
Optimal Digital System Design in Deep Submicron Technology

by

Seongmoo Heo

Bachelor of Science, Electrical Engineering,
Korea Advanced Institute of Science and Technology (1998)

Master of Science, Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (2000)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2006

c
�

Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 13, 2006

Certified by .
Krste Asanović

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Optimal Digital System Design in Deep Submicron Technology

by

Seongmoo Heo

Submitted to the Department of Electrical Engineering and Computer Science
on January 13, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

The optimization of a digital system in deep submicron technology should be done with two basic
principles: energy waste reduction and energy-delay tradeoff. Increased energy resources obtained
through energy waste reduction are utilized through energy-delay tradeoffs.

The previous practice of obliviously pursuing performance has led to the rapid increase in en-
ergy consumption. While energy waste due to unnecessary switching could be reduced with small
increases in logic complexity, leakage energy waste still remains as a major design challenge. We
find that fine-grain dynamic leakage reduction (FG-DLR), turning off small subblocks for short idle
intervals, is the key for successful leakage energy saving. We introduce an FG-DLR circuit tech-
nique, Leakage Biasing, which uses leakage currents themselves to bias the circuit into the minimum
leakage state, and apply it to primary SRAM arrays for bitline leakage reduction (Leakage-Biased
Bitlines) and to domino logic (Leakage-Biased Domino). We also introduce another FG-DLR cir-
cuit technique, Dynamic Resizing, which dynamically downsizes transistors on idle paths while
maintaining the performance along active critical paths, and apply it to static CMOS circuits.

We show that significant energy reduction can be achieved at the same computation through-
put and communication bandwidth by pipelining logic gates and wires. We find that energy saved
by pipelining datapaths is eventually limited by latch energy overhead, leading to a power-optimal
pipelining. Structuring global wires into on-chip networks provides a better environment for pipelin-
ing and leakage energy saving. We show that the energy-efficiency increase through replacement
with dynamically packet-routed networks is bounded by router energy overhead.

Finally, we provide a way of relaxing the peak power constraint. We evaluate the use of Activity
Migration (AM) for hot spot removal. AM spreads heat by transporting computation to a different
location on the die. We show that AM can be used either to increase the power that can be dissipated
by a given package, or to lower the operating temperature and hence the operating energy.

Thesis Supervisor: Krste Asanović
Title: Associate Professor

3

4

Acknowledgments

First of all, I’d like to thank my advisor, Krste Asanović, deeply for his inspiring advice and guid-

ance and also for spending a great deal of time and energy for this thesis. Also I’d like to thank my

thesis readers, Prof. Chandrakasan and Prof. Agarwal for the advices.

I thank my group mates, Ken Barr, Elizabeth Basha, Chris Batten, Steve Gerding, Mark Hamp-

ton, Ronny Krashinsky, Rose Liu, Albert Ma, Heidi Pan, Jessica Tseng, and Mike Zhang for helpful

discussions. Special and extra thanks to my officemates, Mike, Jessica, Ronny and Albert, for

sharing all the ups and downs of MIT grad student life together.

I thank Mary McDavitt so much for all the cares and encouragements throughout the last years

of my graduate work. I thank Ken and his Sydney Grill bar for great beers and chats. I thank Prof.

and Mrs. Lim for the advices on research and life.

Thanks to my MIT Korean friends: Daihyun, Jaewook, Yongwook, Junghoon, Gookwon, Hyu-

nil, Sangwon, Sungho, Joonsung, Minkyu, Jungwon, Sejun, Myungjin, Taeksang, Min, Kyungbum,

Jaeyeon, Chungyeon, Jihwan, Junmo, Daekeun, Jungin, Hyeyeon, Taesik, Seonghwan, Yongseok,

Hyunjung, Sungtae, Taehong, Sungjun, Soonmin, Taeyi, Jhongwoo, Choonghyun, Hohyun, Hyemin,

Jerin, Youjin, Jinyoung, Jooeun, Julie, Jungkeun, Jongchul, Miso, Kwanhong, Meekyoung, Sangil,

Seungeun, Tairin, Wonyong, Yoonsung, Yoonsun, and many others.

Thanks to all friends from First Korean Church in Cambridge: Pastor. and Mrs. Kim, Mr. and

Mrs. Han, Mr. and Mrs. Sung, David and Kelly, Jin, Jieha, Sunah, Jouwon, Taein, Yejeon, Eun-

hye, Hyeeun, Hyeju, Inyoung, Jaehoon, Jaewoo, Jihyung, Jinhee, Jiyoung, Junyoung, Kyunghee,

Rayoung family, Seungwon, Seoyoung, Jaeseop, Chul, and many others. Very special thanks to Jin,

Jieha, Taein, and Yejeon for all the loves and cares.

Funding for my graduate work came from a number of sources including KFAS (Korea Founda-

tion for Advanced Studies), DARPA Grant N66001-99-2-8917, DARPA PAC/C award F30602-00-

2-0562, NSF CAREER award CCR-0093354, NSF ITR award CCR-0219545, and donations from

Infineon Technologies, Intel Corporation, and MOSIS Educational Program (MEP).

Finally, I want to thank my wonderful parents for supporting me, loving me, and believing in

me.

5

6

Contents

1 Introduction 19

1.1 Energy Waste Reduction . 20

1.2 Energy-Delay Tradeoff . 21

1.3 Contributions of Thesis . 21

1.4 Thesis Overview . 22

2 Background 27

2.1 Energy-Delay Tradeoffs . 28

2.1.1 Comparing Energy-Delay Tradeoffs . 28

2.1.2 Combining Multiple Energy-Delay Tradeoffs 29

2.2 Power – Another First-Class Metric . 31

2.2.1 Power Constraints . 32

2.3 Switching Power Reduction . 33

2.4 Leakage Current . 34

2.4.1 Subthreshold Leakage . 35

2.5 Thermal Constraint . 37

2.5.1 Thermal Behavior of Digital Systems . 37

2.5.2 Temperature-Aware Design . 39

3 Categorizing Circuit Innovations 41

3.1 Digital Circuits . 42

3.2 Tuning Transistors’ Dimensions . 43

3.3 Tuning Voltages . 44

3.3.1 Scaling Supply Voltages . 45

3.3.2 Scaling Threshold Voltages . 47

7

3.3.3 Scaling Body Voltages . 50

3.4 Summary . 51

4 Categorizing Architectural Innovations 53

4.1 Employing Parallelism . 53

4.1.1 Pipelining and overcoming data dependences 54

4.1.2 Running Multiple Execution Units . 56

4.1.3 Running Multiple Instruction Streams . 59

4.2 Exploiting Predictability . 60

4.2.1 Reducing memory latencies . 61

4.2.2 Overcoming Control Flow Dependence 64

4.3 Reducing Energy Waste . 64

4.3.1 Dynamically deactivating idle units . 65

4.3.2 Factoring out common operations . 67

4.3.3 Compound computations . 67

4.4 Summary . 68

5 Fine-Grain Dynamic Leakage Reduction 71

5.1 Leakage Reduction Techniques . 72

5.1.1 Static Leakage Reduction Techniques . 73

5.1.2 Dynamic Leakage Reduction . 75

5.2 Fine-Grain Dynamic Leakage Reduction . 77

5.2.1 Candidates for Fine-Grain Dynamic Leakage Reduction 78

5.2.2 Comparing Fine-Grain Dynamic Leakage Reduction Techniques 79

5.3 Leakage-Biased Bitlines for SRAM Arrays . 82

5.3.1 Process Technologies . 82

5.3.2 Leakage-Biased Bitlines for Caches . 83

5.3.3 LBB for Multiported Register Files . 86

5.3.4 Evaluation . 92

5.3.5 Related Work . 96

5.4 Leakage-Biased Domino Logic for Critical Functional Units 98

5.4.1 Related Work . 98

5.4.2 Leakage-Biased Domino . 98

8

5.4.3 Evaluation Methodology . 100

5.4.4 Results . 101

5.5 Dynamically Resizable Static CMOS Logic (DRCMOS) 106

5.5.1 Deterministic Limited Activity . 106

5.5.2 Dynamic Resizing . 107

5.5.3 Dynamically Resizable Static CMOS . 108

5.5.4 Evaluation Methodology . 109

5.5.5 Results . 112

5.6 Summary . 114

6 Pipelining Logic Datapaths 117

6.1 Power-Optimal Pipelining . 117

6.2 Related Work . 118

6.3 Methodology . 119

6.4 Pipelining and Supply Voltage . 121

6.5 Pipelining Power Components . 122

6.5.1 Pipelining and Switching Power . 122

6.5.2 Pipelining and Leakage Power . 124

6.5.3 Idle Power without Clock-Gating . 125

6.6 Combined Results . 127

6.6.1 Case 1: Clock-Gating Present . 128

6.6.2 Case 2: No Clock-Gating Present . 130

6.7 Discussion . 130

6.8 Conclusions . 133

7 Power-Optimal On-Chip Networks 135

7.1 Global Wires . 136

7.2 Related Work . 138

7.3 Wire Power Model . 139

7.3.1 Methodology . 139

7.3.2 First-Order ��� Wire Model . 139

7.3.3 Pipelining Wire . 141

7.4 On-Chip Interconnect Network Power Model . 142

9

7.4.1 Single Tile Baseline . 143

7.4.2 Wire-Routed Tiles . 144

7.4.3 Packet-Routed Tiles . 147

7.5 Conclusions . 150

8 Power Density Reduction through Activity Migration 153

8.1 Related Work . 154

8.1.1 Temperature-Aware Simulators . 154

8.1.2 Dynamic Thermal Management . 154

8.2 Thermal Model . 156

8.2.1 Thermal and Process Properties . 157

8.2.2 Equivalent ��� Thermal Model . 158

8.2.3 Temperature Dependency of Leakage Power 159

8.3 Activity Migration . 160

8.3.1 Activity Migration: Analytical Model . 163

8.3.2 Activity Migration: Simulation Results 163

8.4 AM Architectures . 166

8.5 Results and Discussion . 169

8.6 Conclusion . 172

9 Conclusions and Future Work 173

9.1 Summary of Contributions . 173

9.2 Future Work . 174

9.2.1 Energy Waste Reduction . 175

9.2.2 Energy-Delay Tradeoff . 175

9.2.3 Overcoming Thermal Limit . 176

10

List of Figures

1-1 Energy waste reduction. 20

1-2 Energy-delay tradeoffs: optimizing for either greater performance or lower energy. 21

2-1 Energy-delay tradeoffs with different slopes. 29

2-2 The overhead and effective ranges of an energy-delay tradeoff. 29

2-3 Combining energy-delay tradeoffs for larger effective energy and delay ranges. . . 30

2-4 Combining energy-delay tradeoffs for delay reduction at the same energy or energy

saving at the same delay. 30

2-5 Optimal combination of energy-delay tradeoffs for maximum energy saving. 31

2-6 Two power constraints for digital systems. 32

2-7 Leakage components of deep submicron transistors. 35

2-8 A simulated thermal plot of the Pentium 4 processor [Gun01]. Darker color indi-

cates higher temperature. 38

2-9 Relaxing peak power constraint through dynamic thermal management. 40

3-1 Goals of circuit innovations. 41

3-2 Decomposing a digital circuit: currents and parasitic capacitances of transistors and

voltages. ����������� , �
	 ���� , and �
� ����� are the parasitic transistor drain and gate caps,

and wire cap respectively. 42

3-3 An FO4 inverter chain. 43

3-4 Varying the PN ratio. Switching energy, leakage power, and delay are normalized

to the minimum delay point. 44

3-5 Varying the fan-out and hence number of stages when the load capacitance is fixed.

Switching energy, leakage power, and delay are normalized to the minimum delay

point. 45

11

3-6 Lengthening transistors for leakage reduction. Varying the fan-out and number of

stages when driving a fixed load. Switching energy, leakage power, and delay are

normalized to the minimum length point. 46

3-7 Scaling supply voltage. Switching energy, leakage power, and delay are normalized

to the nominal voltage, 1V. 47

3-8 Scaling threshold voltage scaling. Switching energy, leakage power, and delay are

normalized to the nominal threshold voltages, 0.21/-0.24V. 48

3-9 Power-optimal ratio of leakage power and total power for different delay require-

ments and activity factors. 49

3-10 Power-optimal
�
��� and

���
for different activity factors. 50

3-11 Scaling supply voltage for different threshold voltages and activity factors. AF is the

activity factor and � ��� , � ���
, and � ��� are low-threshold, medium-threshold,

and high-threshold transistors respectively.Switching energy, leakage power, and

delay are normalized to the � ���
and nominal

�
� � point. 51

3-12 Biasing body voltages. Switching energy, leakage power, and delay are normalized

to the zero body bias point. 52

3-13 Zero body biasing (ZBB), reverse body biasing (RBB), and forward body biasing

(FBB) for digital circuits. 52

4-1 Employing parallelism. 54

4-2 Comparing pipelined and parallel architectures. Throughput is fixed at 2 Giga-

operations-per-sec (GOPS). 54

4-3 Pipelining. 55

4-4 Bypassing to overcome data dependences. 56

4-5 Dynamic and static schedulings to overcome data dependences. 57

4-6 Issuing multiple instructions. 58

4-7 Subbanking storage. 58

4-8 Multithreading. 60

4-9 Utilizing multiple cores. 60

4-10 Caching. 62

4-11 Prefetching. 62

4-12 Pre-execution. 63

12

4-13 Speculative execution through memory disambiguation, data prediction, and branch

prediction. 64

4-14 Ideal energy waste reduction. 65

4-15 Dynamic deactivation. 65

4-16 Temporally and spatially fine-grain dynamic deactivation. 66

4-17 Combining an energy-delay tradeoff with a dynamic leakage reduction technique. . 66

4-18 Factoring and compounding for waste reduction. 67

4-19 An illustration of factoring for waste reduction. IF, D, and WB represent instruction

fetch, decode, and write back respectively. IF’ and D’ are factored instruction fetch

and factored decode respectively. 67

4-20 An execution of a compound operation for waste reduction. 68

4-21 Architectural innovations. 69

5-1 An example of sleep vector. We assume that the input vector, 00, makes the logic

gates spend the lowest leakage power and that there is no internal latch. The sleep

vector is fed through input muxes. 77

5-2 Target microarchitectural units in a typical modern superscalar microprocessor, Pen-

tium 4 [Hin01a]. The target units are shaded. 78

5-3 Transition time, steady-state leakage current, and break-even time of FG-DLR tech-

niques. 80

5-4 Normalized switching and leakage power for different processes. 84

5-5 A dual-
���

SRAM cell. 85

5-6 Leakage-biased bitline technique for caches (only a bit slice of a subbank is shown). 86

5-7 The leakage power of 32-row � 16B SRAM subbank for forced-zero and forced-one

sleep vectors and leakage-biased bitlines versus percentage of stored zero bits. . . . 87

5-8 Idle energy and LBB energy of 32-row � 16B SRAM subbank for different processes

(optimistic leakage current was used). 88

5-9 An embedded dual
� �

unbalanced 8-read, 4-write register file cell. 89

5-10 Leakage-biased bitline scheme for multiported register file. Each local bitline can

be left unprecharged, biased by local leakage currents. 90

5-11 Dead register deactivation and idle port deactivation for register files. 91

13

5-12 Sleep-time-dependent cumulative leakage energy of different register file dynamic

leakage reduction techniques for different processes (optimistic leakage current was

used). 92

5-13 Expanded view of cumulative leakage energy in a 70 nm process technology (opti-

mistic leakage current was used). 93

5-14 I-cache energy savings for subbank deactivation. 95

5-15 Register file energy savings by dead register deactivation. 96

5-16 Register file energy savings by global read port deactivation. 97

5-17 A leakage-biased domino buffer. 98

5-18 Cells for a 32-bit Han-Carlson adder. 100

5-19 Delay and switching energy consumption : 180 nm process. 102

5-20 Delay and switching energy consumption : 70 nm process. 103

5-21 Steady-state leakage power : 180 nm process. clk is high for all and sleep is asserted for

LB and LB2. 103

5-22 Steady-state leakage power : 70 nm process. clk is high for all and sleep is asserted for

LB and LB2. Note that y-axis is log-scale. 104

5-23 Cumulative sleep energy : 180 nm process. 104

5-24 Cumulative sleep energy : 70 nm process. 105

5-25 Deterministic limited activity. 107

5-26 Dynamic resizing. 107

5-27 Dynamically resizable static CMOS logic (DRCMOS). 108

5-28 Sneak leakage path problem. 109

5-29 A static 64-entry register free list slice. 110

5-30 A static 64-entry pick-two arbiter. 111

5-31 Logical structure of issue window. 111

5-32 PD curves for register free list’s mux tree using supply voltage scaling. 112

