified by .
Krste Asanovíc

Assistant Professor
Thesis Supervisor

Accepted by. .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Energy-Efficient Register File Design

by

Jessica Hui-Chun Tseng

Submitted to the Department of Electrical Engineering and Computer Science
on December 22, 1999, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrial Engineering and Computer Science

Abstract

In this thesis, we evaluate five techniques for energy efficient register file design by
studying dynamic traces of SPECInt95 and Powerstone benchmarks. A single-issue MIPS
RISC microprocessor with a five-stage pipeline is used for this study. The five proposed
techniques are precise read control, bypass skip, separate R0, modified storage cell, and
split bitline. Their potential energy savings are examined through an energy dissipation
model. On average, each technique shows 23%, 20%, 22%, 38%, and 20% respectively.
An energy saving of 63% can be achieved by combining these five low power register file
design methods without changing existing software.

Thesis Supervisor: Krste Asanovi´c
Title: Assistant Professor

3

4

Acknowledgments

First, I thank my thesis supervisor, Krste Asanovi´c, for supporting me throughout this

work and for his advice and encouragement. Also, I like to thank him for giving me such

a great opportunity to work with him on development of energy-efficient microprocessor

architectures.

I thank Mukaya Panich, Seongmoo Heo, Ronny Krashinsky, Albert Ma, and Jonathan

Babb for technical discussions and help with my thesis. Thanks to my officemate, Jason

Miller for help using the LaTeX text formatter and many other tools. Thanks to all the

people who have let me run benchmark simulations on their computers.

Special thanks to all my friends who have made my life in MIT so enjoyable and

intellectual. Thank you my best friend, Danny, for reducing my stress level in every

possible ways. Thanks to my brother, David, for balancing my graduate life at MIT with

his funny jokes and stories.

I would like to thank MIT Laboratory for Computer Science (LCS) for providing the

environment for this work. Particular thanks to NSF Graduate Research Fellowship for

funding part of this work.

Finally, thank you my beloved parents for all the support and for making all this possible

for me.

5

6

Contents

1 Introduction 15

2 Methodology 19

2.1 Dynamic Profiling of Benchmarks . 19

2.2 Energy Estimation Model . 20

2.2.1 Register File . 22

2.2.2 Bypass Network . 23

2.2.3 Summary . 27

3 Precise Read Control 29

3.1 Motivation . 29

3.2 Implementation . 29

3.3 Results . 30

4 Bypass Skip 33

4.1 Motivation . 33

4.2 Implementation . 33

4.3 Results . 34

5 Separate Register 0 37

5.1 Motivation . 37

5.2 Implementation . 38

5.3 Results . 40

7

6 Modified Storage Cell 43

6.1 Motivation . 43

6.2 Implementation . 43

6.3 Results . 44

7 Split Bitline 49

7.1 Motivation . 49

7.2 Implementation . 51

7.3 Results . 56

8 Conclusions and Future Work 61

8.1 Summary of Contributions . 63

8.2 Discussion 64

8.3 Future Work . 66

8

List of Figures

2-1 Five-stage pipeline datapath. 20

2-2 Register file storage cell. 23

2-3 Column circuitry for one bit slice. 24

2-4 Three-input transmission gate mux. 25

2-5 Latch, similar to IBM PowerPC603MS latch.. 26

3-1 Percentage of discarded operands due to over fetching. 30

3-2 Implementation of precise read control. 31

3-3 Comparative energy consumption for the base case regfile and the precise-

read-control regfile.. 31

4-1 Percentage of operands supplied by the bypass network. 34

4-2 Bypass-skip regfile implementation. 35

4-3 Comparative energy consumption for the base case regfile and the bypass-

skip regfile. 35

4-4 Percentage of necessary operands that are supplied by the bypass network. . 36

5-1 Percentage of R0 usage. 38

5-2 Separate-R0 regfile implementation. 39

5-3 Comparative energy consumption for the base case regfile and the separate-

R0 regfile. 40

5-4 Write bitlines switching activity for regfiles with R0 and regfiles without

R0 (dark). 41

5-5 % of R0 reference caused by regfile over-fetching. 41

9

6-1 Percentage of 0 (light) and 1 (dark) bit value ratio. 44

6-2 Modified storage cell implementation 1. 45

6-3 Modified storage cell implementation 2. 45

6-4 Comparative energy consumption for the base case regfile and the

modified-storage-cell regfile. . .. 46

6-5 Percentage of 0 (light) and 1 (dark) bit value ratio with precise read control. 46

6-6 Percentage of 0 (light) and 1 (dark) bit value ratio with separate-R0. 47

7-1 Most popular 6, 8, and 10 registers % usage. 50

7-2 Frequently referenced registers. .. 50

7-3 Split-bitline regfile implementation. 52

7-4 Optimal number of registers in most popular partition. 53

7-5 Regfile address decoder. 54

7-6 Register usage density distribution for the base case regfile, the usage

density is proportional with the darkness of the color.. 55

7-7 Comparative energy consumption for the base case regfile and the split-

bitlines regfile. . .. 57

7-8 Comparative weighted average register usage density for the base case

regfile (BASE), the precise-read-control regfile (PRC), the bypass-skip

regfile (BS), the separate-R0 regfile (SR0), and the modified-storage-cell

regfile (MSC). 57

7-9 Comparative energy consumption for the base case regfile and the precise-

read-control regfile with and without split bitline. 58

7-10 Comparative energy consumption for the base case regfile and the bypass-

skip regfile with and without split bitline. 58

7-11 Comparative energy consumption for the base case regfile and the separate-

R0 regfile with and without split bitline. 59

7-12 Comparative energy consumption for the base case regfile and the

modified-storage-cell regfile with and without split bitline. 59

10

8-1 Comparative energy consumption for the base case regfile with each

additional low energy regfile technique in the following order: modified

storage cell, precise read control, bypass skip, separate R0, and split bitline. 64

8-2 Comparative energy consumption for the rail-to-rail bitline swing regfile

and the limited bitline swing regfile with and without the energy reduction

techniques (ERT). 66

11

12

List of Tables

2.1 Benchmark descriptions, instruction counts, cycle counts, and input types. . 21

2.2 Benchmark instruction type % distribution. 21

2.3 Register file switching capacitance. 24

2.4 Bypass network switching capacitance. 25

2.5 The average bit slice energy consumption analysis for g721 base case. . . . 27

5.1 Regfile bitlines switching capacitance for 31 registers.. 38

5.2 Five-input mux switching capacitance. 39

7.1 Regfile bitline switching capacitance, where n is the number of registers on

the bitline. 54

8.1 Regfile switching activity percentage and energy saving evaluation for

the base case regfile (BASE), the precise-read-control regfile (PRC), the

bypass-skip regfile (BS), the separate-R0 regfile (SR0), and the modified-

storage-cell regfile (MSC). 62

8.2 Overhead analysis for each low energy regfile technique. 63

8.3 Dependency analysis for each low energy regfile technique. 63

8.4 The required voltage scaling coefficient and the maximum bitline swing

voltage for obtaining the same read bitline energy consumption. ERT

stands for energy reduction technique. 65

13

14

Chapter 1

Introduction

As we move into the next millennium, notebook computers and hand-held portable

multimedia wireless devices such as Palm-Pilots and wireless-phones are becoming a major

part of our daily life for personal management and communication functions. The hardware

size and cost of such human-machine interface applications closely depends on the energy

consumption of the designs. Therefore, designing an energy-efficient microprocessor for

these systems is one of the major challenges for future designers.

Many studies have shown that register files represent a substantial portion of the energy

budget in modern microprocessors [2, 4, 7, 19]. The circuitry and technology used to

design register files influence the energy dissipation; however, neither technology scaling

nor circuitry techniques prevents register files from being the dominant power component

in modern microprocessors [19]. For example, in Motorola’s M.CORE architecture, the

register file consumes 16% of the total processor power and 42% of the data path power

[4].

The energy dissipation of a CMOS integrated circuit is proportional to the switching

activity frequency and switching capacitance of the transistors and the bus lines [13]. In this

research, we evaluate techniques to reduce register file energy by lowering the switching

activity and the bitline capacitance in the register file. Dynamic profiles of different

benchmarks are analyzed and studied to suggest modifications to the conventional register

file to reduce the register file switching activity and bitline capacitance while maintaining

the same level of performance.

15

The microprocessor studied here is a single-issue RISC processor for high performance

embedded applications. In these microprocessors, register files perform two register reads

and one register write per cycle. Every register read and register write contributes switching

activity to the register file. However, 58% of fetched operands are discarded while 39% of

register file updates are redundant. Therefore, this thesis evaluates three techniques to

eliminate unnecessary register accesses, one technique to lower bitline switching activity,

and one technique to decrease bitline switching capacitance. These five techniques are

listed below:

1. Precise Read Control Different instruction types require different numbers of

source operands. We can reduce register file read accesses by only fetching

the necessary operands.

2. Bypass Skip In the case of an operand read-after-write (RAW) pipeline hazard [5],

an operand value is supplied by the bypass network instead of read from the

register file. We can further reduce register file read accesses by not fetching

stale operands from the register file.

3. Separate Register 0RISC machines usually have a single register R0 whose value

is always zero [8]. We can provide the R0 value in the bypass network instead of

fetching it from the register file to reduce read and write accesses to the register

file.

4. Modified Storage Cell We can take advantage of the asymmetry in one and zero

distribution of register values to modify the register storage cell to minimize

the number of high-to-low and low-to-high bitline transitions.

5. Split Bitline Due to the compiler’s register allocation policy, some registers are

used much more frequently than others. We can split the register file into the

frequently used registers and the remaining registers to reduce average bitline

capacitance.

Each technique’s potential energy saving is validated through an energy estimation

model for single-ended read register files. The effects of combining differential sense

16

amplifiers with these techniques for double-ended read register files are discussed in the

last chapter.

This thesis is organized as follows: Chapter 2 describes and reviews the methodology

used. Chapters 3-7 discuss the five low energy register file design proposals and their

potential savings and possible disadvantages. Chapter 8 concludes, summarizes, and

discusses the contribution of this thesis and suggests future work.

17

18

Chapter 2

Methodology

The method used to develop a low power register file in this research was to use

dynamic benchmark traces to evaluate modifications to a conventional register file for

energy efficiency. A similar methodology was proposed and used in the development of

Motorola’s low-power Micro-RISC architecture for the wireless market [14]. A MIPS

RISC microprocessor [2] was used for this study. From the study of the dynamic traces,

different low power register file designs were proposed and their energy savings were

validated and compared through an energy dissipation model.

2.1 Dynamic Profiling of Benchmarks

To obtain benchmark traces, a cycle-accurate simulator is used to simulate the

microarchitecture-level behavior of a MIPS RISC scalar microprocessor with a five-stage

pipeline as shown in Figure 2-1. The MIPS processor executes the MIPS-II ISA. This

simulator only traces user level instructions and records register file access information,

instruction operands’ bypass frequency, and critical data value switching activity. The five-

stage pipeline has a single cycle memory system, zero cache misses, one interlocked load

delay slot, 17 delay cycles between the issue of an integer multiply and read of result, and

32 delay cycles between the issue of an integer divide and the read of the result.

A combination of SPECInt95 benchmarks and Powerstone benchmarks [14] are used

as a workload. Table 2.1 lists the benchmarks and input data sets used in this research, and

19

we

read

readb

rs

rt

sdImm Ext

rs1

rs2

ws

wd GPRs

rt_control

sd_control

addrPC

Inst
ALU

IR

IR IR

Y

sd

addr
we

rdata
Data

RARA

Add
Add

0x4

nop

Stall

IR

R

Cdest

weW wsW

Cache

wdata
Cache

rs_control

Figure 2-1: Five-stage pipeline datapath.

shows total instruction and cycle counts. Each benchmark was run to completion. This

study only covers predominantly integer benchmarks and Table 2.2 shows the distribution

of instruction types in each benchmark. Each benchmark is compiled with gcc version

2.7.0 with -O3 optimization and linked with the newlib standard C library.

2.2 Energy Estimation Model

The energy estimation model evaluates only the energy consumption of the register file and

the bypass network in the instruction decode stage, shown as the shaded region in Figure 2-

1. This energy estimation model is an activity sensitive model [10, 3] because the energy

dissipation is proportional to the frequency of switching activity of the transistors and bus

lines. The energy dissipation caused by each low-to-high and high-to-low transition activity

20

Benchmark Instruction Cycle Description
fData Setg Count Count

(Millions) (Millions)
m88ksim 519 567 A chip simulator for
ftestg Motorola 88100 microprocessor
li (test) 997 1,129 xlisp interpreter
go 579 631 An internationally ranked
ftraing go-playing program
gcc 1,396 1,524 Based on the GNU C
fref:2c-decl-sg compiler version 2.5.3.
vortexftestg 10,054 11,123 An object oriented database
jpeg 567 710 JPEG 24-bit image compression
ftest:specmum.ppmg /decompression standard
g721 528 625 Adaptive differential PCM
fclinton.g721g for voice compression
Average 2,093 2,330

Table 2.1: Benchmark descriptions, instruction counts, cycle counts, and input types.