5-33 PD curves for register free list’s mux tree using transistor sizing. 113

5-34 PD curves for arbiter using supply voltage scaling. 114

5-35 PD curves for arbiter using transistor sizing. 115

6-1 Pipelining datapath for lower energy. 118

6-2 Baseline pipeline stage model. Input and clock buffers are not shown. 120

14

6-3 Supply voltage scaling shown as voltage required to achieve 2 GHz with given num-

ber of FO4 logic levels per pipeline stage. 122

6-4 Switching power scaling. 124

6-5 Leakage power versus logic depth per stage. 126

6-6 Idle power scaling. 128

6-7 Total power scaling with a clock-gating mechanism. 129

6-8 Optimal power saving with a clock-gating mechanism. 129

6-9 Total power scaling with no clock-gating mechanism. 131

6-10 Optimal power saving with no clock-gating mechanism. 131

6-11 Optimal logic depth with no clock-gating mechanism. 132

7-1 Pipelining wires and scaling supply voltages for energy reduction at a fixed bandwidth.137

7-2 First-order ��� model of wire. The length of the whole wire is � .
�

is the ��� ratio,

� is the width of the repeater NMOS transistor, � � , � � , and � 	 are the unit-length

wire cap and drain and gate caps of the minimum-sized inverters respectively. . . . 140

7-3 Wire latency-power curves for activity factors of 25% and 2.5%, while changing

repeater sizing, spacing, and supply voltage. Both axes are normalized to the mini-

mum latency point. 142

7-4 Wire distribution of our base chip. Two dotted vertical lines divide wires into local,

semi-global, and global wires. The vertical solid line shows the boundary between

region 1 and 2 wires. 144

7-5 Wire-routed ASIC design. 145

7-6 Wire power consumption of tiled wire-routed design for varying tile sizes, assuming

uniform activity factors of 1% and 0.1%. 146

7-7 Tiled wire-routed design: power saving by pipelining. inter-25%means 25% in-

creased latency requirements for the inter-tile wires. rep represents repeater sizing

and spacing and vs also includes voltage scaling. 146

7-8 Tiled packet-routed ASIC design. 147

7-9 Number and total length of inter-tile wires. 148

7-10 Packet-routed ASIC with ideal zero-power routers. 150

7-11 Packet-routed ASIC with ideal routers: power saving by pipelining. 151

7-12 Packet-routed ASIC with real routers: power consumption. 151

15

7-13 Packet-Routed ASIC with real routers: power saving by pipelining. 152

8-1 Thermal model: an equivalent ��� circuit. 158

8-2 Leakage power versus temperature. 160

8-3 Comparison of thermal models. Simulation is based on Current case and we assume

that
���

starts from
�

. Different switching and leakage power conditions are assumed

for simulation (a) and (b). 161

8-4 AM thermal model : an equivalent ��� circuit. 162

8-5 Conceptual benefits of AM: reduced temperature or increased frequency due to pos-

sibility to perform dynamic voltage scaling. 162

8-6 Analytical calculation of benefits of AM.
���
��� � is the baseline temperature,

�
����� is

the isothermal point,
�
	

� 	
	

and
��� � � are the highest and lowest temperatures for AM

technique, and ���������� is AM period. 164

8-7 Analytical calculation of benefits of AM and a power-performance tradeoff. 165

8-8 Simulation results of AM and DVS for various AM periods (Current case) 166

8-9 Simulation results of AM and DVS for various AM periods (Future case) 167

8-10 AM processor configurations. 167

8-11 CPI with 8KB Caches (1 Cycle Hit Latency) . 170

8-12 CPI with 32KB Caches (2 Cycles Hit Latency) 171

16

List of Tables

3.1 Process parameters. 43

5.1 Process parameters. 83

5.2 The switching read and write energy consumption of 32 � 32b multiported register

file subbank for different processes. 89

5.3 The leakage power of 32 � 32-b multiported register file subbank (optimistic leakage

current was used). 91

5.4 Simulated Processor Configuration . 94

5.5 Processes. 99

5.6 Input vectors. 101

6.1 Threshold voltages and supply voltage scaling coefficients. 122

7.1 Delay scaling of logic gates and wires. � is the process scaling factor. 136

7.2 Wire characteristics of our example 70 nm technology. 139

7.3 Dimensions of our example chips. 143

7.4 Virtual channel router parameters. Phit is the physical transfer size of the link. . . . 149

8.1 Process technology, thermal properties and transistor data. 157

8.2 Simulation measurements of AM (Current case). 164

8.3 Simulation measurements of AM (Future case). 165

8.4 Summary of effects of AM(upper section) and AM+Dynamic
�����

scaling(lower

section) (Current case). 165

8.5 Summary of effects of AM(upper section) and AM+Dynamic
�����

scaling(lower

section) (Future case). 166

8.6 Simulated processor configuration . 168

17

8.7 Benchmark characteristics. (p-p:perlbmk-perfect) 169

8.8 Current case: Effects of AM for area and performance normalized to baseline.

200,000 cycle period for CPI simulation (Figure 8-11 and 8-12) and 200 � s pe-

riod for clock frequency (Table 8.2) were assumed considering clock frequency is

around 1GHz. 171

8.9 Future Case: Effects of AM for area and performance normalized to baseline.

200,000 cycle period for CPI simulation (Figure 8-11 and 8-12) and 60 � s period

for clock frequency (Table 8.3) were assumed considering clock frequency is around

3.3GHz. 172

18

Chapter 1

Introduction

The advent of deep submicron technology is an exciting and challenging time for digital system

designers. Emerging applications require huge amounts of computation and memory bandwidth

and while deep submicron technology allows us to place billions of transistors on a single chip,

thermal and power constraints are ever tightening and thus the efficient use of energy resources is

more important than ever. Also, the surge in leakage current has made leakage power an important

design challenge for digital system design.

The traditional optimization of a digital system often focused on only a single parameter: ei-

ther improving performance or saving energy. Initially, performance was the sole goal. Energy

consumption was insignificant and most innovations were unaware of energy, resulting in the rapid

growth of both useful energy consumption and energy waste in digital systems. Recently, however,

with the peak power reaching the thermal limit of transistors and increasing demands for mobility,

power (or energy) has become a primary metric for digital system design. Though technology scal-

ing has automatically provided around quadratic reduction of switching power for the same circuit

blocks, supply voltage has scaled down sub-linearly. Die size has grown to include many sophis-

ticated architectural innovations and soon will reach a few billion transistors on a single chip. As

a result, typical power consumption of many high-performance digital systems has reached many

tens of watts, which requires expensive cooling to prevent the threat of thermal emergency.

This power crisis has led to many diverse low-energy techniques. Low-energy techniques first

focused on energy waste from spurious switching of parasitic capacitances. Since previous design

practices were energy-unaware, even simple techniques could achieve large energy saving by cutting

energy waste. However, now that most switching energy waste is well controlled, energy reduction

19

must be done through energy-delay tradeoffs. The same principle applies to performance improve-

ment. As energy resources are precious, innovations intended for high performance should fully

understand the energy-delay curve’s behavior. In this deep submicron technology era, obliviously

pursuing only high performance or low-energy results in a sub-optimal design.

Though switching energy waste is well managed in modern digital systems, there is still sig-

nificant leakage energy waste. Though leakage energy waste was trivial in previous technology

generations, the continuation of aggressive technology scaling and resulting supply and threshold

voltage scaling have led to the exponential increase of leakage current, making leakage waste en-

ergy comparable to switching energy. Thus, the development of techniques for leakage energy waste

reduction is crucial for optimal digital system design.

With high performance requirements, precious energy resources, significant leakage, and hot

die temperatures, optimization of digital systems has become more challenging and critical than

ever. We claim that there are two basic principles for digital system optimization in deep submicron

technology: energy waste reduction and energy-delay tradeoff. Increased energy resources obtained

through energy waste reduction are utilized through energy-delay tradeoff.

1.1 Energy Waste Reduction

Energy waste in digital systems results from the simplicity of design. Thus, we can reduce en-

ergy waste by turning a simple and energy-inefficient design into a complex but energy-efficient

design. Figure 1-1 illustrates the impact of an ideal energy waste reduction innovation on energy

and execution time.

Execution
Time

Energy

Energy waste
reduction

baseline

Figure 1-1: Energy waste reduction.

Energy waste is caused by spurious switching of parasitic capacitances or transistor leakage.

The tight control of switching and leakage has been one of the critical themes for recent architec-

tural innovations in digital systems. While modern energy-conscious digital systems have success-

20

fully minimized switching energy waste with the help of fine-grain clock gating for clock trees and

bitline/wordline gating for SRAM arrays, the rapidly-growing leakage energy waste has not been as

effectively reduced.

1.2 Energy-Delay Tradeoff

Though ideally we would like to have innovations which decrease both energy and delay at the

same time, most high-performance or low-energy innovations are, in essence, energy-delay trade-

offs, even though intended for either increasing performance or decreasing energy. The essential

difference between high-performance and low-energy innovations is the direction of trade. High-

performance innovation increases energy consumption for a performance gain and a low-energy

innovation saves energy while sacrificing performance (Figure 1-2). In fact, many innovations can

be used in either direction. For example, supply voltage can be up-scaled or down-scaled to find the

optimal level where the delay requirement is tightly met and the energy consumption is minimized.

Similarly, the issue width of a superscalar processor can be increased for improving performance or

decreased for reducing hardware complexity and saving energy.

Delay (1/performance)

Energy
(Power*Delay)

Base design

Optimized for performance

Optimized for energy

High-performance innovation

Low-energy innovation

Figure 1-2: Energy-delay tradeoffs: optimizing for either greater performance or lower energy.

The future digital systems require an urgent change in design philosophy: from purely high-

performance or purely low-energy design to an energy-efficient design using energy-delay tradeoffs.

1.3 Contributions of Thesis

The major contributions of this thesis are:

� Fine-Grain Dynamic Leakage Reduction (Chapter 5): We find that leakage energy waste is

the most critical target for energy waste reduction and claim that fine-grain dynamic leakage

21

reduction, turning off small pieces for short idle intervals, is the key for continuing leakage

reduction. We introduce a FG-DLR technique, Leakage Biasing (LB) which uses leakage

currents themselves to bias the circuit into the minimum leakage state and hence has low

transition overheads. We successfully apply LB to bitline leakage reduction in primary SRAM

arrays (Leakage-Biased Bitlines) with three microarchitectural deactivation policies and to

domino logic, through Leakage-Biased Domino. We also introduce Dynamically Resizable

CMOS (DRCMOS), which dynamically downsizes transistors on idle paths in static CMOS

logic.

� Pipelining Logic Gates and Wires (Chapter 6 and Chapter 7): We show that energy reduction

for high-performance ASIC systems can be achieved with the same computation throughput

and communication bandwidth by pipelining logic gates and global wires and then employ-

ing other energy-delay tradeoffs. We find that power reduction from pipelining datapaths is

eventually limited by the latch energy overhead. We show that structuring global wires into a

network provides a better environment for global wire optimization (e.g. pipelining). We find

that the energy-efficiency increase through dynamically packet-routed network is bounded by

router energy overhead.

� Hot Spot Removal with Activity Migration (Chapter 8): Dynamic thermal management re-

laxes the peak power constraint. We present a power density reduction technique, activity

migration (AM), for hot spot removal. With AM, we spread heat by transporting computation

to different locations on the die. We show how AM can be used either to increase the power

that can be dissipated by a given package, or to lower the operating temperature and hence

the operating energy.

1.4 Thesis Overview

This thesis is an exploration of optimal digital system design in deep submicron CMOS technol-

ogy focusing on circuit- and architectural-level innovations. While SOI technology for improving

CMOS performance has been under research for nearly three decades [CBF00] and is now in pro-

duction, bulk CMOS technology is by far the most dominant process. We consider only bulk tech-

nology throughout the thesis. Among various levels of digital system optimization, we focus on

circuit- and architectural-levels. Innovations in technology, system software, and applications are

22

significant, but are beyond the scope of the thesis. Our main target platforms are high-performance

and energy-conscious general-purpose microprocessors, and application-specific integrated chips

(ASICs) for digital signal processing (DSP) applications. However, the concepts and techniques of

many innovations we describe and develop in this thesis can be easily applied to other digital system

platforms.

Chapter 2 provides background for this work. We first describe how to compare and combine

energy-delay tradeoffs. Then we move onto power and thermal issues. In spite of continuing tech-

nology scaling, power consumption of high-performance digital systems has grown rapidly and

now power is a primary metric for any digital system design. We describe two power constraints:

peak power and average power. The drastic power increase has led to many low-power techniques.

We find that low-power techniques trade increased delay for lower energy, or reduce energy waste,

and that switching energy waste has been well managed by clock gating for clock trees and bit-

line/wordline gating for SRAM arrays. We present an overview of subthreshold leakage. The rapid

and continuing reductions in feature size and threshold voltage have brought exponential increases

in leakage. The increase of power densities has brought significant increases in die temperature. We

examine the thermal behavior of digital systems and then discuss how we can overcome the thermal

limit through dynamic thermal management to effectively increase the available power budget.

Chapter 3 and Chapter 4 categorize circuit- and architectural innovations for digital systems

respectively, from the perspective of energy waste reduction and energy-delay tradeoff. We observe

that transistors’ dimensions and voltages are the two main tuning variables for circuit designs, and

categorize circuit techniques according to how they tune the variables while studying the energy-

delay tradeoffs with simple test circuits. We find that most architectural innovations are based

on three critical techniques: exploiting parallelism, utilizing predictability, and reducing energy

waste, and categorize the architectural innovations according to the techniques while analyzing

their impacts on energy and delay.

Chapter 5 describes techniques for fine-grain dynamic leakage reduction (FG-DLR). We first

categorize existing leakage reduction techniques into static and dynamic approaches and find that

leakage on critical paths becomes dominant after static leakage reduction techniques are applied.

We discuss candidates for FG-DLR and parameters for comparing different FG-DLR techniques.

We introduce a FG-DLR circuit technique, leakage biasing (LB). LB uses leakage currents them-

selves to bias the circuit into the minimal leakage state. We first apply LB to primary SRAM arrays

to reduce the bitline leakage, which we call leakage-biased bitlines (LBB). LBB dynamically biases

23

the bitlines of unused memory subbanks into a low-leakage state. LBB has no performance impact

and has very low transition energy overheads, and can convert even short idle times into leakage

energy savings. We combine LBB with three microarchitectural policies: subbank deactivation for

instruction caches, and idle register and read port deactivation for multiported register files. Subbank

deactivation saves over 22% of leakage energy and nearly 24% of the total instruction cache energy

in a 70 nm technology. Dynamically deactivating idle registers reduces the total register file energy

by 57%. Dynamically deactivating read ports saves 4-22% of the total register file energy. Next,

we apply LB to domino logic, presenting a new FG-DLR circuit family, Leakage-Biased Domino

(LB-Domino) for critical functional units. LB-Domino uses sleep transistors only on non-critical

paths and uses the leakage current itself to bias internal critical paths into a minimal leakage state.

This technique has little impact on switching energy or delay when applied to conventional domino

circuitry. A 32-bit Han-Carlson domino adder circuit is used to compare LB-Domino with con-

ventional and dual
� �

domino circuits. We find that LB-Domino provides two decades reduction

in steady-state leakage current compared with low-
� �

or dual-
� �

domino at equal delay and noise

margin, and using LB-Domino to place circuits into a sleep state can yield net energy savings even

for sleep times of under 10ns in a 70nm technology.

Even within highly active critical blocks, many individual circuit paths are idle on any given cy-

cle, though whether a path is active or inactive changes dynamically during operation. We introduce

Dynamically Resizable CMOS (DRCMOS) logic that exploits the phenomenon to reduce leakage.

DRCMOS dynamically downsizes transistors on idle paths while maintaining speed along active

critical paths. DRCMOS logic is successfully applied to two key blocks of a modern superscalar

processor: a static 64-entry register free list slice and a static 64-entry pick-two arbiter. We find that

DRCMOS can reduce power consumption by up to 50% at equal delay for the critical components

of a modern superscalar processor implemented in a 70nm technology.

Chapter 6 describes power-optimal pipelining in logic datapaths. Pipelining can be an effec-

tive power-reduction tool when used to support voltage scaling in digital systems implementing

highly parallel computations. Simulation results show that power-optimal logic depth is 6 to 8 FO4

and optimal power reduction varies from 55 to 80% compared with a 24 FO4 design depending

on threshold voltage, activity factor, and the presence of clock-gating in a 70nm technology. We

gain some important insights from the simulation results. First, higher activity factors decrease the

power-optimal logic depth and increase the optimal power reduction because pipelining is most ef-

fective at reducing the additional switching power. Second, pipelining is more effective with lower

24

threshold voltages, resulting in lower logic depths and lower power, except for low activity factors

when leakage power is dominant. Third, clock-gating enables deeper pipelining and more power

reduction because it reduces timing element overhead when the activity factor is low.

Chapter 7 explores the power implications of replacing global wires with an on-chip network.

We optimize network links by combining energy-delay tradeoffs such as pipelining, repeater tuning,

and voltage scaling, to significantly reduce the energy to send a bit across a chip. We develop an

analytic model of large chip designs with an on-chip two-dimensional mesh network, and estimate

the possible power savings for two different design points: a statically wire-routed architecture,

and a dynamically packet-routed tiled architecture. For statically wire-routed networks, smaller

tiles give more power savings because more inter-tile wires can be power-optimized. Dynamically

packet-routed designs have many advantages over wire-routed circuits, such as the reduced number

of link wires through multiplexing and signal encoding, but we find that large power reductions are

unlikely due to router power overhead. A tile size of around 2mm is optimal in a 70nm technology,

balancing the global wire power reduction with the router overhead.

Chapter 8 examines the use of activity migration which reduces peak junction temperature by

moving computations among multiple replicated units. Using a thermal model that includes the

temperature dependence of leakage power, we show that sustainable power dissipation can be in-

creased by nearly a factor of two for a given junction temperature limit. Alternatively, peak die

temperature can be reduced at the same clock frequency.

Chapter 9 concludes the thesis, summarizing its contributions and suggesting future work.

25

26

Chapter 2

Background

Applications and technology are the major drives in digital system development, but they also have

provided ample challenges for circuit designers and architects.

Useful and popular applications, also known as “killer” applications, encourage users to buy

systems on which they can run the apps, and encourage system designers to optimize systems so

that apps can be run faster with less energy. For personal computing, spreadsheets, word-processing,

graphic design tools, and video games were such killer applications. Now, multimedia, streaming,

and wireless applications are emerging killer apps throughout all digital platforms, and they are

driving circuit and architecture innovations. Multimedia or vector units in high-performance micro-

processors are an example of such applications’ influence.

Technology has been the most crucial driving force for the rapid improvement in VLSI digital

systems. The success of continuous feature size scaling has brought and will bring greater speed

and reliability, lower energy, and smaller size at lower cost. But more importantly, “technology

determines the kinds of structures that can be considered and thus comes to shape our view of what

a digital system is” [BN71]. Deep submicron technology not only provides great opportunities, but

also presents great challenges to circuit designers and architects. A few prominent examples of chal-

lenges include ever-increasing leakage from various sources, such as subthreshold, gate, and BTBT

leakages, ever-growing susceptibility to process variation, and ever-slowing global interconnects.

This chapter discusses important challenges in optimal VLSI digital system design for deep

submicron technology and how circuit- and architectural innovations can be employed to overcome

the pending challenges, while next two chapters (Chapter 3 and Chapter 4) describe examples of

circuit- and architectural innovations respectively.

27

Section 2.1 describes how to compare and combine different energy-delay tradeoffs. Section 2.2

describes the ever-tightening peak and average power constraints. Section 2.3 discusses two ways of

reducing switching power: trading delay for lower switching power and reducing switching power

waste. Section 2.4 gives an overview of subthreshold leakage current. Section 2.5 describes the

thermal behaviors of digital systems and then shows how the thermal limit can be overcome and the

peak power constraint relaxed using dynamical thermal management.

2.1 Energy-Delay Tradeoffs

Optimizing digital systems through energy-delay tradeoffs requires two steps. First, when an inno-

vation is under consideration for a digital system, its energy-efficiency for the target unit and whole

system should be analyzed by constructing the energy-delay trading curve. It may be a painstak-

ing task, but the ever-tightening power budget and ever-increasing performance requirement will

make this process indispensable. Second, optimal combination among the applicable innovation

candidates should be sought.

2.1.1 Comparing Energy-Delay Tradeoffs

Slopes, overheads, ranges, and operating regimes are important metrics for comparing energy-delay

tradeoffs. Figure 2-1 shows tradeoffs with different slopes. If the slope of a tradeoff is relatively

steep (assuming that x axis is delay and y axis is energy), the tradeoff tends to be used for energy re-

duction. For example, dynamic voltage scaling is usually used to trade time slack for lower energy,

not the other way around, because its slope is as steep as quadratic (
���������

). Likewise, a tradeoff

with a relatively flat slope is often used for improving performance. While most circuit innovations

have negative slopes (i.e. delay reduction requires energy increase or energy reduction requires de-

lay increase), some architectural innovations such as caching and subbanking have positive slopes,

which mean that the innovations can save energy while improving performance.

Every tradeoff has a variety of overheads and the overheads make the tradeoff deviate from the

ideal slope and give less energy saving or smaller delay reduction than expected from the ideal slope

(Figure 2-2). For example, power dissipated by the additional stage latches is the major overhead

of pipelining for throughput increase. Each energy-delay tradeoff has its effective energy and delay

ranges (Figure 2-2). Utilizing a tradeoff outside the effective ranges is impossible or too costly. For

example, supply voltage downscaling is bounded as the circuit becomes too slow due to reduced

28

Delay

Energy Flat slope:
Delay-improving direction

Steep slope:
Energy-improving direction

Baseline

Positive slope:
Both energy/delay-improving

Figure 2-1: Energy-delay tradeoffs with different slopes.

gate overdrive (
�
�����

� �
) and too vulnerable to noise and process variation. Usually, circuit-level

innovations have narrower ranges than architectural ones [Mar04]. Circuit-level techniques that

scale voltages, such as supply voltage scaling, often have wider effective ranges compared to those

which scale transistor dimension, such as traditional transistor sizing.

Delay

Energy

Baseline

Overhead

Overhead Effective
energy
range

Effective delay range

Figure 2-2: The overhead and effective ranges of an energy-delay tradeoff.

Tradeoffs have different sensitivities to different operating regimes, which consist of process

and environment variables such as oxide thickness and temperature, circuit variables such as circuit

styles and supply and threshold voltage levels, and architectural variables such as activity factors

and microarchitectures. For example, pipelining combined with supply voltage scaling for energy

reduction becomes more effective when the activity factor is high, the threshold voltage is low, and

clock gating is present [HA04b].

2.1.2 Combining Multiple Energy-Delay Tradeoffs

A greater level of optimization (smaller energy at the same delay or smaller delay with the same

energy) can be achieved by employing multiple energy-delay curves. For example, energy-delay

29

curves with different delay ranges can be combined to make a new energy-delay curve with the

extended effective delay range (Figure 2-3).

Delay

Energy

Tradeoff 2

Tradeoff 1

Tradeoff 3

New
tradeoff

Figure 2-3: Combining energy-delay tradeoffs for larger effective energy and delay ranges.

An energy-delay tradeoff with a flatter slope can be combined with an energy-delay tradeoff

with a steeper slope, to yield a performance improvement without spending more energy or achieve

lower energy at the same performance. Figure 2-4 shows a combination of two tradeoffs with

different slopes. From the baseline, performance is increased first with tradeoff1 and then,

using tradeoff2, energy can be reduced to the same energy as the baseline with delay reduction

or can be further reduced to smaller energy with the same delay as the baseline. Figure 2-5 shows

an optimal combination of two energy-delay tradeoffs for maximum energy saving. There exists

an optimal combination point because the overhead increases as we decrease the delay or energy

through an energy-delay tradeoff.

Delay

Energy

Tradeoff 2
Energy
reduction

Tradeoff 1

Delay
reduction

Baseline

Figure 2-4: Combining energy-delay tradeoffs for delay reduction at the same energy or energy
saving at the same delay.

When optimizing a digital system for minimum energy at the same delay or maximum perfor-

mance at the same energy, we should carefully compare, select or reject, and combine applicable

innovation candidates while observing the energy and delay impacts on the whole system as well

30

Delay
Optimal

Energy

Trade 1
Same delay

Baseline
Trade 2 Late

(excessive overhead)

Early

Figure 2-5: Optimal combination of energy-delay tradeoffs for maximum energy saving.

as the target unit. It also should be noted that utilizing multiple energy-delay tradeoffs might in-

crease the design complexity. Also it is possible that some energy-delay tradeoffs are difficult to

combine and even when combined, the combination can result in a worse energy-delay tradeoff due

to resource conflicts.

2.2 Power – Another First-Class Metric

Power was overlooked for years. In the past, power consumption was not significant and a cheap

package was enough to cool generated heat, since performance required by applications was rel-

atively low and leakage current was ignorable. Digital system designers were not well aware of

power (or energy) inefficiencies and trades between power and performance (or energy and delay).

Therefore, innovations were often used for small performance gains while wasting power and other

resources such as area and robustness to noise.

Intel engineers admit that transistor counts and power consumption have been increasing at

rates greater than processor performance [Mar01] and over the last ten years. Even when all pro-

cessors are scaled to the same process technology to isolate the circuit and architecture impacts,

relative die size and power has gone up fifteen- and eighteen-fold respectively while relative perfor-

mance increase is only five- or six-fold. Commonly, for modern high-performance processors, large

amounts of area and power are used for work not directly related to computation, such as caching,

scheduling, and predicting, to achieve as small as
���

improvement of instruction-per-cycle (IPC).

For instance, only a quarter of MIPS R10000 CPU logic is devoted to integer and floating point

datapaths, including register files and bypass circuitry [Asa98], and the rest for small performance

improvement.

Now power is definitely a first-class metric as well as performance for all digital platforms. The

31

power metric impacts the optimal digital system design through two constraints.

2.2.1 Power Constraints

There exist two important power constraints: average power and peak power (Figure 2-6). The first

is the average power constraint due to limited battery life or energy cost. To maximize the operating

time of a digital system, we have to minimize the energy per task or the average power. We could

increase the battery capacity; however, the smaller form-factor and lighter weight requirements

of modern mobile digital systems limit the size of battery, and battery technology is only slowly

improving. The average power often matters due to the electricity cost ($/Watt), particularly for

large computing resources such as server farms [BDH03].

Time

Power

Peak
Power
Constraint

Average
Power
Constraint

Instantaneous
Power

Figure 2-6: Two power constraints for digital systems.

The second is the peak power constraint due to thermal limits. Transistors dissipate power

while charging and discharging parasitic capacitances, and even idle transistors consume significant

leakage power. Power is dissipated as heat in digital systems. Because increase in temperature

reduces system performance and reliability, heat needs to be removed through packages and fans.

It is usual to set a peak power constraint to ensure thermal safety. Therefore, even when a system

is plugged into main power, the power which can be traded for performance is still limited by the

peak power constraint.

It is important to note that, depending on a system and its applications, there can be more

demanding constraints than power. For example, for some systems, area is a critical constraint.

There exists a tradeoff between power and area. A larger area budget enables more parallelism to be

32

exploited for power reduction and allows for a smaller power consumption at a given performance

requirement [Mar04]. In addition, since both area and power affect the system cost through the cost

of fabrication and the costs of cooling and battery capacity respectively, the optimum is found at the

point where the overall cost is minimized. Sensitivity to deterministic and non-deterministic noise

and process variation is another important constraint.

2.3 Switching Power Reduction

The emergence of the power crisis in digital systems (especially in high-performance processors)

has led to the advent of low-power techniques. Low-power techniques have been developed at

various levels such as algorithms, architectures, circuits, and devices, and also on various platforms

such as general-purpose processors, media processors, DSP ASICs, and FPGAs.

All computations and communications in digital systems are performed via switching and power

consumed by switching has dominated total power. The following equation models switching

power.

� � � ����� 	 ��� 	�� ���
� � � ����� �

� �
� � ���	� � �
��� (2.1)

,where
��

is the activity factor, � � ����� is the parasitic load capacitance,
�
� � is the supply voltage,

and ��� � �
��� is the clock frequency.

Techniques for switching power reduction can be divided into two according to how the power

reduction is made. The first group reduces energy waste, energy dissipated by uncontrolled and

unnecessary tasks (Section 1.1). Traditionally, energy waste was not significant and often ignored.

As a result, the energy-efficiency of such energy-unaware digital systems could be significantly

improved by simply finding and minimizing energy waste within the system without a complex

re-design. Many architectural innovations reduce energy waste by reducing
��

(Eq. 2-1) (Sec-

tion 4.3). Clock gating is a representative example. Previously, it was common that the whole clock

tree in a digital system ticked regardless of whether a circuit block was idle or not. Only after clock

power became significantly large did power waste from spurious clock ticking get attention. Clock

gating reduces the clock power waste by gating the local branches of the clock tree, if the circuit

blocks which local branches feed are not doing any work. The cost for clock gating is an increase in

clock control complexity. Likewise, power-aware SRAM arrays gate unnecessary bitline and word-

line switching. The cost is again increased control complexity. Now that digital system designers

33

are well aware of the importance of not wasting precious energy resources, many modern digital

systems are well engineered to reduce energy lost to unnecessary capacitance switching.

The second group trades delay for lower energy, that is, through energy-delay tradeoffs (Sec-

tion 1.2). A variety of circuit-level innovations attempt to tune the transistor dimensions such as the

transistor width and length and voltages such as
�
��� and threshold voltage (

� �
) to balance energy

and delay. The following equation models the transistor delay of a digital circuit.

�
� �
�
���
� � � ��� � �

�
� �

�
���������

(2.2)

� � � ��� �
� �

�
� �

� �
� � �

� ����� (2.3)

,where
�
��������� is the average on-current, 	 is the carrier velocity saturation index (around 1.3 for

recent short-channel transistors), and � is the gain factor [Rab96]. As can be seen from the equation,

the delay model is closely related to the power model; thus, changing the transistor dimensions or

voltage levels provides an intrinsic tradeoff between switching power and delay. For example,

scaling down
�
��� saves power, but increases the delay. Downsizing transistors reduces � � ����� and

thus switching power, but increases delay because � � � � � does not scale as fast as � due to the other

non-transistor capacitances such as interconnect caps. The design of the StrongArm 110 shows

how to lower power, by sacrificing performance through direct energy-delay tradeoffs [Dob96].

The StrongARM’s low-power circuit decisions include lowered supply voltage and a design change

from latches to flipflops for clock load reduction. Chapter 3 presents more details on how circuit

techniques for digital systems tune transistor dimensions and structures, and voltages to trade energy

and delay.

2.4 Leakage Current

The recent exponential increase in leakage current results from two main factors: process scaling

and die temperature increase. As the feature size shrinks, so do the supply and threshold voltages

to keep the electric fields on the channels constant. Linear scale-down of threshold voltage has led

to an exponential increase in leakage current. If this trend of constant threshold voltage scaling

would continue, leakage current would increase by five times each generation [CBF00, DB99].

Leakage current is also exponentially proportional to die temperature. Continuous increase of total

chip power has increased the average die temperature and contributed to leakage increase. Leakage

34

power is now comparable to dynamic switching power in high-performance digital systems.

The trend toward ever more complex processors further exacerbates the situation. Large num-

bers of transistors are added for relatively small improvements in performance and these additional

transistors may dissipate considerable subthreshold leakage power even when not actively switch-

ing. Effective leakage reduction techniques will be the key for optimizing digital systems as well as

enabling further aggressive technology scaling.

2.4.1 Subthreshold Leakage

Leakage current is the drain current when the gate-to-source voltage is zero. Subthreshold leakage

current due to weak inversion is now by far the most dominant component of transistor leakage

among various transistor leakage components. When gate voltage is below threshold voltage, weak

inversion occurs at the channel and causes the carriers to move by diffusion along the surface.

DrainSource

Gate

BTBT leakage

Gate leakage

Subthreshold leakage n+n+

Well

Figure 2-7: Leakage components of deep submicron transistors.

Subthreshold leakage is a complex function of many different variables such as threshold and

supply voltages, temperature, and the physical and effective dimensions of channels. The following

equation shows the subthreshold leakage model.

� ��� � � 	 ��� � 	 � � � �
�

����� � ���	�

����
����������������������� (2.4)

� � is the thermal voltage, � � is the linearized body effect coefficient, is the DIBL coefficient,
�

is the transistor width, � ���	� is the effective channel length, and
�!���

is the oxide thickness.

The subthreshold conduction current is exponentially proportional to threshold voltage (Eq. 2-

35

4) and threshold voltage is inversely proportional to transistor delay (Eq. 2-3), thus controlling

threshold voltage provides a tradeoff between leakage power and delay. Supply voltage affects

subthreshold leakage current through the DIBL phenomenon. When the channel length is relatively

short compared to drain voltage level, drain voltage can lower the source potential barrier and as a

result, effective threshold voltage level. Because of the DIBL effect, supply voltage scaling results

in a superlinear reduction of leakage power rather than linear. Body voltage affects the effective

threshold voltage through the body effect. Reverse body biasing (biasing the body voltage of NMOS

transistors below the source voltage or biasing the body voltage of PMOS transistors above the

source voltage) increases the charge stored in the depletion region and the surface potential required

for strong inversion, and as a result, it raises the effective threshold voltage and reduces subthreshold

leakage.