Benchmark Load ALU ALU Multi. Jump Shift Nop Floating
Store Imm R-type Divide Branch Point

m88ksim 24.68 29.88 18.47 0.04 21.43 2.17 3.33 0.00
li 43.69 14.90 9.79 0.00 21.79 0.80 8.97 0.06
go 27.71 24.01 21.70 0.06 13.46 10.94 2.11 0.00
gcc 36.85 21.21 14.60 0.18 18.24 4.40 4.48 0.04
vortex 47.66 14.75 15.39 0.13 16.03 2.02 4.01 0.00
jpeg 25.08 20.39 28.01 2.51 9.26 13.61 1.12 0.01
g721 16.55 26.29 15.58 1.12 20.46 13.59 6.30 0.08
Average 31.75 21.63 17.65 0.58 17.24 6.79 4.34 0.03

Table 2.2: Benchmark instruction type % distribution.

21

in a full rail-to-rail swing CMOS circuit is equal to

1

2
� Cswitch � V 2

dd

WhereCswitch is the switching capacitance andVdd is the supply voltage. Therefore,

the average energy consumption of each functional block per CPU cycle is computed as

follows:

E =
X

r

(
1

2
� fr � Cswitch r � V

2

dd
)

Wherefr is the average data transition frequency of the node r within the functional

block as determined by the dynamic benchmark profiling. TheCswitch r is the switching

capacitance related to noder.

The parameters used in this energy estimation model are based on a 0.6-� n-well CMOS

process technology with 3.3V power supply and two layers of metal. The design of register

file and bypassing network is based on the T0 design [1] and is laid out using Magic

[12]. The layout-to-circuit extraction tool, Space [17], is used to extract a circuit netlist for

further circuit simulation. Space extracts capacitance to the substrate, fringe capacitance,

crossover coupling capacitance, and capacitance between parallel wires. Hspice [11],

a circuit simulator, is used to simulate the circuit netlist generated from Space and to

determine the effective switching capacitance,Cswitch, for the energy estimation model.

The register file and the bypass network designs used in this energy model are described in

the following subsections. A base-case scenario energy estimation analysis is illustrated in

the summary subsection.

2.2.1 Register File

The regfile used in this research is a high performance dynamic regfile with two read ports

and one write port. This design provides both read and write access in the same cycle.

During the first half of the cycle, the read bitlines are precharged high and the write bitlines

are driven. Registers are written during the first half of the cycle while the read data is

22

w
ri

te
bi

t

re
ad

bi
t

re
ad

bi
tb

w
ri

te
bi

tb

wordline_rt_Rx

wordline_rs_Rx

wordline_w_Rx

Figure 2-2: Register file storage cell.

sensed during the second half of the cycle. This avoids a bypass path from the write-back

stage of the five-stage pipeline microprocessor as shown in Figure 2-1.

It is observed that the energy dissipation of the read and write bitlines dominates the

regfile energy consumption. Therefore, the energy estimation model for the regfile is based

on the transition activity of read bitlines and write bitlines. The address decoding of regfile

is not included in this energy estimation model. The regfile consists of a 32x32 matrix of

storage cells, Figure 2-2, for the 32 32-bit-wide registers with a column circuitry module,

Figure 2-3, at the end of each bitline. The storage cell is a conventional static RAM cell

[18]. The column circuitry consists of a clocked inverter sense amplifier to provide faster

read port output sensing and it also controls the read bitline precharges, write drive, and data

buffering. The switching capacitance of the read bitlines, write bitlines, and precharging

transistors of the regfile for one of the 32 bit slices is shown in Table 2.3.

2.2.2 Bypass Network

The bypass network consists of two three-input muxes, one four-input mux, and three

latches. Transmission gate muxes are used in this design. Figure 2-4 shows the design for a

23

writebit

writebitb

rt, sd

rs

readbitb

readbit

write

Vdd

Vdd

Gnd

Gnd

clk

Figure 2-3: Column circuitry for one bit slice.

Switch Capacitor Capacitance (Unit: fF)
Cswitch readbit 304
Cswitch readbitb 331
Cswitch wbit,wbitb 679
Cswitch precharge 50

Table 2.3: Register file switching capacitance.

24

mux_output

mux_input0

mux_input1

mux_input2

mux_control0b

mux_control0

mux_control1b

mux_control1

mux_control2b

mux_control2

Figure 2-4: Three-input transmission gate mux.

three-input mux. The latches in this bypass network are similar to the IBM PowerPC603MS

latch designs [15], Figure 2-5. The bit-slice switching capacitance of mux input, mux

output, mux control line, latch data value, latch clock input is listed in Table 2.4.

Switch Capacitor Capacitance (Unit: fF)
Cswitch mux3input 7.3
Cswitch mux3output 22.3
Cswitch mux3control 2.0
Cswitch mux4input 7.4
Cswitch mux4output 24.6
Cswitch mux4control 2.0
Cswitch latchdata 62.0
Cswitch latchclk 19.3

Table 2.4: Bypass network switching capacitance.

25

Gnd

latch_in

clk

latch_out

Vdd

Figure 2-5: Latch, similar to IBM PowerPC603MS latch.

26

Data Connection Switch Transition Energy
Node r Capacitance (fF) Frequency Dissipation (fJ)
Read-bit 304 1.6753 2776
Read-bitb 331 0.2265 408
Write-bit,bitb 679 0.1710 632
Rs-mux-input 7 2.0270 81
Rs-mux-output 22 1.2893 157
Rs-mux-control 2 0.7499 8
Rs-latch-data 62 1.2893 435
Rt-mux-input 7 0.7662 31
Rt-mux-output 25 0.2093 28
Rt-mux-control 2 0.7898 9
Rt-latch-data 62 0.2093 71
Sd-mux-input 7 0.5781 23
Sd-mux-output 22 0.1953 24
Sd-mux-control 2 0.6946 8
Sd-latch-data 62 0.1953 66
Precharge 50 2.0000 540
Clk 58 2.0000 631
Total 1705 5927

Table 2.5: The average bit slice energy consumption analysis for g721 base case.

2.2.3 Summary

To calculate the total energy per cycle, the energy estimation model sums up all the energy

dissipation per cycle due to data value transitions. Table 2.5 is an example to show how the

energy model calculates the total energy per cycle for the g721 benchmark in the base case

scenario. The base case scenario is a common simple regfile, which always performs one

write and two reads per cycle regardless of the instruction opcode and pipeline state. The

average bit-slice energy consumption per cycle is 5.9 pJ and the total energy consumption

per cycle for the 32-bit wide datapath is 190 pJ.

27

28

Chapter 3

Precise Read Control

3.1 Motivation

Only instructions such as register-register arithmetic, store, conditional-branch, and shift

instructions require fetching both source operands. Therefore, a large fraction of source

operand data is discarded because of over fetching of operands from the regfile. Over

fetching operands creates extra unnecessary regfile switching activity contributing to the

energy consumption. The benchmark profiling shown in Figure 3-1 shows on average,

each instruction requires 1.3 source operands; 70% of dynamic instructions require only

one source operand. So, a precise-read-control regfile has an potential of decreasing the

regfile read activity by 35%.