The subthreshold slope (� � � in Eq. 2-4) flattens by a factor proportional to the absolute temper-

ature since the thermal voltage, � � , is proportional to the absolute temperature. As a result, leakage

current grows exponentially as temperature increases. The positive feedback between leakage power

and temperature can lead to catastrophic thermal runaway. Subthreshold leakage is linearly propor-

tional to the total width of transistors and thus the total area of circuits. Channel length affects

subthreshold leakage through the short-channel threshold voltage roll-off phenomenon (not shown

in Eq. 2-4). With a smaller channel length, a smaller threshold voltage becomes sufficient to cause

strong inversion because the regions below source and drain junctions that are already depleted by

source and drain fields are relatively more significant. Conversely, a slight increase of the chan-

nel length leads to an increase of effective subthreshold voltage and thus decrease of subthreshold

leakage current.

Process variation, one of the most important source of non-scalability in deep submicron tech-

nology, complicates the leakage problem further. The worsened process variation leads to significant

delay spread and affects the yield severely, thus favoring faster and leakier designs. The impact on

leakage spread is also significant. It has been shown that there can be 20X variation in leakage cur-

rent in a 150nm technology [Aga05]. Soon, leakage reduction techniques considering the possible

yield loss due to the delay and leakage spreads will be crucial.

Aggressive technology scaling has caused various short channel effects (SCE), such as drain-

induced barrier lowering (DIBL), threshold voltage roll-off, and reduced on-current to off-current

ratio. To mitigate SCEs, oxide thickness scaling and higher and non-uniform doping, such as halo

and retrograde well, have been utilized by device engineers. The low oxide thickness gives rise to

36

high electric field across the oxide (
� ���), resulting in significant gate oxide tunneling current (Fig-

ure 2-7). On the other hand, a high doping level leads to high electric field across source and drain

junctions, resulting in significant junction band-to-band tunneling (BTBT) current (Figure 2-7). In

the near future, gate and junction BTBT leakages are expected to be comparable to subthreshold

leakage [Aga05]. Therefore, leakage reduction techniques considering all these components will

be indispensable. Though the importance of other leakage components is increasing rapidly, they

are beyond the scope of this research and we focus on subthreshold leakage, which requires a more

urgent fix. If not specified, leakage implies subthreshold leakage in the remainder of this thesis.

2.5 Thermal Constraint

Ever-increasing power consumption and ever-decreasing form-factor of digital systems have in-

creased heat density and die temperature rapidly. Raised junction temperature causes decreased

delay and increased leakage. Increasing temperature raises the thermal agitation of the semiconduc-

tor atoms, which in turn increases lattice scattering and causes an approximately quadratic decrease

of mobility [Pie96]. The reduced mobility leads to reduced circuit speed and possible timing errors.

The linear increase of temperature makes leakage power increase exponentially (Section 2.4).

The leakage power increase might lead to the further temperature increase in return. This posi-

tive feedback can cause catastrophic thermal runaway, if there is no dynamic thermal management

scheme to sense high temperature and reduce temperature by decreasing power density dynamically.

Additionally, soft errors and transistor aging also increase exponentially with temperature.

2.5.1 Thermal Behavior of Digital Systems

Power, � , in electrical systems is mainly converted to heat energy (or heat flow),
�

.

� � � (2.5)

Heat energy dissipation causes an increase in temperature. The following equation represents the

law of heat conduction, where
�

is proportional to the gradient of steady-state temperature differ-

ence, � � , and area,
�

, while inversely proportional to thickness, � .

� � � �
�

� (2.6)

37

Rearranging the above equations,

� � � � � (2.7)

We see that the steady-state temperature difference is proportional to power, � , and inversely pro-

portional to area, that is, power density (power divided by area). As power densities of high-

performance digital systems rise above 100 W/cm
�
, providing adequate heat removal with a low

cost package is becoming particularly challenging. Cooling or packaging costs are proportional to

net heat density. Heat density or flux is proportional to the amount of heat and inversely propor-

tional to the form factor. Because cost-effective package design is beyond the scope of this thesis,

we simply assume that packages with fixed dimensions are given, and heat and heat density are not

differentiated in this thesis.

Figure 2-8: A simulated thermal plot of the Pentium 4 processor [Gun01]. Darker color indicates
higher temperature.

Three basic observations can be made on the thermal behaviors of digital systems. First, tem-

peratures on dies are far from uniform. The uneven distribution of power dissipation across a die

complicates heat removal. The uneven power density leads to hot spots where regions of a die have

significantly elevated junction temperatures compared to inactive regions. The reason why hot spots

develop is that silicon is a relatively poor heat conductor and cannot efficiently spread heat across a

die. Figure 2-8 shows a thermal plot of the Pentium 4 processor [Gun01]. The plot clearly indicates

a small region with much higher temperature than the rest. Hot spots provide a serious impedi-

38

ment to achievable performance since they require that total power dissipation is reduced until all

hot spots have junction temperatures below the reliability limit. Hot spots typically occur at the

granularity of architecture-level blocks [Ska03].

Second, temperature depends not only on power density, but also on time, due to thermal ca-

pacitances. The thermal capacitances of digital systems and surrounding packages are significantly

large that all thermal processes such as heating, heat spreading, and cooling take noticeable time.

Lastly, there is a significant gap between the typical- and worst-case power since most applications

have limited amount of parallelism, due to dependences, compared to the maximum parallelism the

digital system can afford, and have low signal transition probabilities compared to the worst-case

pattern.

2.5.2 Temperature-Aware Design

Thermal limit has led to strict peak power constraints (Section 2.2.1) and digital system designers

optimize systems strictly under the constraints to ensure thermal safety while maintaining reason-

ably cheap packages. This worst-case design style is safe, but tends to be extremely conservative,

resulting in limited performance.

Temperature-aware design has been proposed to attain further optimization. Temperature-aware

design deals with thermal issues more directly. Instead of designing for the worst peak power, it

designs for the typical high power and the rare thermal emergencies are taken care of dynamically.

Through dynamic thermal management, the peak power constraint is effectively relaxed (Figure 2-

9).

Temperature-aware design has two requirements: thermal sensors and dynamic thermal man-

agement units. Modern high-performance processors include on-die thermal sensors that can detect

over-temperature conditions caused by inadequate heat removal. Although originally designed to

detect thermal emergencies caused by poorly attached heat sinks, broken fans, or blocked air vents,

thermal sensors can also be used in dynamic thermal management schemes that exploit the grow-

ing gap between typical- and worst-case power dissipations [San97]. Thermal sensors are usually

distributed throughout the whole chip, making sure that the possible hot spot candidate areas are

covered. Simulation with benchmark applications would help to find possible locations for thermal

sensors. When the thermal sensors detect die temperature increase over a trigger point, they sig-

nal the dynamic thermal management unit, and the unit starts to reduce the power density of the

problem area. When the temperature falls to a safe range, the unit stops reducing the power density.

39

Time

Power

Peak
Power
Constraint

Average
Power
Constraint

Instantaneous
Power

Raised Peak Power Constraint by
Dynamic Thermal Management

Figure 2-9: Relaxing peak power constraint through dynamic thermal management.

The performance penalty during cooling and transition (between the normal state and thermal

emergency state) energy and delay costs should be minimized. Cooling only the hot spots usually

gives less performance penalty than cooling the whole die, while allowing the same amount of

increase in the effective power budget. Dealing with intrinsically-local heating with global cooling

is not cost-effective. However, implementing localized cooling might lead to a significant increase

in design complexity.

40

Chapter 3

Categorizing Circuit Innovations

Numerous circuit- and architectural innovations have led to the rapid improvements of VLSI digital

systems. This chapter categorizes circuit innovations from the perspective of energy waste reduction

and power-performance tradeoff.

Circuit innovations have two goals (Figure 3-1). First, they can trade time slack on non-critical

paths for lower energy. Second, they can reduce the delay of critical paths and decrease the cycle

time, and thus total execution time.

Delay
Original

Cycle Time
Decrease

of instances

After circuit innovations

Time Slacks Traded
For Lower Energy

Figure 3-1: Goals of circuit innovations.

Circuit innovations often do not stand alone. Commonly, they are combined with architectural

innovations. For example, dynamic voltage scaling is a circuit technique which dynamically scales

supply voltage and saves energy while meeting the performance requirement. However, an ac-

companying architectural innovation is necessary for finding time slack. Chapter 4 categorizes the

architectural innovations for digital systems.

41

3.1 Digital Circuits

We observe that digital circuits are constructed with two major components: first, currents and

parasitic capacitances of transistors, and second, voltages (Figure 3-2). A digital system is basically

a web of switches, and computes and communicates by switching modes between zero and one.

Modern electrical digital systems built in CMOS technologies use transistors as the switches and

switching is done through charging and discharging the parasitic capacitances using the on-currents

of the transistors. Thus, tuning transistors’ dimensions has substantial effect on the energy and delay

of the system since it directly impacts both the parasitic caps and on-currents (and also leakage

currents). Sizing transistors is the most basic form of circuit-level optimization.

A few discrete voltage levels greatly affect digital circuits. The digital values, zero and one,

are established by ground (� � �) and supply voltage (
�
� �) respectively. Transistors are turned on

and start to flow on-currents when the gate voltages exceed the threshold voltage (
� �

). In addition,

the body voltage (not shown in Figure 3-2) affects
� �

and thus the on- and off-currents. Thus, it is

intuitive that manipulating
�
� � and

���
can provide direct control of the systems’ performance and

power.

Vdd Vdd

GNDGND

Vsg>|VT|

GND

Vgs>|VT|
Cdrain+Cgate
+Cwire

Vnode2 Vdd

Vnode3 GNDVnode1 GND

On-current
Leakage current

Figure 3-2: Decomposing a digital circuit: currents and parasitic capacitances of transistors and
voltages. ������� ��� , � 	 � �� , and � � ����� are the parasitic transistor drain and gate caps, and wire cap
respectively.

We divide circuit innovations into two, according to whether a circuit innovation focuses more

on sizing transistors (Section 3.2) or scaling voltages (Section 3.3).

If not specified otherwise, all the energy-delay plots in this chapter were made through Hspice

simulation of a 16 FO4 inverter chain (Figure 3-3). BPTM 70nm technology [Dev01] was used and

important parameters of the process are summarized in Table 3.1.

42

16 stages

….

Figure 3-3: An FO4 inverter chain.

Table 3.1: Process parameters.
Nominal supply voltage 1.0V
Nominal NMOS threshold voltage 0.21V
Nominal PMOS threshold voltage -0.24V
Temperature 100 � �

3.2 Tuning Transistors’ Dimensions

Sizing transistors impacts both on-current and leakage currents (
� � ��� � ��� � � 	 ��� � 	 � � � � �������� , where

�
and �
� �	� are the width and effective length of a transistor) and also the parasitic capacitances

(�
	 ����
� � �
� �	� � � � � � � � � � � � � �

), giving a tradeoff among delay, switching energy, and leakage

power. The basic rule of transistor sizing is to upsize transistors on critical paths while downsizing

non-critical ones such as feedback transistors in sequential logic or keepers in dynamic circuits. En-

ergy saved by downsizing non-critical transistors and reducing the amounts of parasitic capacitance

and leakage current can be exploited by upsizing transistors for delay reduction.

Figure 3-4 shows the effects of varying the PN ratio (
�
	�����
�
� ����) when the total sum of PMOS

and NMOS widths is fixed. Since the total parasitic capacitance remains constant, the switching

energy does not change much. Reducing NMOS transistor width (increasing the PN ratio) decreases

leakage power since the leakage current of NMOS transistor is larger than that of PMOS transistor

when the sizes are identical.

Most circuit blocks consist of cascaded stages, and load balancing between stages is necessary to

achieve the lowest power at a given delay requirement [SSH99]. While the minimum delay design

requires the delay of every stage to be the same, the power-optimal sizing downsizes the largest

gates toward the output and increases the effective fan-out from the minimum delay point [Sto95]

(The fan-out is defined as the amount of logic gates connected to the output of a logic gate).

Figure 3-5 shows the effects of varying the fan-outs and number of stages when the load capaci-

tance is fixed. Increasing the fan-out further after the minimum latency point results in the excessive

43

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 s
w

it
ch

in
g

 e
n

er
g

y

PN=1

PN=5

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 le
ak

ag
e

p
o

w
er

PN=1/5

PN=1

PN=5
PN=9

Figure 3-4: Varying the PN ratio. Switching energy, leakage power, and delay are normalized to the
minimum delay point.

energy increase due to overheads such as the increases of parasitic capacitance and leakage current.

Around 20% of switching energy and 70% of leakage power can be saved by increasing the delay

by 50% from the minimum delay point.

Figure 3-6 shows that lengthening the transistor can be used as an effective leakage reduction

tool (Section 5.1.1). A small increase in transistor length away from the minimum gives a significant

reduction in leakage current with a small impact on delay, because the effective threshold voltage

depends on the length when it is short. The StrongARM processor design reduces leakage current

by lengthening devices in cache arrays and pad drivers by 10–30% [Dob96].

3.3 Tuning Voltages

This section discusses the effects of varying the supply, threshold, and body voltages on the energy

and delay of the digital circuit.

44

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 s
w

it
ch

in
g

 e
n

er
g

y

3 stages
4 stages
5 stages
6 stages

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 le
ak

ag
e

p
o

w
er

Figure 3-5: Varying the fan-out and hence number of stages when the load capacitance is fixed.
Switching energy, leakage power, and delay are normalized to the minimum delay point.

3.3.1 Scaling Supply Voltages

In a deep submicron process, the nominal
�
� � is already around the critical voltage [Cha92], and

the amount of current is less dependent upon the supply voltage due to the velocity saturation effect.

Hence, increasing performance through voltage scaling requires excessively large energy. On the

other hand, supply voltage scaling can be used as a highly efficient energy-saving tool. The follow-

ing equations show that roughly 2% reduction of switching energy can be achieved with only 1%

delay increase (assuming
� ����� �

� � and the mobility degradation due to the short channel is not

significant).

� � � ����� 	 ��� 	 � � � ����� � �� � (3.1)

� ����� � ��
� �

(3.2)

� � � ����� 	 ��� 	 � �
� ����� � (3.3)

� � � � ����� 	 ��� 	 � �

� � � ���	� (3.4)

45

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 s
w

it
ch

in
g

 e
n

er
g

y

l=70nm
l=80nm l=90nm

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 le
ak

ag
e

p
o

w
er

l=70nm

l=80nm

l=90nm

Figure 3-6: Lengthening transistors for leakage reduction. Varying the fan-out and number of
stages when driving a fixed load. Switching energy, leakage power, and delay are normalized to the
minimum length point.

In deep submicron technology, even the leakage current is dependent upon
�
��� through the drain-

induced-barrier-lowering (DIBL) phenomenon and as a result, the leakage power is super-linearly

dependent upon
�
� � . Figure 3-7 shows the effects of

�
� � scaling. It is clearly seen that the

�
� �

scaling is effective at both switching energy and leakage power saving.

To keep the gate overdrive,
�
� � �

���
, reasonably large and avoid excessive slowdown (

� ����� �
� ���� � ��� � � ���� , where 	 is the mobility degradation factor and around 1.3),

�
� � downscaling has been

forcing
���

to scale down too. The
� �

downscaling has led to the rapid increase of leakage power

(Section 2.4), which is the major obstacle to
�
� � scaling.

Some emerging applications such as medical applications and distributed sensor networks have

low energy as the primary concern rather than performance. Subthreshold operation has been used

for these ultra low-energy applications because minimum energy operation for low performance

situations occurs in the subthreshold region. An ultra-low voltage FFT processor whose
�
� � can be

lowered to 180mV was implemented in a 180nm process and was measured to be 8x more energy-

efficient than the standard superthreshold implementation [Wan02a].

46

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 s
w

it
ch

in
g

 e
n

er
g

y

1.0V

0.9V

0.8V

0.7V

0.6V
0.5V

1.1V

1.2V

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 le
ak

ag
e

p
o

w
er

1.0V

0.9V

0.8V

0.7V

0.6V
0.5V

1.1V

1.2V

Figure 3-7: Scaling supply voltage. Switching energy, leakage power, and delay are normalized to
the nominal voltage, 1V.

3.3.2 Scaling Threshold Voltages

Previously,
� �

was less important than
�
� � in terms of both energy and delay. It was too small

to affect the gate overdrive,
�
� � �

� �
and too large to cause a significant subthreshold leakage

power consumption. However, continuous supply voltage down-scaling has led threshold voltage

to become large enough to impact circuit delay through reduced gate overdrive and small enough

to cause leakage power to be comparable to switching power. Figure 3-8 shows the effects of
� �

scaling on delay, switching energy, and leakage power. Switching energy decreases as
� �

increases

because the short-circuit current (the current flowing when PMOS and NMOS transistors are simul-

taneously turned on and the path from
�
� � to � � � is briefly made) is reduced. It is clearly seen

that
���

scaling provides an effective leakage power reduction tool. At our 70nm process, around

25% delay increase can save 90% of leakage power.

Deep submicron technology often requires the simultaneous scaling of supply and threshold

voltages to meet ever-high performance goals while keeping ever-tight power constraints. Figure 3-

9 shows the optimal leakage power ratio when both
� �

and
�
� � are scaled. We measured the total

power and the ratio between leakage and total power while varying
� �

and
�
� � for a given delay

47

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 s
w

it
ch

in
g

 e
n

er
g

y

0.21(−0.24)V

0.25(−0.28)V

0.29(−0.32)V

0.17(−0.20)V

0.13(−0.16)V

0.09(−0.12)V

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 le
ak

ag
e

p
o

w
er

0.21(−0.24)V

0.25(−0.28)V

0.29(−0.32)V

Figure 3-8: Scaling threshold voltage scaling. Switching energy, leakage power, and delay are
normalized to the nominal threshold voltages, 0.21/-0.24V.

requirement and activity factor (AF). It can be seen that the optimal ratio is rather wide and the

total power curves are quite flat around the 50% ratio regardless of the delay requirement. As AF

increases, the optimal ratio tends to increase slightly. An analysis by closed-form equations [NS00]

and a circuit simulation [Mar04] also show that the total power has a very shallow minimum when

represented as a function of leakage and total power ratio, and the optimal ratio is around 30-40%,

and that the value of ratio is not changed even over a wide range of design parameters such as

activity factor, logic depth, and clock frequency. Figure 3-10 shows the optimal
�
� � and

���
that

gives the lowest total power. The simulation results show that the optimal threshold voltage is

strongly dependent on the activity factor. When AF is low, the optimal
� �

become high to reduce

leakage power. On the other hand, when AF is high, the optimal
� �

becomes low to reduce
�
� � and

thus switching power. The optimal supply voltage is a function of both the delay requirement and

AF.

With additional manufacturing cost, multiple
� �

transistors can be used for a further optimiza-

tion. One straightforward way of exploiting multiple
� �

transistors when
�
� � is fixed is to make

non-critical transistors high
� �

for leakage power saving while employing low
� �

transistors on

48

0 50 100
0

0.05

0.1

0.15

0.2

0.25
P

o
w

er
 (

m
W

)
Clock = 2 GHz

AF=0.48
AF=0.24
AF=0.12
AF=0.06
AF=0.03
AF=0.015

0 50 100
0

0.5

1

1.5

Leakage Power / Total Power (%)

Clock = 3.3 GHz

0 50 100
0

0.5

1

1.5

2

2.5
Clock = 4 GHz

Figure 3-9: Power-optimal ratio of leakage power and total power for different delay requirements
and activity factors.

critical paths.
�
� � scaling can also be improved by utilizing multiple

� �
transistors. Figure 3-11

shows that the best energy-delay curve differs according to the AF. � ��� requires the lowest total

energy at the same delay when AF is high, because the
�
� � of � � � is the smallest and so is the

switching energy. Conversely, � ��� is the best when AF is low, since it has the lowest leakage

while its
�
� � is larger than others.

The optimal voltage levels (
�
� � and

� �
) in individual circuit blocks rarely coincide because of

differences in structure when circuit blocks are combined. While allowing multiple
�
� � and

� �

leads to a better optimization point, it requires additional manufacturing cost and increases area and

design complexity. For example, employing multiple
�
� � s, where a low

�
� � is used for non-critical

paths and a high
�
��� on critical paths, requires multiple power planes and level converters between

different
�
� � regions.

49

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Activity Factor

V
ol

ta
ge

 (
V

)

Optimal supply voltage

2GHz
3.3GHz
4GHz

0 0.2 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Activity Factor

Optimal threshold voltage

2GHz:NMOS
2GHz:PMOS
3.3GHz:NMOS
3.3GHz:PMOS
4GHz:NMOS
4GHz:PMOS

Figure 3-10: Power-optimal
�
��� and

���
for different activity factors.

3.3.3 Scaling Body Voltages

Traditionally, bodies were tied to supply voltages and grounds in bulk CMOS processes. However,

energy-delay tradeoff using body biasing has received attention as leakage power has become sig-

nificant. Body biasing takes advantage of the body effect to adjust the effective threshold voltage

and reduce the leakage power waste. Eq. 3-5 models the body effect. In the equation, ��� is the

Fermi potential, � is the body effect coefficient,
� ���

is the zero bias threshold voltage, and
� � � is

the source-body voltage.

� � � � ����� �
��� 	

�

� �
� � � � � 	 � � 	
�

� �
� 	 � (3.5)

Figure 3-12 shows the impact of body biasing on the delay, switching energy, and leakage power.

Reversely body biasing (0 � -0.4V) results in reduced switching energy since the short-circuit current

decreases when
� �

increases. Around 20% delay increase can bring as much as 80% leakage power

saving.

Body biasing can be done in two ways: reverse body biasing (RBB) or forward body bias-

50

0.5 1 1.5 2
0

0.5

1

1.5

2

re
la

ti
ve

 t
o

ta
l e

n
er

g
y

AF = 1.00

LVT
MVT
HVT

0.5 1 1.5 2
0

0.5

1

1.5

2
AF = 0.25

0.5 1 1.5 2
0

0.5

1

1.5

2

relative delay

re
la

ti
ve

 t
o

ta
l e

n
er

g
y

AF = 0.05

0.5 1 1.5 2
0

0.5

1

1.5

2

relative delay

AF = 0.01

Figure 3-11: Scaling supply voltage for different threshold voltages and activity factors. AF is
the activity factor and � � � , � � �

, and � � � are low-threshold, medium-threshold, and high-
threshold transistors respectively.Switching energy, leakage power, and delay are normalized to the
� ���

and nominal
�
� � point.

ing (FBB) (Figure 3-13). RBB dynamically increases the effective threshold voltage of originally

low-threshold transistors when they are idle. On the other hand, FBB dynamically decreases the

effective threshold voltage of originally high-threshold transistors when they are in operation. In

deep submicron technology, FBB is preferable to RBB because it uses high-threshold transistors,

which have less short-channel effect and threshold voltage variation [Nar03].

3.4 Summary

Circuit innovations have improved the energy and delay of digital systems through sizing transis-

tors and scaling voltages.
�
��� downscaling effectively reduces both switching energy and leakage

power. Lengthening the transistor, increasing
� �

, or reversely biasing body voltage provide effec-

tive leakage power reduction for delay increase. When both
�
��� and

���
are scaled, the optimal

leakage power ratio is around 50% regardless of the activity factor or delay requirement and the

51

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 s
w

it
ch

in
g

 e
n

er
g

y

0V

−0.4V
−0.3V

−0.2V
−0.1V

+0.1V
+0.2V
+0.3V
+0.4V

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

ti
ve

 le
ak

ag
e

p
o

w
er

0V

−0.4V

−0.3V

−0.2V

−0.1V

+0.1V

+0.2V

Figure 3-12: Biasing body voltages. Switching energy, leakage power, and delay are normalized to
the zero body bias point.

optimal
���

depends on AF. In a multiple
� �

process, Low-
� �

gives the best energy-delay curve for
�
� � scaling at high AF while high-

� �
gives the best energy-delay curve for

�
� � scaling at low AF.

PMOS body

Vdd

GND

NMOS body

Vdd

GND

Vdd

GND

(c) FBB(b) RBB(a) ZBB

Figure 3-13: Zero body biasing (ZBB), reverse body biasing (RBB), and forward body biasing
(FBB) for digital circuits.

52

Chapter 4

Categorizing Architectural Innovations

The goal of architectural innovations for processors is to provide a structure that can run instruction

streams with maximum concurrency, minimum stalls, and minimum waste.

We find that most architectural innovations are based on three critical techniques: employing

parallelism, exploiting predictability, and reducing energy waste. Architectural innovations seek

and make use of the intrinsic parallelism and predictability in programs and computation models

to maximize the utilization of system resources, while minimizing the inefficient use of energy

resources. This chapter categorizes architectural innovations for processors from the perspective of

energy waste reduction and energy-delay tradeoff principles.

It should be noted that the categorization in this chapter is not exclusive. Many architectural

innovations can fall into two or three categories at the same time. We focus on architectural in-

novations for general-purpose processors since the processors are the most architecturally-complex

digital systems which require the most sophisticated architectural innovations.

4.1 Employing Parallelism

Employing various levels of parallelism has been a key theme in architectural innovation. Parallel

execution is a straightforward way of increasing throughput. Especially, in this deep submicron

technology era, transistors are numerous and cheap, and providing additional parallel circuitry for

parallel execution is one of the best uses of abundant transistors [Cha92]. Figure 4-1 shows the ben-

efit of employing parallelism in terms of energy and execution time. Ideally, employing parallelism

shortens execution time while dissipating the same amount of energy for the same task.

In this category, we include architectural innovations overcoming the factors that limit ex-

53

Execution
Time

Energy Parallelism

Figure 4-1: Employing parallelism.

ploitable parallelism as well as those employing the available parallelism directly. We divide this

category into three sub-categories: pipelining and overcoming data dependences, running multiple

execution units, and running multiple instruction streams.

4.1.1 Pipelining and overcoming data dependences

Pipelining is the most fundamental technique taking advantage of parallelism. In deep submicron

technology, most high-performance processors employ deep pipelining.

Pipelining

Instructions are overlapped in execution by pipelining to increase throughput [HP96]. In even the

most complex digital systems such as general-purpose processors, different instructions go through

similar stages, which enables simple pipelining.

24 stages 12 stages

Switching power: 1
Leakage power: 1

Switching power: 0.28
Leakage power: 0.35

Switching power: 0.22
Leakage power: 0.62

(a) baseline (b) pipelined (c) parallelized

Figure 4-2: Comparing pipelined and parallel architectures. Throughput is fixed at 2 Giga-
operations-per-sec (GOPS).

Compared to parallel architecture, pipelined architecture has better area- and leakage-efficiencies.

Though they show similar energy-delay tradeoffs when leakage is insignificant, the pipelined archi-

54

tecture becomes superior when leakage power becomes comparable to switching power. Figure 4-2

shows the result of circuit simulations of pipelined and parallel architectures. A 24 FO4 inverter

chain was built in a 70nm BPTM process [Dev01] and used as the baseline. The pipeline architec-

ture dissipates only around half the leakage power of the parallel architecture.

Execution
Time

Energy

Pipelining•Latch overheads
•Dependences

Figure 4-3: Pipelining.

Figure 4-3 shows the energy and delay effects of pipelining. Pipelining allows faster clock and

greater throughput, thus initially providing a linear relation between power and performance (or

constant energy with reduced execution time). The energy and delay of stage latches are the major

circuit overheads [HA04b]. More details on power-optimal pipelining for logic datapaths can be

found in Chapter 6.

Pipelining for general-purpose processors exploits instruction level parallelism (ILP) in pro-

grams. Exploiting ILP is limited by data and control dependences in programs (Figure 4-3). Ar-

chitectural innovations such as bypassing and scheduling have been employed to reduce or hide the

data dependences. On the other hand, speculative execution through branch prediction has been

used to overcome control dependences by taking advantage of the intrinsic predictability within

programs (Section 4.2).

Bypassing

Data hazards with short data-dependences can be overcome simply by providing shortcuts between

pipeline stages. Bypassing forwards a functional unit’s output to the same or other functional units’

inputs and reduces the execution time. As the current trend toward a wider issue and deeper pipe

continues, the size and complexity of bypass logic including wires, buffers, muxes, and control

circuitry increase rapidly (eq. 4-1), as does energy and delay. (Figure 4-4).

� ����� � �� � � � ��� �	� ��
	
 � ��
� � � ��� ��� � � ��� � � � � �� ��� � � ��� � (4.1)

55

Execution
Time

Energy

Pipelining

•circuit overheads (wire, mux, control)

Full bypassing

Partial
bypassing

Figure 4-4: Bypassing to overcome data dependences.

Since full-bypassing in processors with wide and deep pipes is both energy- and delay-limiting,

a proper subset of full-bypassing is often implemented instead while enduring some clocks-per-

instruction (CPI) increase.

Scheduling

Instead of executing in program order, instructions can be reordered to reduce pipeline bubbles and

effectively hide data dependences. While static scheduling depends on a compiler’s dependence

analysis to group independent instructions for simultaneous issue, dynamic scheduling (or score-

boarding) keeps un-issued instructions in large instruction windows, checks the dependences, and

issues independent instructions with the help of wide issue logic. Dynamic scheduling often per-

forms better because the data dependences which are unknown at compile time can be dynamically

resolved with run-time only information. Tomasulo’s algorithm extends scoreboarding with register

renaming to avoid name dependences or false data dependences for a greater level of out-of-order

execution. However, dynamic scheduling with register renaming comes with significant hardware

costs (Figure 4-5). It requires multi-ported SRAM arrays with associative search and complex ar-

bitration logic, which consumes a significant amount of switching and leakage energy as well as

requiring large area. Aggressive dynamic scheduling techniques have led to the rapid increase of

schedulers’ area and energy but with diminishing returns in instructions-per-clock (IPC).

4.1.2 Running Multiple Execution Units

Processors can be extended to have multiple execution units to exploit a larger amount of paral-

lelism. This sub-category includes the architectural innovations that help the efficient utilization

of multiple execution units. The maximum achievable throughput is proportional to the number of

execution units and most high-performance processors include multiple parallel execution units.

56

Execution
Time

Energy

Pipelining

•Circuit overheads (scoreboard, rename logic)

Pipelining with
Dynamic scheduling

Pipelining with
Static scheduling

Figure 4-5: Dynamic and static schedulings to overcome data dependences.

Providing multiple execution units is relatively cheap and easy because the execution units are

relatively small and can be duplicated, but keeping them busy is expensive and hard. Though proces-

sors tend to have a similar number and sort of execution units, they show a substantial difference in

how they feed the multiple execution units. For example, a vector architecture keeps a single instruc-

tion flow, but a single vector instruction controls the simultaneous execution of multiple operations

on multiple execution units. Superscalar or VLIW processors also keep a single instruction flow,

but issue multiple independent instructions to the multiple execution units. On the other hand, many

modern larger-scale processors have multiple physical or virtual cores and run multiple instruction

streams on the multiple cores (Section 4.1.3). Each stream can also execute multiple operations on

multiple executions units.

Issuing multiple instructions

To utilize multiple execution units, superscalar or VLSI processors dispatch multiple instructions

per cycle, often in an out-of-order fashion. The essence of multi-issuing is to update and arbitrate

ready instructions (the instructions with all operands ready and with no control dependence) as fast

and energy-efficiently as possible.

Increasing the issue width further after a certain point brings only a marginal performance gain

with an excessive increase of energy. While the intrinsic limit is the bounded ILP in programs, the

non-scalability of some key centralized structures such as instruction windows, multi-ported reg-

ister files, and bypass logic is another critical limit (Figure 4-6). Increasing the width and depth

of pipelining requires the increase of number of ports and elements, which brings the rapid size

increase of centralized structures, impacting area, cycle time, and energy significantly. Decentral-

ization provides a solution for the scalability problem.

57

Multiple issue

•Non-scaling centralized circuits
•Limited ILP

Execution
Time

Energy

Figure 4-6: Issuing multiple instructions.

Decentralizing

Some centralized units in processors with multiple pipes do not scale well as the pipeline width

increases. Decentralization divides the centralized units into smaller units to force area, delay, and

energy to scale, while trying to minimize the pipeline bubbles due to the communication overhead

among the decentralized units. Subbanking storage is an example of fine-grain decentralization. It

can reduce the number of ports with a small increase in the total number of entries while keeping the

same throughput requirement. It allows for a smaller, faster, and lower-energy storage design, but

requires inter-bank communication, which can cause pipeline bubbles. Also, the increased control

complexity can impact the cycle time. Figure 4-7 shows the effects of subbanking on energy and

delay.

Execution
Time

Energy

Subbanking

•Inter-bank communication

Figure 4-7: Subbanking storage.

Clustering is an example of coarse-grain decentralization. Splitting a microarchitectural block

into distributed clusters makes it more amenable to scaling to larger pipeline widths. Clustered

superscalar architectures are claimed to be more complexity-effective [Pal97] and inherently lower-

power [Zyu00]. But, they require complex control logic to map instructions to clusters and handle

inter-cluster dependences [TA03]. The accuracy of mapping heuristics is one of the most important

58

factors for any successful clustered architecture.

4.1.3 Running Multiple Instruction Streams

As pipeline width increases, processors have reached the point where parallelism in a single in-

struction stream is not enough. Increasing the number of execution units gives only an incremental

increase in performance for a significant amount of complexity, energy, and area increase. Coarser-

grain parallelism has been sought for further performance increase with small energy and area

penalties. In particular, exploiting thread-level parallelism (TLP) and running multiple instruction

streams has been favored because of its energy-efficiency.