3.2 Implementation

One of the most straightforward implementations of precise read control is by adding an

opcode pre-decoder prior to the wordline drivers in the regfile as shown in Figure 3-2.

When the wordline is not enabled, the read bitline value retains its precharged value and no

switching occurs. We also keep the precharge transistors turned on to avoid switching their

gate capacitance. The precise-read-control regfile has only an AND-gate area overhead

because the opcode pre-decoders are part of the original bypassing interlock circuit. There

is no latency overhead if the opcode pre-decoder utilizes the first half of the cycle to finish

29

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

rs
rt/sd
avg

Figure 3-1: Percentage of discarded operands due to over fetching.

performing all its necessary decoding and is able to provide the issue signal in time for the

read bitline enables in the second half of the cycle. However, if the opcode decoding cannot

finish in the first half of the cycle, precise read control is going to add latency to the regfile.

The precise-read-control regfile handles NOP instructions differently from shift left

logical (SLL) instructions even though they have the same opcode. Since NOP instructions

do not require any operands, the opcode decoders disables both read operand fetches.

3.3 Results

Figure 3-3 shows the energy savings of precise-read-control in comparison with the base

case scenario. The energy saving ranges from 16% to 31% across benchmarks with an

average of 23%.

30

Opcode

Decoder1

Opcode

Decoder2

Instruction

R0

R0

R30

R30

R31

R31

enable rs

enable rt/sd

wordline_rs_R31

wordline_rt_R31

wordline_rs_R30

wordline_rt_R30

wordline_rs_R0

wordline_rt_R0

read_rs_R31

read_rt_R31

read_rs_R30

read_rt_R30

read_rs_R0

read_rt_R0

Figure 3-2: Implementation of precise read control.

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 3-3: Comparative energy consumption for the base case regfile and the precise-read-
control regfile.

31

32

Chapter 4

Bypass Skip

4.1 Motivation

Fetching stale values from the regfile creates unnecessary switching activity in the regfile if

the fetched values are discarded because of bypassing. Simulation data, Figure 4-1, shows

an average of 26% of the operands (base case scenario without precise read control) are

bypassed from other stages of pipeline instead of the regfile. Therefore, a bypass-skip

regfile is expected to decrease the regfile read bitline activity by 26%.

4.2 Implementation

The bypass-skip regfile determines the RAW pipeline hazard prior to fetching values from

the regfile. It detects the RAW pipeline hazard and disables the wordline drivers of the

regfile as shown in Figure 4-2. The bypass skip technique only contributes an AND-gate

area overhead per wordline to the regfile for a fully-bypassed datapath. A fully-bypassed

datapath already contains a RAW hazard detector which directs the most recent operand

values from the bypass network to the source registers to avoid a pipeline stall. The only

change in the original design is moving the existing RAW hazard detector forward in the

pipeline prior to the regfile read bitline enablers. Therefore, a latency penalty can occur

if the RAW hazard detector takes longer than the first half of the cycle to finish hazard

detection. If the latency is too long, we can even consider adding an extra pipeline stage

33

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

rs
rt/sd
avg

Figure 4-1: Percentage of operands supplied by the bypass network.

for hazard detection to have the same throughput [5]. When the wordline is disabled, the

read bitline remains in its precharged state with no switching activity.

4.3 Results

Figure 4-3 shows the energy consumption of the bypass-skip regfile and the bypass network

in comparison with the base case scenario. The energy saving ranges from 14% to 29%

across different benchmarks with an average of 20%. The energy saving is proportional to

the number of source operands being supplied by the bypass network.

To determine the benefits from bypass skip after applying precise read control, we find

out that 36% of the necessary operands are supplied by the bypass network, Figure 4-4.

Therefore, the bypass-skip method has a potential of decreasing regfile read accesses by

a further 36% after applying the precise read control method. Note, this is greater than

for the base case because we remove many R0 fetches which are never bypassed. When

combining these two methods, the wordline still has only a single AND gate area overhead

because the two enabling signals can be combined.

34

R0

R0

R30

R30

R31

R31

RAW_Hazard2

RAW_Hazard1 (enable rs)

(enable rt/sd)

wordline_rs_R31

wordline_rt_R31

wordline_rs_R30

wordline_rt_R30

wordline_rs_R0

wordline_rt_R0

read_rs_R31

read_rt_R31

read_rs_R30

read_rt_R30

read_rs_R0

read_rt_R0

Figure 4-2: Bypass-skip regfile implementation.

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 4-3: Comparative energy consumption for the base case regfile and the bypass-skip
regfile.

35

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

rs
rt/sd
avg

Figure 4-4: Percentage of necessary operands that are supplied by the bypass network.

36

Chapter 5

Separate Register 0

5.1 Motivation

Register 0 (R0) always retains its fixed zero value and can be determined without accessing

it from the regfile. Therefore, we can provide R0 value in the bypass network instead

of fetching it from the regfile to reduce read and write accesses of the register file. The

switching activity of regfile read bitlines and write bitlines are decreased by reducing the

number of read and write accesses. The separate R0 technique also eliminates R0 from

the regfile to reduce its size from 32 registers to 31 registers, thereby decreasing its bitline

capacitance slightly.

R0 is the most frequently referenced register throughout all the benchmarks. Figure 5-1

shows that 40% of regfile write accesses and 25% of regfile read accesses are R0. Moving

R0 out of the regfile can greatly reduce its read and write accesses.

The inverted read bitlines discharge their pre-charged value only when the stored value

is high while the non-inverted read bitlines discharge only when the stored value is low.

Therefore, separate-R0 regfiles can only improve the non-inverted read bitlines switching

activity. However, all of the regfile bitline capacitance is reduced slightly regardless.

37

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

write
rs
rt/sd

Figure 5-1: Percentage of R0 usage.

Switch Capacitor Capacitance (Unit: fF)
Cswitch readbit 299
Cswitch readbitb 325
Cswitch wbit,wbitb 666

Table 5.1: Regfile bitlines switching capacitance for 31 registers.

5.2 Implementation

To implement the separate-R0 regfile, one has to modify the circuitry of the regfile and the

bypass network as shown in Figure 5-2. The size of the regfile decreases from 32 registers

to 31 registers and its bitlines become shorter with lower switching capacitance as shown

in Table 5.1. R0 value is provided by the grounded input of muxes. The mux for operand rt

changes from a four-input mux to a five-input mux while the muxes for operand rs and sd

change from three-input muxes to four-input muxes. The bit-slice switching capacitance of

the five-input mux used in the energy estimation model is listed in Table 5.2. Also, we now

disable the wordlines when the destination register is R0 to eliminate unnecessary write

bitline switching activity.