Multi-threading

A thread is a sequence of instructions and TLP indicates independent threads which can be exe-

cuted in parallel. Multi-threading exploits TLP and improves performance with a small increase in

transistor count [Mar01], by overlapping threads on a core. Overlapping can be time-multiplexed or

it can be time-space-multiplexed, as in simultaneous multi-threading (SMT). Multi-threading lets a

single physical core be viewed as multiple virtual cores by the operating systems and applications,

and allows each instruction stream to run on each virtual core. Multi-threading is cost-effective in

terms of area and leakage energy compared to having multiple physical cores, since most resources

are shared among threads. But it still requires increases in some resources such as temporary stor-

age to reduce the conflicts among threads. Because different and rather independent threads are

multiplexed, the activity in functional units or storages is increased and so is the switching energy.

There is also a possibility of performance degradation because the data locality is decreased due

to the blending of different threads’ data and the prediction based on the locality becomes harder.

Figure 4-8 shows the effects of multi-threading on the energy and delay.

Multiple cores

Using multiple physical cores in a chip multi-processor (CMP) is a straightforward way of run-

ning multiple instruction streams. CMPs can provide higher throughput and consume less en-

ergy per operation than a wide-issue uniprocessor when applications have significant thread-level

parallelism [ZA05]. Localizing computations and minimizing communication overheads among

the cores, and controlling leakage on idle cores efficiently is critical for performance and energy-

59

Execution
Time

Energy

Multithreading

•Circuit overhead (extra resources)
•Thread conflicts (increased activity, decreased locality)

single thread innovations

Figure 4-8: Multithreading.

efficiency. Instead of full cores, vector [Asa98, Esp02] or multimedia units have been successfully

added to main cores as slaves.

Execution
Time

Energy
•Leakage overhead
•Thread communications

single thread innovations

Multiple cores

Figure 4-9: Utilizing multiple cores.

4.2 Exploiting Predictability

Control flow, data, and addresses in processors are not random but often correlated and predictable.

Utilizing the intrinsic predictability has been a vital idea for many architectural innovations. The

locality of reference [HP96] is the most prevalent predictability in processors. There are two types of

locality of reference: temporal and spatial localities. Temporal locality is the concept that a resource

that is referenced will be referenced again in the near future. On the other hand, spatial locality

implies that a memory location has a higher chance of being referenced if a memory location nearby

was just referenced. Constant-strided memory access is a form of spatial locality of reference. There

is also the locality of value, which means that the same values keep being referenced. It exists

because the majority of static instructions exhibit very little variation in the values that they write

during the course of a program’s execution [LS96]. Another important category of predictability

60

is the independence of reference. We can sometimes optimistically assume no dependence among

instructions and data, and execute them out-of-order.

Predictions are often combined with speculative execution (or speculation). Speculation through

disambiguation, data prediction, and branch prediction are such examples (Figure 4-13). Mis-

speculation requires a verification and a full recovery to the previous state on misprediction, which

leads to considerable performance and energy penalties. Consequently, the prediction accuracy is

particularly important for speculation.

The intrinsic predictability has been exploited in two main ways: to reduce access latency and

to overcome control dependences.

4.2.1 Reducing memory latencies

The latency gap between cores and off-chip memory has been one of the most critical obstacles to

the performance improvement for processors and is getting worse as the pipeline depth increases.

Caching

Caching is a fundamental tool used to reduce the effective latency of reference. A cache is a small

memory placed near the execution units, collecting copies of values that were originally stored

elsewhere or computed earlier. Because of the small size and proximity, a cache can provide faster

access latency. A cache stores not only recently-accessed references to exploit temporal locality,

but also larger data chunks including the referenced values to exploit spatial locality. Caching can

be done hierarchically for further latency reduction. Caching also saves energy because the cache

accesses switch a smaller amount of parasitic capacitances compared to off-chip memory accesses.

Keeping the hit ratio high is crucial to effective caching, that is, lower access latency and lower

energy. The hit ratio is affected by multiple factors such as capacity, line size, replacement policy,

and associativity [SG83].

While increasing the capacity can directly increase the hit ratio and decrease the number of ex-

pensive trips to off-chip memory, the increased area might increase delay and leakage power. Sub-

banking can improve the delay while dynamic deactivation can reduce the idle subbanks’ switching

energy and leakage power.

Instruction and data caches in microprocessors are the most typical implementations of caching.

However, caching can be used for other purposes than memory access latency reduction. For exam-

ple, modern virtual memory systems take advantage of a small caching structure called the trans-

61

Execution
Time

Energy

Caching

•Circuit overheads of leakage and delay

Subbanking
Dynamic
deactivation

Figure 4-10: Caching.

lation look-aside buffer (TLB) for a faster and lower-energy virtual-to-physical address translation.

The texture cache in a graphics processor, which captures texture mappings, is another important

application of caching.

Prefetching

Prefetching is another approach to hide the long memory access latency. Prefetching does not wait

until a miss occurs as caching does, but speculates what data would be referenced in the near future

and fetches them in advance. Prefetching does not require verification or recovery mechanisms

like other speculative techniques. Prefetching techniques rely on some heuristics for generating

addresses of future memory references, such as exploiting common unit-stride or constant-stride

accesses [LS96]. Figure 4-11 shows the impact of prefetching on energy and delay.

Execution
Time

Energy

Prefetching

•Circuit overheads (predictor, buffers)

Figure 4-11: Prefetching.

Pre-execution

Pre-execution fetches data beforehand by executing loads earlier than the program order. Some

delinquent loads are hard to prefetch because the accesses are irregular, and prone to cause secondary-

level (L2) cache misses. For these problematic loads, we can issue a helper thread including the

62

loads that runs ahead of the main thread. This makes the L2 cache misses occur earlier and the data

values are ready in caches before the main thread needs them.

Execution
Time

Energy

Pre-execution

•Redundant executions

Figure 4-12: Pre-execution.

Figure 4-12 shows the effects of pre-execution on the energy and delay. Depending on the

latency of L2 cache and the criticality of the delinquent loads that are selected for pre-execution,

performance can be significantly improved by pre-execution. Even though the redundant execu-

tions always result in increased switching energy, the reduced execution time and increased idle

time can lead to reduced overall leakage energy if leakage during the idle time can be dynamically

deactivated.

Disambiguating memory accesses

Speculative disambiguation selects possibly-independent memory references following address-

unknown memory references, and speculatively issues them in parallel for effective memory latency

reduction. For example, memory operations inside loops often access array elements with a regular

pattern, and tend to be independent. Figure 4-13 shows the impact of speculation through memory

disambiguation on the energy and delay.

Predicting data values

Value locality is the likelihood of a previously-seen value recurring repeatedly within a storage

location. Value prediction directly speculates on values by exploiting value locality [LS96], while

previous techniques, such as caching, prefetching, pre-execution, and speculative disambiguation,

speculate on the addresses. Value prediction can be extended to non-memory instructions as well as

memory loads. Figure 4-13 shows the impact of speculation through data prediction on the energy

and delay.

63

4.2.2 Overcoming Control Flow Dependence

The second sub-category uses predictability to overcome control dependences. Conditional branches

are prevalent and frequent, especially in general-purpose processors with large issue widths. Branches

limit the amount of exploitable ILP since we do not know in advance which path is correct to follow

for the instruction fetch. Branch prediction foretells two things, direction and target address. While

static branch prediction uses simple heuristics based on program analysis, dynamic branch predic-

tion is based on the temporal locality of reference. Dynamic branch prediction is more accurate

than static since the past behaviors of a branch strongly influence the current outcome and branch

behaviors can change depending on input data. Usually, both predicted branch direction and target

addresses are stored and updated in a small table indexed by the instruction address. The predicted

branches are verified when branches are later resolved. In case of misprediction, machine state

should be reverted to the state before the speculative execution. Figure 4-13 shows the impact of

speculation through branch prediction on energy and delay.

Execution
Time

Energy

Speculative execution through
•Memory disambiguation,
•Value prediction,
•Branch prediction

•Circuit overheads
(prediction/verification/recovery logic)
•Verification/recovery penalties

Figure 4-13: Speculative execution through memory disambiguation, data prediction, and branch
prediction.

4.3 Reducing Energy Waste

Optimal digital system design requires architects to minimize energy inefficiencies (Chapter 1).

Energy waste can be reduced at design time, or dynamic waste reduction techniques can be applied

during run time. Figure 4-14 shows ideal energy waste reduction.

These architectural innovations sacrifice ease of design for increased energy-efficiency. To min-

imize unused and redundant tasks, they rely on temporally and spatially finer-grain controls. For

example, breaking a memory into smaller subbanks and activating only the needed banks saves the

64

Execution
Time

Energy

Energy waste reduction

Figure 4-14: Ideal energy waste reduction.

energy dissipated by unused subbanks, but it requires individual control for each subbank and the

increased complexity in control logic could impact cycle time.

4.3.1 Dynamically deactivating idle units

The basic idea of dynamic deactivation is simple: turning off idle units until needed later to save

energy waste. Thus, dynamic deactivation causes frequent transitions in and out of deactivated and

active states (more frequent for finer-grain dynamic deactivation) and requires a controller which

controls the transitions. To find or make more deactivation opportunities, more complex microarchi-

tectural policies are employed. The transition energy and delay costs and complex control circuitry

are the main overheads for dynamic deactivation (Figure 4-15).

Dynamic deactivation

•Circuit overheads (deactivation logic, controller)
•Transition penalties

Execution
Time

Energy

Figure 4-15: Dynamic deactivation.

The granularity of deactivation is diverse. The spatial granularity can vary from a few gates or

subbanks to the whole core. Likewise, the temporal granularity can vary from a couple of cycles

to OS context switching times. As long as the overheads are minimized, temporally and spatially

fine-grain dynamic deactivation is more effective at energy waste saving. Figure 4-16 illustrates

fine-grain dynamic deactivation.

65

Time

deactivated idle units

while applications are running

Figure 4-16: Temporally and spatially fine-grain dynamic deactivation.

Clock gating provides an efficient way of saving switching energy by gating the clock signal

to the idle units. As well as spurious clock ticking, spurious data switchings within and after the

idle units are decreased. For finer-grain control, hierarchical clock gating is usually employed. The

main overhead is the increased complexity in clock control logics, which might impact clock cycle

time.

Dynamic leakage deactivation forces the idle units to low-leakage states after some transition

time. The co-design of low-overhead circuits and efficient architectural policies is necessary for

effective dynamic leakage deactivation. Spatially and temporally fine-grain dynamic leakage re-

duction is preferred as long as the transition switching energy and delay penalties are kept small

(Chapter 5). Performance-improving energy-delay tradeoffs increase the idle times between execu-

tions (while decreasing the execution times) and provide a greater opportunity for dynamic leakage

energy reduction (Figure 4-17). It is possible that the combination of two can reduce the total energy

as well as the total execution time.

Energy-delay tradeoff

Execution
Time

Energy

Dynamic
leakage
reduction

increased idle times

Figure 4-17: Combining an energy-delay tradeoff with a dynamic leakage reduction technique.

Dynamically adapting the effective sizes of resources is an example of dynamic deactivation.

Every application shows a different resource utilization and even the utilization dynamically varies

as an application is running. For example, the number of issue queue entries can be dynamically

66

adapted according to the level of ILP in programs to save switching and leakage energy [ACG03].

4.3.2 Factoring out common operations

Common operations among instructions or operations can be factored out to save both energy and

total execution time (Figure 4-18). For example, the vector architecture factors out instruction

fetch and decode for multiple elements [Asa98] (Figure 4-19). The direct addressed cache is an

example of microarchitectural-level factoring [Wit01], which factors out hardware tag checks when

the compiler can guarantee that an access will be applied to the same line as the earlier access.

Execution
Time

Energy
Redundancy reduction through
factoring and compounding

•Circuit overheads (controller)

Figure 4-18: Factoring and compounding for waste reduction.

++ IF’ D’IF D

IF D

IF D

IF D WB

WB

WB

WB

(a) Base

+
+
+

(b) Factored

Time

I1:

I2:

I3:

I4:

I1’: ++

WB

WB

WB

WB

+
+
+

Figure 4-19: An illustration of factoring for waste reduction. IF, D, and WB represent instruction
fetch, decode, and write back respectively. IF’ and D’ are factored instruction fetch and factored
decode respectively.

4.3.3 Compound computations

Figure 4-20 illustrates an example of compound computations, where multiple operations are chained

together without needing intermediate results to turn on storage such as register files or caches. It

reduces the round trips to storages such as register files or caches if the intermediate computa-

tion results are used only once, which happen frequently in many applications. In addition to the

67

total execution time reduction, compounding computation saves storage access energy and the en-

ergy for communications among functional units and memories (Figure 4-18). Many processors

[Asa98, Kha01, San03] designed for computation-intensive multimedia tasks support compound

execution. The increased control complexity is the major overhead.

Time

+

x
_

/

+

+ x /_IF D

IF D

IF D

IF D

IF D

WB

WB

WB

WB

WB

(a) Base

(b) Compound Execution

Figure 4-20: An execution of a compound operation for waste reduction.

4.4 Summary

Architectural innovations have exploited various levels of parallelism utilizing the predictability

within programs while reducing the energy waste in processors (Figure 4-21). Pipelining is the

most fundamental technique which improves the throughput by overlapping instructions. Data de-

pendences limit the effectiveness of naive pipelining. Bypassing and scheduling can overcome some

of the dependences with increased hardware cost. For a further performance improvement, multi-

ple execution units have been employed. The major overhead of multiple issue is the non-scalable,

centralized units such as issue logic and register files, but these can be reduced by decentralization.

The efficiency of decentralization is limited by the inter-block communication costs. Multithread-

ing and utilizing multiple cores exploit a coarser grain of parallelism, and run multiple instruction

streams simultaneously. Communications and conflicts among threads are the main costs of ex-

ploiting TLP. The intrinsic predictability in programs are utilized in two ways: reducing memory

latencies (caching, prefetching, pre-execution, memory disambiguation, and value prediction) and

68

overcoming control dependences (branch prediction). Speculative execution requires accurate pre-

dictors and sometimes verification and recovery mechanisms, which all can be costly in terms of

both energy and delay. Energy waste reduction techniques, such as dynamic deactivation, factoring

and compounding, sacrifice the ease of design. The increased control complexity is one of the ma-

jor performance-harming overheads for all energy waste reduction techniques, while dynamic waste

reduction techniques can incur significant transition (between idle and active states) overheads.

Execution
Time

Energy

•Exploiting parallelism
- pipelining
- multiple execution units
- multiple instruction streams

•Energy waste reduction
-dynamic deactivation
-compounding, factoring

•Utilizing predictability
- reducing access latency
- overcoming control dependences

Figure 4-21: Architectural innovations.

69

70

Chapter 5

Fine-Grain Dynamic Leakage Reduction

The surge in leakage power has changed the optimal design philosophy for high-performance VLSI

digital systems. It has made being idle expensive and being busy energy-efficient. Exploiting cheap

transistors by adding complex structures for small performance increases is no longer effective, due

to the leakage power. Stalls have become expensive in terms of energy as well as performance.

While switching power is unavoidable since digital information is transferred and stored through

capacitance switching, leakage power is pure waste due to the intrinsic imperfection of transistors

as switches and cannot be traded for performance. Leakage power is by far the most critical target

for energy waste reduction. The energy saving can be reserved for longer battery life or converted

to useful switching energy for further performance improvement.

In this chapter, we show that successful leakage power waste reduction leads to further op-

timized systems and that fine-grain dynamic leakage reduction (FG-DLR) is the key for further

efficient leakage reduction 1. Section 5.1 categorizes previous leakage reduction techniques into

two groups: static and dynamic. After static leakage reduction techniques are applied, the leakage

on critical paths becomes dominant, which requires dynamic leakage reduction. Section 5.2 de-

scribes the requirements for effective FG-DLR techniques, shows candidate microarchitectures for

FG-DLR with a microprocessor example, and presents the metrics for comparing different FG-DLR

techniques.

The later sections introduce new FG-DLR techniques that we have developed. We introduce a

FG-DLR circuit technique, leakage biasing (LB), which uses leakage currents themselves to bias the

circuits into the minimum leakage state and has very low transition delay and energy overheads. In

1The work in this chapter was a joint work with Kenneth Barr, Mark Hampton, and Krste Asanovi ć and was previously
published in [HBHA02, HA02, HA04a].

71

Section 5.3, LB is first applied to bitlines within primary memory arrays such as instruction caches

and multiported register files for bitline leakage reduction. Leakage-biased bitlines (LBB) uses

leakage currents themselves to bias the bitlines of unused memory subbanks into a low-leakage state.

In Section 5.4, we apply LB to domino logic, presenting a new FG-DLR circuit family, Leakage-

Biased Domino (LB-Domino) for critical functional units. LB-Domino uses sleep transistors only

on non-critical paths and uses the leakage current itself to bias internal critical paths into a minimal

leakage state.