38

rt

sd

rs

EXE_bypass

MEM bypass

Imm Ext

readb

read

we

GPRs (31x32)

rs1

rs2

ws

wd

sd_control

rt_control

rs_control

Figure 5-2: Separate-R0 regfile implementation.

Switch Capacitor Capacitance (Unit: fF)
Cswitch mux5input 7.5
Cswitch mux5output 30.7
Cswitch mux5control 2.0

Table 5.2: Five-input mux switching capacitance.

39

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 5-3: Comparative energy consumption for the base case regfile and the separate-R0
regfile.

5.3 Results

Figure 5-3 shows the energy saving of the separate-R0 regfile in comparison with the base

case scenario across benchmarks. The energy saving ranges from 18% to 26% with an

average of 22%. The energy saving is proportional to the read usage and the write usage of

R0. However, write bitlines only contribute 3% energy saving due to the small reduction

in their already low switching activity. Figure 5-4 shows that the separate-R0 regfile only

reduces the write bitlines switching activity by 20% from its original 18% switching rate.

The small write bitlines switching activity reduction is because only 12% of write bit values

are ones.

The energy savings are not 100% additive when we combine the separate-R0 technique

with the precise-read-control technique. The reason is that 78% of R0 references are caused

by regfile over fetching. So, the energy saving of applying the bypass R0 method over the

precise-read-control regfile is scaled down according to the percentage of R0 reference

caused by over-fetching, Figure 5-5. On the other hand, the energy savings are 100%

additive when we combine the separate-R0 method and the bypass-skip method because

fetching R0 does not cause RAW pipeline hazards.

40

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%
 S

w
itc

hi
ng

 A
ct

iv
iti

es

Figure 5-4: Write bitlines switching activity for regfiles with R0 and regfiles without R0
(dark).

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 5-5: % of R0 reference caused by regfile over-fetching.

41

42

Chapter 6

Modified Storage Cell

6.1 Motivation

We can reduce the regfile read bitline switching activity by modifying the bitline

connections to the storage cells to minimize the number of high-to-low and low-to-high

transitions. Since both sets of read bitlines are precharged high, they dissipate energy only

when the storage cells cause them to discharge their precharged value. For example, the

inverted bitlines are energy efficient when the majority of fetched bit values are low while

the non-inverted bitlines are energy efficient for high bit values.

The benchmark traces show that 82% of the bits fetched from the regfile are zeros

as shown in Figure 6-1. Therefore, the inverted read bitlines are four times more energy

efficient than the non-inverted ones. Regfiles with only inverted read bitlines can reduce

read bitline switching activity as much as 60% over the base case scenario. If both read

ports use inverted bitlines, we need not include R0 explicitly. If no wordline is enabled, the

regfile will return the required zero value.

6.2 Implementation

Figure 6-2 shows the most straightforward implementation of a regfile with only inverted

read bitlines. The modified circuitry has no latency overhead but the asymmetry of the

modified cell might contribute slight area overhead. The transistors have to be sized

43

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

rs
rt/sd
avg

Figure 6-1: Percentage of 0 (light) and 1 (dark) bit value ratio.

carefully to avoid upsetting the stored value when both read ports access the same cell.

To avoid the above complication, an inverter buffer can be added to the non-inverted end

of the storage cells as in Figure 6-3.

6.3 Results

Figure 6-4 shows the energy consumption of the modified regfile and the bypass network in

comparison with the base case scenario across benchmarks. The energy saving ranges from

23% to 50% with an average of 38%. The energy saving is proportional to the percentage

of fetched zero bit values.

The energy saving from this modified-storage-cell regfile changes when we apply

the precise-read-control method and the separate-R0 method. Figure 6-5 shows that the

precise-read-control method decreases the low fetched bit value percentage from 82% to

78%, partly because many over fetches are from R0. Figure 6-6 shows that the separate-

R0 method decrease the percentage of zero bit values from 82% to 75%. Therefore,

the modified storage cell regfile energy saving over these two methods decreases slightly

according to the new ratio of high and low fetched bit values.

44

w
ri

te
bi

tb

wordline_rs_Rx

wordline_rt_Rx

wordline_w_Rx

re
ad

bi
tb

2

re
ad

bi
tb

1

w
ri

te
bi

t

Figure 6-2: Modified storage cell implementation 1.

re
ad

bi
tb

2

re
ad

bi
tb

1

wordline_rs_Rx

wordline_rt_Rx

wordline_w_Rx

w
ri

te
bi

t

w
ri

te
bi

tb

Figure 6-3: Modified storage cell implementation 2.

45

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 6-4: Comparative energy consumption for the base case regfile and the modified-
storage-cell regfile.

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

rs
rt/sd
avg

Figure 6-5: Percentage of 0 (light) and 1 (dark) bit value ratio with precise read control.

46

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

rs
rt/sd
avg

Figure 6-6: Percentage of 0 (light) and 1 (dark) bit value ratio with separate-R0.

47

48

Chapter 7

Split Bitline

7.1 Motivation

We can decrease the average bitline switching capacitance of a regfile by splitting the

bitlines into segments and only accessing the segment which connects to the required

register. In this thesis, we only investigate the use of a single bitline split. The split

bitline method splits the regfile into two partitions. A transmission gate separates the

two partitions. One partition holds the popular registers while the other holds the

remaining registers. When the operand’s reference is within the most popular registers,

the transmission gate turns off the access to the remaining registers’ partition. The gate is

opened only when the operand’s reference is not among the most popular registers. The

split bitline regfile reduces the bitline energy by using an adaptive bitline length and is

expected to decrease the regfile bitline energy by at least half.

Figure 7-1 shows that the 8 most popular registers account for 75% to 92% (average of

83%) of all regfile accesses while the most popular 10 registers account for 81% to 95%

with an average of 88% of all regfile accesses. Moreover, the benchmark traces indicate

that particular registers such as R0, R2, R3, R4, R5, R6, R16, and R29 always get accessed

more frequently than others, Figure 7-2. According to the MIPSpro Assembly Language

Programmer’s Guide [6], R2 and R3 are used for expression evaluation and to hold integer

function results. R4, R5, and R6 are used to pass the first three actual integer arguments.

R16 is the first callee-saved register. R29 contains the stack pointer.

49

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%
 o

f u
sa

ge

Figure 7-1: Most popular 6, 8, and 10 registers % usage.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Register #

%
 F

re
qu

en
cy

 in
 T

he
 T

op
 8

 R
eg

is
te

r

Figure 7-2: Frequently referenced registers.

50

7.2 Implementation

The main modification to the regfile is adding a transmission gate to split it into two

partitions as shown in Figure 7-3. The addition of transmission gates is estimated to

contribute only slightly to both access time and area. Read bitlines and write bitlines can

have different ratios for their bitline partitions; however, the order in which registers line-up

on the bitlines must be the same because we share storage cells between the bitlines.

The energy saving of the split bitline method comes from the regfile bitline energy

reduction and is estimated by the following equation:

pn � Ebn

Wherepn is the percentage of regfile accesses to the small partition,n registers, andEbn is

the bitline energy difference between accessing from the small partition and the remaining

partition. Therefore, the optimal size of the small partition is the size,n, which give

the maximum energy reduction. Figure 7-4 shows the total energy saving percentage of

the split bitline technique with different number of registers in the small partition. The

benchmark traces indicate that the optimal size of the small partition for both read bitlines

is 7 registers while the optimal size of the small partition for write bitlines is 5 registers.

We want to avoid having additional logic circuitry to control the bitline split gate. The

regfile address decoder, Figure 7-5, can be used to control the bitline split gate. We can

gate an 8 register partition by connecting one of the outputs of the 2-to-4 predecoders

to the transmission gate. Figure 7-4 shows that using an 8/24 bitline partition for both

reads and writes instead of the optimal sizes only decreases the energy saving by less than

1%. Therefore, a ratio of 8 to 24 registers bitline split is used for the implementation

here due to the simplicity of the transmission gate’s control circuitry and its high energy

saving potential. Six (R0, R2, R3, R4, R5, and R6) of the eight most frequently accessed

registers’ wordlines are connected with the control line, X0. So, we can choose control line

X0 to control the split bitline transmission gate. The other two most frequently accessed

registers, R16 and R29, can be renamed with R1 and R7 before instruction fetch to keep

these eight most popular registers together in one section which is gated by the control line,

51

readbit_gateline

w
rite_gateline

readbitb_gateline

writebitb

readbitb

readbit

writebit

Most Popular Registers’ Partition Remaining Registers’ Partition
w

ordline_rs_R
y

w
ordline_rt_R

y

w
ordline_w

_R
y

w
ordline_rs_R

x

w
ordline_rt_R

x

w
ordline_w

_R
x

C
olum

n C
ircuitry

V
dd

precharge

F
ig

u
re

7
-3

:
S

p
lit-b

itlin
e

reg
file

im
p

le
m

e
n

ta
tio

n
.

5
2

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Number of Registers in the Most Popular Partition

%
 E

ne
rg

y
S

av
in

g

readline
readbline
writeline

Figure 7-4: Optimal number of registers in most popular partition.

X0. Alternatively, we could change the software convention for register usage.

To determine the order in which registers line up in the most popular partition, the read

bitlines and the write bitlines register usage are analyzed separately across benchmarks.

Then, we weight the read bitlines and the write bitlines register usage percentage by their

bitline capacitance and their bitline switching activity factor. The average register usage

percentage can be calculated by adding the weighted register usage percentage of the

read bitlines and the write bitlines. Lastly, the register usage order can be determined by

ranking its average usage percentage. The efficiency of this ranking technique depends on

the homogeneous and consistency of register usage percentage between benchmarks and

between the read bitlines and the write bitlines. This ranking technique is efficient only

when the read bitlines and write bitlines of all the benchmarks display a similar register

usage density, as shown in Figure 7-6 for benchmark set.

Since the switching capacitance of a bitline is linearly proportional to its length, the

switching capacitance of bitlines can be calculated using the equation listed in Table 7.1.

53

R0

R1

R31

a4

a3

a2

a0

a1

X0 X1 X2 X3 Y0 Y1 Y2 Y3 Z0 Z1

X-Group Y-Group Z-Group

read_rs_R0

read_rs_R1

read_rs_R31

2-to-4

2-to-4

1-to-2

predecoder

predecoder

predecoder

Figure 7-5: Regfile address decoder.

Switch Capacitor Capacitance (Unit: fF)
Cswitch readbit 153 + 4:73 � n
Cswitch readbitb 174 + 4:90 � n
Cswitch wbit,wbitb 298 + 11:9 � n

Table 7.1: Regfile bitline switching capacitance, where n is the number of registers on the
bitline.

54

Register Number

B
en

ch
m

ar
k

The Read−bitlines Register Usage Density

0 5 10 15 20 25 30

G721

m88k

 li

jpeg

vort

 go

gcc

avg

Register Number

B
en

ch
m

ar
k

The Readb−bitlines Register Usage Density

0 5 10 15 20 25 30

G721

m88k

 li

jpeg

vort

 go

gcc

avg

Register Number

B
en

ch
m

ar
k

The Write−bitlines Register Usage Density

0 5 10 15 20 25 30

G721

m88k

 li

jpeg

vort

 go

gcc

avg

Register Number

B
itl

in
es

The Weighted Average Register Usage Density

0 5 10 15 20 25 30

write

read

readb

 avg

Figure 7-6: Register usage density distribution for the base case regfile, the usage density
is proportional with the darkness of the color.

55

7.3 Results

Figure 7-7 shows the savings from split bitline in comparison with the base case. The total

energy saving ranges from 19% to 21% with an average of 20%. The energy consumption

of the column circuitry and the bypass network bounds the maximum energy saving to

33%. The energy saving for just the bitlines ranges from 57% to 65% with an average of

61%. The energy saving variation depends on the efficiency of register ordering technique

and it is proportional to the percentage of regfile accesses to the smallest partition.

Applying low power regfile design techniques such as precise read control, bypass skip,

separate-R0, and modified storage cell changes the register usage distribution from the base

case scenario as shown in Figure 7-8. However, the simulations show the optimal sizes

of the small regfile partition are still around 8 registers. The 8 most frequently accessed

registers remain as R0, R2, R3, R4, R5, R6, R16, and R29. In the cases of separate-R0

and modified-storage-cell regfiles, because R0 is removed from the regfile, R17 becomes

one of the 8 most frequently referenced registers. R17 is another callee-saved register

like R16 [6]. Figure 7-9, Figure 7-10, Figure 7-11, and Figure 7-12 show the energy

dissipation of the base case regfile and the energy-efficient regfiles with and without the

split bitline. The split bitline technique adds an additional 12% total energy saving and

50% bitline energy reduction to the precise-read-control regfile, 11% total energy saving

and 47% bitline energy reduction to the bypass-skip regfile, 5% total energy saving and

21% bitline energy reduction to the separate-R0 regfile, and 4% total energy saving and

24% bitline energy reduction to the modified-storage-cell regfile. The removal of R0 from

the regfiles in the separate-R0 and the modified storage cell techniques causes a more even

distribution of register usage as shown in Figure 7-8. Therefore, the split bitline energy

saving contributions are smaller when combining it with these two methods than with

others.

56

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 7-7: Comparative energy consumption for the base case regfile and the split-bitlines
regfile.