Even within highly active critical blocks, many individual circuit paths are idle on any given

cycle, though whether a path is active or inactive changes dynamically during operation. In Sec-

tion 5.5, we introduce Dynamically Resizable CMOS (DRCMOS) logic that exploits the phenomenon

to reduce leakage. DRCMOS dynamically downsizes transistors on idle paths while maintaining

speed along active critical paths.

5.1 Leakage Reduction Techniques

We divide previous approaches to reducing leakage power into two categories. Techniques that

trade increased circuit delay for reduced leakage current include: conventional transistor sizing,

lower Vdd [Usa98, Tak98], stacked gates [Nar01, YBD98, HN97], longer channels [Mon96], higher

threshold voltages [Lee97, Wei98, McP00, KC00, AAE00], and thicker
� � � ; we collectively refer to

these as statically-selected slow transistors or in short, static leakage reduction. Techniques for dy-

namic run-time deactivation of fast transistors include body biasing [Mut95, Kur96, Kur98, Mak98,

Kes01], sleep transistors [Mut95, Shi97, KC00, Inu00, Kos01], and sleep vectors [YBD98, HN97];

we collectively refer to these as dynamically-deactivated fast transistors or in short, dynamic leak-

age reduction. Static and dynamic leakage reduction techniques are complementary approaches:

Static leakage reduction techniques reduce leakage on non-critical paths and dynamic leakage re-

duction techniques reduce leakage on critical paths. Both can be simultaneously applied to yield

larger overall savings [JSCR02].

Although many leakage-reduction techniques are implemented at the circuit or device level, dig-

ital system architects have considerable scope to influence digital systems’ leakage power [BS00].

One approach is to increase the use of static leakage reduction by finding additional parallelism,

so that a given throughput can be achieved with a larger parallel array of units built with slower,

less-leaky transistors, rather than with a smaller number of lower-latency units built with faster but

72

leaky transistors. Unfortunately, available parallelism is limited in single-threaded general-purpose

applications, and much of the complexity of modern high-performance processors is due to the

difficulties of finding such parallelism.

Alternatively, system architects can focus on finding opportunities to exploit dynamic leakage

reduction, whereby fast, leaky circuits are deactivated when not required. This approach can po-

tentially maintain the lowest latency for applications with little parallelism, while reducing leakage

power to acceptable levels. The difficulty with this approach is that most existing circuit techniques

for dynamic leakage reduction are only effective at reducing leakage energy if a circuit block will

be inactive for a long time. This limits the scope for applying dynamic leakage reduction within an

active digital system, where some blocks may only be inactive for a small number of cycles.

5.1.1 Static Leakage Reduction Techniques

Static leakage reduction techniques replace fast transistors with slow transistors on non-critical

paths. This tradeoff has been done through two main ways: tuning the dimensions and structures of

transistors and scaling voltages.

Tuning Transistors’ Dimensions and Structures

In fact, static leakage reduction through transistor tuning has been a common design practice for

many decades. Traditional transistor sizing reduces transistor gate width on non-critical paths to

reduce parasitic load on critical nodes and save switching power. Leakage is proportional to gate

width, and so these narrower transistors also have lower leakage. Non-critical paths also use slower,

more complex gate topologies to reduce area. These more complex gates have deeper transistor

stacks, which also reduce leakage. Recently, researchers have forced the transistor stack effect

for leakage reduction [Nar01, YBD98, HN97]. It was reported that the forced stack is faster than

lengthened transistors in a 180nm process for the same leakage saving [Nar01].

Leakage decreases superlinearly with gate length and a small increase in transistor length away

from minimum can give a significant reduction in leakage current with a small impact on delay.

This is because the effective threshold voltage is dependent on channel length when the channel

lengths are short, a phenomenon called threshold-voltage roll-off. Accordingly, the designers of

the StrongARM-1 slightly lengthened cache and pad transistors to reduce leakage in standby mode,

yielding a five-fold reduction in leakage with only a small performance penalty [Mon96]. The Alpha

21164 used this approach to control the effects of leakage on dynamic gates [Gro96]. Lengthening

73

gates is only effective for a small increment in channel length, and has the disadvantage of increasing

switching power because of increased gate capacitance.

Scaling Voltages

Lowering supply voltage causes effective leakage reduction as well as switching power saving be-

cause it decreases the leakage current due to the drain induced barrier lowering (DIBL) effect.

Multiple supply voltage schemes, where non-critical transistors are connected to a lower supply

voltage, have been effectively utilized for low-power DSP applications [Usa98, Tak98].

Increasing threshold voltage reduces subthreshold leakage exponentially. The tradeoff is re-

duced gate drive, the difference between supply voltage and threshold voltage (
�
��� �

���
) and thus

reduced circuit speed. At the expense of additional mask processing steps, it is possible to man-

ufacture transistors with several different threshold voltages on the same die. By using slower,

high-threshold transistors on non-critical paths it is possible to reduce leakage current without im-

pacting performance [Lee97, Wei98, McP00, KC00, AAE00]. PowerPC G6 microprocessors used

low threshold-voltage transistors only at the most critical paths and minimized the percentage of the

low threshold-voltage transistors to 3% [McP00]. Low threshold-voltage transistors were not used

in arrays or dynamic circuits because of noise issues. Currently, high-threshold transistors are re-

alized through higher source and drain doping and the higher doping leads to the increased electric

field across the source and drain areas. In the near future, the increased junction BTBT leakage due

to the increased electric field will make leakage reduction by multiple threshold transistor designs

less effective [Aga05].

When we are allowed to manipulate both supply voltage and threshold voltage simultaneously,

it is interesting to note that regardless of the delay requirement and activity factor, there exists

an optimal ratio of leakage power. An analysis taking into account the short-channel effects and

variation of threshold voltage and temperature finds that a simple guideline to optimize the power

consumption is to set the ratio of maximum leakage power to total power around 30%. The value

of about 30% is not changed over a wide range of design parameters such as activity factor, logic

depth, and frequency [NS00]. If leakage power ratio is smaller than the optimal ratio, it indicates

that some dynamic power can be converted to leakage power (for example, decreasing threshold

voltage and decreasing supply voltage) while increasing performance. The increased performance

can be reverted to total power saving through a power-performance tradeoff. Likewise, if leakage

power ratio is larger than the optimal ratio, leakage power can be converted to dynamic power and

74

performance can be increased.

When supply and threshold voltages are tuned simultaneously, the optimal threshold voltage

level is not a strong function of either the clock frequency or the logic depth but of the activity

factor. For example, memory blocks with low activity are optimized with high
� �

transistors while

clock circuits are built with very low
� �

transistors. On the other hand, the optimal supply voltage

level is a strong function of required performance.

5.1.2 Dynamic Leakage Reduction

Even though most transistors are non-critical, the achievable leakage reduction is limited, because

the non-critical transistors have already been reduced in width and stacked into complex gates and

hence have low leakage. Especially, after application of static leakage reduction techniques to non-

critical paths, leakage is even more highly concentrated in the critical path transistors. One example

is a recent embedded PowerPC 750, that employs three threshold voltages: high, standard, and low.

The low threshold transistors account for only 5% of the total transistor width, but around 50% of

the total leakage [Gei02].

Static replacement of slow transistors on critical paths would lead to increased cycle time. As a

result, dynamic techniques that attempt to switch critical paths transistors between active, but leaky

operation and inactive low-leakage states are necessary for significant leakage power saving.

Dynamic leakage reduction techniques exploit the voltage dependence or the input dependence

of leakage for leakage reduction. Techniques in the first category increase the effective threshold

voltage or decrease supply voltage or gate supply voltage dynamically, while those in the second

category minimize leakage by forcing the lowest-leakage state on the given circuit, that is, turning

low leakage transistors off and high leakage ones on.

Exploiting Voltage Dependence

One dynamic leakage reduction technique, popular in low-power digital systems for portable de-

vices, is a dynamically varying body bias to modulate transistor threshold voltages [Mut95, Shi97,

KC00, Inu00, Kos01]. Reverse body biasing (RBB), by setting the p-well voltage higher than Vdd

and the n-well voltage lower than GND, increases
� �

because of the body effect, thereby reducing

leakage current. This technique requires twin or triple well processes and therefore increases manu-

facturing costs. RBB effectiveness diminishes as technology scales primarily because of worsening

short-channel effects such as
� �

roll-off and DIBL, particularly when
� �

is low [Kes01].

75

A variation on the body biasing approach is to fabricate high-
� �

transistors, then actively for-

ward body-bias (FBB) the wells during normal operation to lower
� �

[Miy00]. In the idle state,

the forward bias is removed returning the transistors to their natural high-
� �

state. An advantage

of this technique is that it has less threshold variation than using low-
� �

devices directly because

of improved
� �

roll-off and DIBL and hence can allow higher speed operation for a given leakage

current budget [Miy00]. PMOS FBB has been successfully applied to an on-chip router [Nar02]

and microprocessor ALUs [Tsc03] with small area and performance penalty.

Because of the large capacitance and distributed resistance of the wells, charging or discharging

the well has a relatively high time constant and dissipates considerable energy. To allow the latency

and energy costs of transitioning into the low leakage state to be amortized, these schemes are used

when the system enters a sleep state where it will be idle for at least 0.1–100 � s [Set95, Kur96,

Tak98].

An alternative dynamic leakage reduction approach is supply power gating [Mut95, Shi97,

KC00, Inu00, Kos01]. The power supply to circuits can be cut off by inserting a high
� �

sleep

transistor between Vdd and virtual Vdd (or GND and virtual GND). When turned off, the sleep

transistor adds an extra high-
� �

transistor in series with the logic transistors, dramatically reduc-

ing leakage current. Some of the disadvantages of sleep transistors are that they add additional

impedance in the power supply network that reduces circuit speed, they require additional area and

routing resources for the virtual power supply nets, and they may consume considerable deacti-

vation energy to switch between active and inactive states. By sizing the sleep transistor [KC00],

boosting the gate voltage for the sleep transistor [Inu00], or forward-biasing the sleep transistor

[Kos01], the delay penalty can be reduced in exchange for greater sleep leakage currents and in-

creased deactivation energy. Fine-grained sleep regions based on local sleep devices were proposed

and implemented [Cal04].

Instead of being gated, supply voltage can be lowered when the circuit is idle. Due to the

DIBL effect, the reduced drain voltage results in reduced leakage current. Drowsy caches [Fla02]

implement two supply voltage levels for SRAM arrays and change between them according to the

activity of cache lines while preserving cache state.

Exploiting Input Dependence

Another interesting dynamic leakage reduction technique exploits the fact that the leakage current

of a block depends on the input pattern and internal state [YBD98, HN97, KC00]. For example,

76

embedded dual-
� �

domino requires clock and inputs to be high to force the domino circuit to the

lowest leakage state [KC00] when the circuit is idle. A sleep vector is a combination of input

patterns and internal state which minimizes the leakage current, and is applied by forcing internal

latches into the correct state and forcing inputs to the correct polarity. However, the application of

the sleep vector can require additional circuitry, which reduces performance, and can cause spurious

circuit switching, which results in significant deactivation energy.

0

0 Logic
Gates

Sleep Vector

Figure 5-1: An example of sleep vector. We assume that the input vector, 00, makes the logic gates
spend the lowest leakage power and that there is no internal latch. The sleep vector is fed through
input muxes.

5.2 Fine-Grain Dynamic Leakage Reduction

All dynamic leakage reduction circuits require a policy to decide when to switch to a low-leakage

mode. Current energy-aware VLSI digital systems use a simple policy, usually implemented by

the operating system, whereby the entire system is deactivated when it enters a sleep mode. This

coarse-grain policy cannot reduce active mode leakage power. It is intuitively clear that turning off

small pieces for short intervals is more effective at saving leakage. The tradeoff is the increased

complexity.

We believe that fine-grain dynamic leakage reduction (FG-DLR) is the key for successful leak-

age power saving for digital systems in deep submicron technology. FG-DLR techniques focus on

critical microarchitectural units and exploit short inactive times.

There are two components to effective FG-DLR techniques. First, we need circuit techniques

with low active delay penalty, low energy overhead when moving in and out of sleep, and fast

wakeup time. Many existing dynamic leakage reduction techniques are only effective given a long

sleep time since the circuit techniques have long wakeup time or high energy costs when switching

between inactive and active modes. Deep understanding of leakage characteristics within circuits

will give insight to novel FG-DLR circuit designs.

77

Second, we need microarchitectural scheduling to keep the sleep time as long and often as pos-

sible. Most of previous work focused on only circuit-level techniques and ignored the importance

of microarchitectural policies. However, even the best FG-DLR circuit technique will be useless

if no sleep time is available. By studying microarchitecural behaviors of units, we can find when

FG-DLR circuit techniques can be applied to the units and how sleep opportunities for the units can

be increased.

5.2.1 Candidates for Fine-Grain Dynamic Leakage Reduction

Candidates for FG-DLR are chosen by two criteria: significant leakage power and critical impact on

cycle time. For non-critical units, there are many effective and applicable static leakage reduction

techniques that trade delay for lower leakage by replacing fast and leaky transistors with slow and

low-leakage ones. For instance, an L2 cache can have large leakage due to a large number of

transistors, but is not chosen as a candidate unit since static leakage reduction techniques, such as

using a longer channel, lowering the supply voltage, or employing high threshold transistors, can

be effectively applied. A large portion of units in a microprocessor’s core satisfy these two criteria.

Figure 5-2 shows examples of target units within a superscalar microprocessor.

L2 cache Bus
Interface

L1
D$

FP
Regfile

FP,
Multimedia

ALUs

Int.
Regfile

Int.
ALUs

Microcode ROM

L1
I$

Buffer Alloc. &
Register Rename

Schedulers

L2$

L1 I$
Cont.

Control

Data TLB

Inst.
Decode

BTB

Regfile
Schedulers

Figure 5-2: Target microarchitectural units in a typical modern superscalar microprocessor, Pentium
4 [Hin01a]. The target units are shaded.

78

We find that the possible candidates for FG-DLR can be categorized into three groups according

to structure and circuit style.

The first is a group of primary SRAM arrays that provide fast temporary storage. They are

usually multi-ported and multi-banked. L1 instruction and data caches and register files are such

examples. The delays are so critical that the sizes are limited to make sure that the access latencies

take only one or few cycles. The massive number of transistors makes them significant leakage

contributors. Most leakage currents flow through bitlines as access transistors must be fast.

The second is a group of critical functional units. These are the essential blocks responsible

for the arithmetic and logic calculations. Many modern processors have multiple fast integer and

floating-point ALUs to exploit available parallelism. Commonly, they are part of critical datapath

loops, and they are built with large and fast transistors and thus tend to be leaky. A dynamic circuit

style is dominantly used for them, but the reduced noise margin due to the leakage increase has

made more stable static circuit styles more popular again.

We call the last group complex logic arrays. They are prevalent, especially in modern out-of-

order superscalar microprocessors. They consist of SRAM arrays and intermixed complex logic.

Tag arrays, branch target buffers (BTB), translation look-aside buffers (TLB), rename tables, sched-

ulers, and instruction windows are typical examples. As the issue width and level of speculation

increases, the size and number are rapidly growing and so is the leakage power.

5.2.2 Comparing Fine-Grain Dynamic Leakage Reduction Techniques

The ultimate goal of leakage reduction is total energy reduction with minimum performance loss.

Thus, when attempting to deactivate a block for a short period of time, the performance and energy

impacts of entering and leaving the low-leakage state must be considered.

Figure 5-3 introduces the different parameters we use to compare FG-DLR techniques. The left-

hand side of Figure 5-3 shows the evolution of leakage current over time on entering the deactivated

state. Once deactivated, a block requires some time to reach the lowest leakage state. For example,

a substrate biasing scheme will require time to bias the wells, and a virtual-GND scheme requires

time for leakage currents to charge up the virtual-GND node. During the transition, leakage current

can be substantially higher than in the steady state.

For clarity, this graph only shows the leakage current. When switching into and out of the

low-leakage state there can be substantial switching current spikes. Switching between active and

deactivated modes requires additional transition energy, for example, to switch the gates of power-

79

Steady-state
Sleep Leakage

Time

L
ea

ka
g

e
C

u
rr

en
t

Length of Sleep

L
ea

ka
g

e
E

n
er

g
yTransition

Time Break-Even
Time

Fixed Active
Transition
Energy

FG-DLR
Leakage

Original
Leakage

FG-DLR applied

Figure 5-3: Transition time, steady-state leakage current, and break-even time of FG-DLR tech-
niques.

gating transistors or to charge and discharge well capacitances. The right-hand side of Figure 5-3

illustrates how we compare the overall energy consumed over time when idling in a normal, high-

leakage state versus transitioning into a low-leakage state. The original idle leakage energy is shown

by the straight line which rises at a constant rate dependent on the leakage current. On the same

graph, we show an example curve for a dynamic leakage reduction technique. The fixed energy

costs of first moving to the low-leakage state, then moving back to the active state, are summed

to give the fixed transition energy cost. In addition to the fixed transition energy, there may be

additional variable transition energy costs proportional to the time that the block is deactivated. For

example, in a virtual GND scheme, the virtual GND node is slowly charged over the transition time.