Register Number

C
A

S
E

0 5 10 15 20 25 30

BASE

PRC

 BS

SR0

MSC

Figure 7-8: Comparative weighted average register usage density for the base case regfile
(BASE), the precise-read-control regfile (PRC), the bypass-skip regfile (BS), the separate-
R0 regfile (SR0), and the modified-storage-cell regfile (MSC).

57

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 7-9: Comparative energy consumption for the base case regfile and the precise-read-
control regfile with and without split bitline.

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 7-10: Comparative energy consumption for the base case regfile and the bypass-skip
regfile with and without split bitline.

58

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 7-11: Comparative energy consumption for the base case regfile and the separate-R0
regfile with and without split bitline.

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 7-12: Comparative energy consumption for the base case regfile and the modified-
storage-cell regfile with and without split bitline.

59

60

Chapter 8

Conclusions and Future Work

In this thesis, five different methods were proposed and evaluated in an attempt to reduce

regfile energy dissipation. Since energy dissipation of CMOS circuits is proportional to

the switching activity and switching capacitance, the approach here is to reduce regfile

energy consumption by minimize switching activity and switching capacitance. The

precise read control, the bypass skip, and the separate R0 methods successfully reduce

regfiles’ switching activity by minimizing the number of accesses and each has an energy

saving potential of 23%, 20%, and 22%. Also, a 38% energy saving is accomplished by a

slight modification of the regfile storage cells alone. The normalized weighted switching

activity and energy saving of these four methods are cross-compared in Table 8.1 for each

critical node in the regfile and the bypass-network. The switching activities are weighted

by their switching capacitance and normalized by the base case switching activity factor.

Switching index is the summation of all the normalized weighted switching activity. Energy

consumption is linearly proportional to the switching index.

On the other hand, split bitline reduces regfile’s switching capacitance instead of the

switching activity. Split-bitline regfile reduces regfiles’ bitline capacitance by having a two-

size adaptive bitline length. It has an average of 61% bitline energy saving. Split-bitline

regfile’s total energy saving is bounded by the column circuitry and the bypass networks’

energy consumption. We can obtain a greater percentage of split-bitline regfile total energy

saving by having more energy-efficient column circuitry and bypass network.

These five methods have different area and latency overheads as listed in Table 8.2.

61

Node/Case BASE PRC BS SR0 MSC
Read-bit 43.98 33.48 29.33 30.42 12.33
Read-bitb 9.31 4.06 7.11 9.17 9.17
Write-bit,bitb 11.42 11.42 11.42 8.96 11.22
Rs-mux-input 1.30 1.05 0.95 1.00 0.55
Rs-mux-output 2.28 1.59 2.28 1.60 0.78
Rs-mux-control 0.16 0.16 0.16 0.22 0.16
Rs-latch-data 6.32 4.42 6.32 4.04 2.15
Rt-mux-input 0.61 0.50 0.56 0.62 0.61
Rt-mux-output 0.53 0.50 0.53 0.66 0.53
Rt-mux-control 0.18 0.18 0.18 0.20 0.18
Rt-latch-data 1.33 1.27 1.33 1.33 1.33
Sd-mux-input 0.45 0.34 0.40 0.46 0.45
Sd-mux-output 0.55 0.26 0.55 0.60 0.55
Sd-mux-control 0.10 0.10 0.10 0.19 0.10
Sd-latch-data 1.51 0.73 1.51 1.51 1.51
Precharge 9.12 5.97 6.80 6.60 9.21
Clk 10.76 10.76 10.76 10.76 10.76
Switching index 100.00 76.80 80.29 78.34 61.58
Energy saving 0.00 23.20 19.71 21.66 38.42

Table 8.1: Regfile switching activity percentage and energy saving evaluation for the base
case regfile (BASE), the precise-read-control regfile (PRC), the bypass-skip regfile (BS),
the separate-R0 regfile (SR0), and the modified-storage-cell regfile (MSC).

62

Method Area Overhead Latency Overhead
Precise read control AND-gate Decoder latency - half of the

cycle time
Bypass skip AND-gate RAW hazard-detector latency

- half of cycle time
Separate R0 Muxes
Modified storage cell Undetermined
Split bitline Transmission gate Transmission gate

Table 8.2: Overhead analysis for each low energy regfile technique.

Method Dependency
Precise read control Number of over-fetched operands
Bypass skip Number of bypassed operands
Separate R0 Number of R0 references
Modified storage cell Percentage of zero bits fetched
Split bitline Percentage of reference are most popular registers

Table 8.3: Dependency analysis for each low energy regfile technique.

Moreover, the energy saving percentage of these methods also depends on different

benchmarks behaviors as shown in Table 8.3. One can achieve higher energy saving

percentage by combining multiple methods together. However, the energy savings are

not 100% additive among them as discussed in earlier chapters. Different combinations

are tested and the results are shown in Figure 8-1. The combination of modified storage

cell, precise read control, bypass skip, separate R0, and split bitline methods has the largest

energy saving of 63%.

8.1 Summary of Contributions

In conclusion, this research shows that 58% of fetched operands are discarded, 39% of

regfile writes are redundant, 30% of regfile references are R0, 82% of fetched bit values

are zero, and 83% of regfiles references are accounted for by the 8 most popular registers.

Therefore, this thesis investigates five regfile energy saving methods–precise read control,

63

G721 m88k li jpeg vort go gcc avg
0

10

20

30

40

50

60

70

80

90

100

Benchmark

%

Figure 8-1: Comparative energy consumption for the base case regfile with each additional
low energy regfile technique in the following order: modified storage cell, precise read
control, bypass skip, separate R0, and split bitline.

bypass skip, separate R0, modified storage cell, and split bitline. Each has an energy saving

of 23%, 20%, 22%, 38%, and 20% respectively. A total energy saving of 63% can be

achieved by combining all of these five methods without any software changes.

8.2 Discussion

In this thesis, we reduced regfile energy consumption by decreasing the switching activity

and the switching capacitance. Another approach to reduce regfile energy consumption is

by using differential sense amplifiers in the column circuitry to avoid rail-to-rail read bitline

swings [13]. The energy dissipation for each limited bitline swing can be calculated as

1

2
� Cswitch � (s � Vdd) � Vdd

WhereCswitch is the switching capacitance,s is the voltage scaling coefficient, and

Vdd is the supply voltage. The bitline swingss � Vdd for each low-to-high and high-to-

low transition. Table 8.4 shows the required voltage scaling coefficient and the maximum

bitline swing voltage for double-ended read regfiles to obtain the same read bitline energy

consumption as each single-ended read regfile case discussed in this thesis. For example,s

64

Single-Ended Read w/ ERT Equivalent Double-Ended Read w/o ERT
Regfile Case (s = 1, sVdd = 3V) s sVdd (V)

Base 0.47 1.53
Precise read control 0.33 1.09
Bypass skip 0.32 1.05
Separate R0 0.34 1.13
Modified storage cell 0.18 0.61
Split bitline 0.33 1.08

Table 8.4: The required voltage scaling coefficient and the maximum bitline swing voltage
for obtaining the same read bitline energy consumption. ERT stands for energy reduction
technique.

has to to less than 0.47 to get energy saving over the single-ended read base case.

We can use differential sense amplifiers with four of our five regfile energy reduction

techniques to further decrease the energy dissipation. Modified storage cell is the only

technique which doesn’t affect regfile energy dissipation when differential sense amplifiers

are used. Because the differential-sense-amplifier regfile has double-ended sensing with a

pair of bitlines for each read port, one of the paired bitlines always swings regardless of the

value read.

Figure 8-2 shows the energy saving from using differential sense amplifiers with and

without the four regfile energy reduction techniques–precise read control, bypass skip,

separate R0, and split bitline. The energy saving ranges from 2% to 50% as the bitline

swing voltage ranges from 1.5V to 100mV. The four methods further reduce the remaining

regfile energy dissipation by almost one half; the maximum energy saving of 71% can be

achieved with the combination of the energy reduction techniques and a 100mV bitline

swing. Differential sense amplifiers reduce both the power dissipation and read sensing

delay but increase the area overhead because of the extra read bitlines required for double-

ended sensing.

Figure 8-2 also shows that for differential-sense-amplifier regfiles to have energy saving

over the optimal single-ended read regfiles, the read bitline voltage swing has to be less

than 0.9V. The optimal single-ended read regfile has a constant 63% of energy saving

while the double-ended read regfile has a maximum of 71% energy saving. To achieve the

65

0 0.5 1 1.5
0

10

20

30

40

50

60

70

80

90

100

SVdd (V)

%

single−ended sensing, w/ ERT (SVdd=3)

double−ended sensing, w/ ERT
double−ended sensing, w/o ERT

Figure 8-2: Comparative energy consumption for the rail-to-rail bitline swing regfile and
the limited bitline swing regfile with and without the energy reduction techniques (ERT).

additional 8% energy reduction, the read bitline is only allowed to swing 100mV, which is

difficult to accomplish due to CMOS technology limitations. The small additional saving

of using differential sense amplifiers is because it must always swing one read bitline and

because of the constant bypass network energy. Moreover, the supply voltages of modern

microprocessors are dropping faster than the CMOS threshold voltage, which leads to less

room for decreasing bitline swings. Therefore, using differential sense amplifiers does not

help us much in energy saving after applying our five energy reduction techniques. It might

also be possible to limit the bitline swing of our single-ended read design, further reducing

the potential advantages of differential reads.

8.3 Future Work

Designing an energy efficient regfile becomes more critical as we move toward high

performance multiple-issue microprocessors. Microprocessor designs are moving towards

wider instruction issue and increasingly complex out-of-order execution [19]. For example,

the Alpha 21264 microprocessor can fetch and execute up to four instructions per cycle

[9]. Its out-of-order execution leads to register renaming and increased regfile size, with

80 physical registers. The average energy dissipation per regfile access increases with the

66

size of regfile. Also, multiple-issue high performance microprocessors require regfiles with

many read and write ports. The silicon area grows quadratically in the number of ports [16].

Therefore, one can expect that these microprocessors’ regfiles consume a higher percentage

of total energy than in single-issue microprocessors. The potential energy saving of the five

regfile energy reduction techniques proposed for the single-issue microprocessors in this

thesis should be evaluated for multiple-issue high performance microprocessors.

67

68

Bibliography

[1] K. Asanović. Vector Microprocessors. PhD thesis, University of California at

Berkeley, May 1998.

[2] T. D. Burd and B. Peters. Power analysis of a microprocessor: A study of an

implementation of the MIPS R3000. Technical report, ERL Technical Report,

University of California, Berkeley, May 1994.

[3] R. Y. Chen, R. M. Owens, M. J. Irwin, and R. S. Bajwa. Validation of an architectural

level power analysis technique. InDAC ’98. Proceedings of the 35th Annual Design

Automation Conference, San Francisco, CA, June 1998.

[4] D. R. Gonzales. Micro-RISC architecture for the wireless market.IEEE Micro,

19(4):30–37, July/August 1999.

[5] J. L. Hennessy and D. A. Patterson.Computer Architecture — A Quantitative

Approach, Second Edition. Morgan Kaufmann, 1996.

[6] L. Huffman and D. Graves. MIPSpro Assembly Language Programmer’s Guide.

Technical Report 007-2418-002, Technical Report, Silicon Graphics, 1996.

[7] A. Kalambur and M. J. Irwin. An extended addressing mode for low power. In

Proceedings of the IEEE Symposium on Low Power Electronics, pages 208–213,

August 1997.

[8] G. Kane and J. Heinrich.MIPS RISC Architecture (R2000/R3000). Prentice Hall,

1992.

69

[9] R. E. Kessler. The Alpha 21264 microprocessor.IEEE Micro, 19(2):24–36,

March/April 1999.

[10] P. Landman. High-level power estimation. InProceedings ISLPED, pages 29–35,

Monterey, CA, 1996.

[11] L. Nagel. SPICE2. Technical Report ERL-M520, ERL Technical Memo, University

of California, Berkeley, 1975.

[12] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G. Taylor. Magic: A VLSI Layout

System.Proc. 21st Design Automation Conference, pages 152–159, 1984.

[13] J. Rabaey.Digital Integrated Circuites. Prentice Hall, 1996.

[14] J. Scott. Designing the low-power M*CORE architecture. InPower Driven

Microarchitecture Workshop at ISCA98, Barcelona, Spain, June 1998.

[15] V. Stojanovic and V. G. Oklobdzija. Comparative analysis of master-slave latches and

flip-flops for high-performance and low-power system.IEEE Journal of Solid-State

Circuits, 34(4):536–548, April 1999.

[16] M. Tremblay, B. Joy, and K. Shin. A three dimensional register file for superscalar

processors. InProceedings of the 28th Annual Hawaii International Conference on

System Sciences, pages 191–201, January 1995.

[17] N.P. van der Meijs and A.J. van Genderen. SPACE Tutorial. Technical Report ET-NT

92.22, Technical Report, Delft University of Technology, Netherlands, 1992.

[18] N. Weste and K. Eshraghian.Principles of CMOS VLSI Design, Second Edition.

Addison Wesley, 1993.

[19] V. Zyuban and P. Kogge. Split register file architectures for inherently low

power microprocessors. InPower Driven Microarchitecture Workshop at ISCA98,

Barcelona, Spain, June 1998.

70