The amount of energy dissipated when the block wakes up and discharges the virtual GND depends

on the idle time. These variable transition energy costs are factored into the energy curve. The

curve rises more steeply initially during the transition time, where variable transition energy costs

are being incurred and as leakage current drops to its steady state value. After the transition time,

the energy curve rises more slowly, as only the steady-state leakage current is being dissipated.

We define the break-even time as the time at which the two curves cross, i.e., when the leakage

energy of remaining in an active idle state matches the energy consumed when switching to the

low-leakage state. The circuit must be idle for considerably longer than the break-even time to save

significant energy.

80

Another important factor in comparing FG-DLR techniques is the wakeup latency (not shown).

The wakeup latency is the time for a block to become usable after being in an inactive state.

Faster wakeup time is usually preferable to faster transition time because it reduces any perfor-

mance penalty. Wakeup latency can sometimes be traded for transition energy, for example, using

a wider transistor to accelerate discharge of a biased well increases the transition energy to switch

the transistor.

Although FG-DLR techniques do not use slow transistors to reduce leakage power, some dy-

namic leakage reduction techniques affect the delay and power of the active state. For example, the

NMOS sleep transistor technique causes virtual GND to be a slightly higher potential than GND

and so the circuit is somewhat slower.

81

5.3 Leakage-Biased Bitlines for SRAM Arrays

In this section, we introduce leakage-biased bitlines (LBB) that uses leakage currents themselves

to bias the bitlines of unused memory subbanks into a low-leakage state. We apply LBB to the

instruction cache and register file of an out-of-order superscalar microprocessor. For the instruction

cache, we deactivate idle subbanks with LBB. There can be a small performance penalty from the

latency increase due to possibly-delayed precharge. For register files, we exploit idleness in two

spatial dimensions. We deactivate subbanks when their registers are unused, and disable unused

read ports when there is not enough parallelism to keep them busy. Leakage energy can be saved

with no loss in performance and minimal area overhead.

Section 5.3.1 describes how we estimated the process parameters for future process technolo-

gies. Section 5.3.2 introduces leakage-biased bitlines and describes how we apply it to an instruction

cache. Section 5.3.3 describes how we apply LBB to a multiported register file. Section 5.3.4 dis-

cusses the results from our evaluation. Section 5.3.5 describes related work.

5.3.1 Process Technologies

To evaluate our dynamic leakage reduction techniques, we used models of four dual-
� �

processes,

including 180 nm, 130 nm, 100 nm, and 70 nm process generations. The 180 nm high-
� �

and low-
���

transistors were modeled after 0.18 � m TSMC low-leakage and medium-
� �

processes respec-

tively. The parameters of the 180 nm process were scaled to future technologies using the SIA

road-map [Int00]. For example, the SIA road-map predicts that
� � � remains the same, but

� ���	�
jumps twice for each technology generation. Because of the difficulty in predicting future leakage

numbers, we bracket our results using our own pessimistic and optimistic estimates of how leakage

currents will scale. The pessimistic estimates assume � � leakage increase per generation while

the optimistic estimates assume
�

� leakage increase per generation. Important parameters of the

processes are summarized in Table 5.1. We believe future leakage currents might be considerably

higher that even our pessimistic numbers indicate, as these are based on a low-leakage, moderate-

performance base case.

Based on the table, we estimated the scaling of switching and leakage power for circuits. The

results are shown in Figure 5-4, where numbers are normalized to the 180 nm process. It is important

to note that leakage power per transistor increases significantly although Vdd and the total area of

the circuit decreases. The switching power is decreasing quadratically as expected from constant

82

Table 5.1: Process parameters.
Parameter (nm) 180 130 100 70

Vdd (V) 1.8 1.5 1.2 0.9
Temp (Celsius) 100 100 100 100
FO4 delay (ps) 61.1 47.4 36.7 24.0
16 FO4 freq. (GHz) 1.0 1.3 1.7 2.6

LVT
� � � (� A/ � m) 732 732 732 732

LVT
� ���	� (nA/ � m) (optimistic) 21.8 43.6 87.2 174

LVT
� ���	� (nA/ � m) (pessimistic) 21.8 87.2 349 1395

HVT
� � � (� A/ � m) 554 554 554 554

HVT
� ��� � (nA/ � m) (optimistic) 0.35 0.71 1.42 2.83

HVT
� ��� � (nA/ � m) (pessimistic) 0.35 1.42 5.68 22.6

field scaling. If the leakage power was 10% of the total power at the 180 nm process, it will increase

to 47-87% for the 70 nm process if the circuit is scaled unchanged. In practice, devices, circuits,

and microarchitectures will be redesigned to limit leakage to a manageable fraction of total power.

The techniques in this work can be used to help keep leakage current within this budget without

sacrificing performance.

5.3.2 Leakage-Biased Bitlines for Caches

The primary caches (L1 caches) can cause significant leakage current, as they contain a large number

of transistors which must be high-speed to avoid impacting system performance. Figure 5-5 shows

the structure of an L1 cache SRAM cell together with the two primary leakage current paths when

the word line is off. One leakage path, ��� , is from the precharged bit-line, through the access

transistor, and across the turned-on n-type pull-down. The other leakage path, � � , is from the

enabled p-type pullup to the turned-off n-type in the cross-coupled inverters. The pullup transistors

have been made high-
� �

so that there is negligible leakage current across the turned-off p-type

(����� 0), and the access and pulldown transistors have been made low-
� �

to maintain circuit

speed. The current through the leakage path, ��� , is insignificant since the path has two turned-off

transistors and the
� �	�

of the access transistor is zero.

With technology scaling, the leakage currents from non-accessed bits will reduce the effective

signal from the accessed bit, requiring that SRAMs have fewer cells connected to each bitline seg-

ment to obtain sufficient noise margin. We assume that only 32 bit cells are attached to each local

bitline within a subbank, and that these local bitlines are connected through pass-transistor switches

to a global bitline which in turn connects to the senseamp.

83

80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
normalized active power

length (nm) of a transistor
80 100 120 140 160 180

2

4

6

8

10

12

14
normalized leakage power

length (nm) of a transistor

Optimistic
Pessimistic

Figure 5-4: Normalized switching and leakage power for different processes.

A key observation is that the leakage current, � � , from each bitline into the cell depends on the

stored value on that side of the cell; there is effectively no leakage if the bitline is at the same value

as that stored in the cell (� �). We might consider using a sleep vector on the bitlines to force the

SRAM subbank into a low leakage state. For example, it is known that there are usually more zeros

than ones stored in a cache [VZA00], so if we force the true bitline to a zero value while keeping

the complement bitline precharged, we could statistically reduce the bitline leakage of an inactive

cache subbank. There are two disadvantages to this approach. First, if the percentage of zero bits

is under 50%, the sleep vector technique increases leakage energy. Second, this technique requires

additional transition energy to force the bitlines into and out of the sleep vector state.

We have developed a simple circuit technique, leakage-biased bitlines (LBB) (Figure 5-6), that

reduces bitline leakage current due to the access transistors of these structures with minimal transi-

tion energy and wakeup time. Rather than forcing zero sleep values onto the read bit lines of inactive

subbanks, this technique just lets the bitlines float by turning off the high-
� �

NMOS precharging

transistors. The leakage currents from the bit cells automatically bias the bitline to a mid-rail volt-

84

0

1

BIT BIT_BAR

GLOBAL
BIT

GLOBAL
BIT_BAR

0

WL

1 1

*HVT: green

L1

L2L2

L3

L4

Figure 5-5: A dual-
� �

SRAM cell.

age that minimizes the bitline leakage current. If all the cells store a zero, the leakage currents

will fully discharge the non-inverted bitline (“BIT” in Figure 5-5) while the inverted bitline (“BIT-

BAR”) will be held high. If all the cells store a one, the non-inverted bitline will be held high and

the inverted bitline will discharge. For a mix of ones and zeros, the leakage currents bias the bitline

at an appropriate mid-rail voltage to minimize leakage. Although the bitline floats to mid-rail, it

is disconnected from the senseamp by the local-global bitline switch, so there is no static current

draw. This technique has little additional transition energy because the precharge transistor switches

exactly the same number of times as in a conventional SRAM—we only delay the precharge until

the subbank needs to be accessed. The wakeup latency is just that of the precharge phase.

Figure 5-7 compares the steady-state leakage power of the leakage-biased bitline and the forced-

zero/forced-one sleep vector techniques with the original leakage power for a 32-row � 16B SRAM

subarray with varying numbers of stored ones and zeros. It is clear that the leakage-biased bitline

technique has the lowest leakage power independent of stored bit values.

Figure 5-8 compares the cumulative idle energy and the LBB energy consumption for different

processes. The LBB technique must replace the lost charge on the bitline before the attached mem-

ory cells can be used. The break-even time, is around 200 cycles in a 180 nm process. However,

85

Local
Bitline

Subbank

Global
Bitline

0

0

0

0

0

Figure 5-6: Leakage-biased bitline technique for caches (only a bit slice of a subbank is shown).

since switching energy scales down faster than leakage energy, the break-even time decreases with

feature size. In a 70 nm process, the break-even time is less than one cycle.

Each subbank must be precharged before use, which will add latency to the cache access if the

subbank is not known in time. We focus in this work on the application of LBB fine-grain dynamic

leakage reduction technique to the instruction cache, because of its predictable access pattern. For

an N-way set-associative cache structure, each way consists of some number of subbanks and we

access N subbanks in parallel, where each subbank returns a fetch group of instructions. In the

most optimistic case, we can assume that the simple subbank decode happens sufficiently before

the more complex word-line decode to allow precharge to complete before word-line drive; in this

case, there would be no performance penalty. In the most pessimistic case, we can assume that the

additional precharge latency adds an additional cycle to the fetch pipeline, and hence increases the

branch misprediction penalty by one cycle.

5.3.3 LBB for Multiported Register Files

Multiported register files can also consume considerable leakage power. For example, in the pro-

posed Alpha 21464 design, the multiported register file was several times larger than the 64 KB

primary caches [Pre02]. Figure 5-9 shows an 8-read port, 4-write port, register file cell. Because

there are many leakage paths in a multiported register file cell, we chose a baseline design that

was already optimized for leakage power. The cell has a high-
� �

storage cell connected to multi-

ple low-
� �

single-ended read ports. The write ports are not as latency critical and so these access

86

0 20 40 60 80 100
100

150

200

250

300
le

ak
ag

e
po

w
er

 (
uW

)

zero percentage (%)

Original
Sleep Vector 1
Sleep Vector 0
Leakage−Biased Bitlines

Figure 5-7: The leakage power of 32-row � 16B SRAM subbank for forced-zero and forced-one
sleep vectors and leakage-biased bitlines versus percentage of stored zero bits.

transistors are high-
� �

. To reduce switching and leakage energy further, we make the cell asym-

metrical, with all read ports arranged so that if the cell stores a zero, the single-ended bitline is not

discharged [TA00]. Our experiments showed that around 75% of the bits read from the register file

are zero.

As with the cache SRAM, the register file array is divided into subbanks with local bitlines

connected to global bitlines to save switching energy and to increase speed and noise margin. The

LBB technique can be applied to the single-ended read port bitlines. By turning off the precharger

on an idle subbank read port, leakage currents will discharge the bitlines towards ground if any bits

are holding a one, reducing bit line leakage current significantly. If the dead time is long enough,

the energy overhead to precharge the bitline before an access becomes relatively small compared to

the leakage energy saved. Note that this technique does not corrupt the state stored in the register

file. Figure 5-10 shows the hierarchical bitlines and a modified column cell for the LBB multiported

register file.

We deactivate the register file for lower leakage using two orthogonal techniques (Figure 5-11).

The first deactivates dead registers whose contents are not needed. We exploit the fact that in a

87

0 200 400
0

10

20

30

40

50
180nm

en
er

gy
 (

pJ
)

0 200 400
0

10

20

30

40

50
130nm

0 200 400
0

10

20

30

40

50
100nm

en
er

gy
 (

pJ
)

cycles
0 200 400

0

10

20

30

40

50
70nm

cycles

Idle Energy
Leakage−Biased Bitline

Figure 5-8: Idle energy and LBB energy of 32-row � 16B SRAM subbank for different processes
(optimistic leakage current was used).

superscalar machine with register renaming, the contents of a physical register are not needed from

the time the register enters the free list until the time it is next written. If all the registers in a

subbank are dead, then all subbank read ports can be turned off. Because the register is allocated

in the decode stage of the pipeline and written to several cycles later (and before any read access),

there is ample time to precharge the floating bitline with no performance impact. As a comparison,

we considered an alternative dynamic leakage reduction approach to turn off dead registers using a

virtual-GND sleep transistor (Figure 5-11). This approach has the advantage that registers can be

turned off individually, rather than a subbank at a time, but has the disadvantage that the read access

time increases due to the sleep transistor in the pull-down path. The delay penalty can be reduced

by increasing the size of the sleep transistor, but this also increases the steady-state leakage current

and the transition energy. We sized the sleep transistor to give an overall 5% slowdown.

The second technique deactivates idle read ports (Figure 5-11). In a superscalar machine, when

fewer than the maximum number of instructions issue, some register file read ports will be idle.

There is no performance impact when the port is reactivated because it is known whether a read port

88

READ[0:7]

WWL[0:3]

RWL[0:7]

WRITE[0:3] WRITEB[0:3]

x8

x4x4

*HVT: green

Figure 5-9: An embedded dual
� �

unbalanced 8-read, 4-write register file cell.

Table 5.2: The switching read and write energy consumption of 32 � 32b multiported register file
subbank for different processes.

transistor length(nm) 180 130 100 70

zero read E(pJ) 6.0 2.9 1.4 0.5
one read E(pJ) 17.3 8.2 4.0 1.4
average read E(pJ) (

�
�) 8.8 4.2 2.0 0.7

0-to-0 write E(pJ) 0.7 0.4 0.2 0.1
0-to-1 write E(pJ) 16.5 7.9 3.8 1.3
1-to-0 write E(pJ) 2.2 1.0 0.5 0.2
1-to-1 write E(pJ) 13.0 6.2 3.0 1.0
average write E(pJ) (

�
�) 4.7 2.3 1.1 0.4

is needed before it is known which register will be accessed in the pipeline. The port precharge time

can be overlapped with register file address decode.

Table 5.2 shows the energy consumption when reading/writing 32-bit zeros or ones from the

32 � 32-bit register file with the unbalanced embedded dual
� �

cells. All read/write energy numbers

are per single read/write port. The energy consumption for 180 nm was measured using Hspice

simulation and those for other processes were scaled using Figure 5-4. The average read and write

energy numbers were calculated assuming 75% of values stored in the register files and write data

are zero and that the values are statistically independent. The total switching energy consumption

is simply the sum of total read energy and total write energy.

89

Local
Bitline

Global Bitline
0

0

0

0

0

0

0

0

0

0
Precharge(=1)

Sleep(=1)

Out0 1

Figure 5-10: Leakage-biased bitline scheme for multiported register file. Each local bitline can be
left unprecharged, biased by local leakage currents.

Table 5.3 shows the steady-state leakage power when different leakage techniques are applied

to the register file and the idle leakage power of the original circuit for different processes. We again

assumed 75% of the bits in the register file are zeros when measuring the leakage power. We also

include numbers for the sleep vector fixed-zeros technique. All three techniques, sleep vector (SV),

leakage-biased bitline (LBB), and NMOS sleep transistor (NST) reduce the leakage power to less

than 1.5% of the original idle power when in the steady state.

Figure 5-12 shows the sleep-time dependent energy consumption of the register file dynamic

leakage reduction techniques across the set of process technologies. We can see that all of the

dynamic leakage reduction techniques become applicable at shorter time scales as transistors scale

down. This is partly because leakage current grows as a fraction of switching power, but also

partly because most of the transition energy cost scales with switching power and so the relative

overhead of switching is reduced. Figure 5-13 is an expanded view of the graph for the 70 nm

90

Register 1Subbank 1

0

Readport 0
Readport 1
Readport 2

Dead Register Deactivation Idle Read Port Deactivation

Figure 5-11: Dead register deactivation and idle port deactivation for register files.

Table 5.3: The leakage power of 32 � 32-b multiported register file subbank (optimistic leakage
current was used).

Process Technology (nm) 180 130 100 70

Original (uW) 177.9 214.1 263.6 276.7
SV steady-state (uW) 2.0 2.4 3.0 3.1

LBB steady-state (uW) 2.0 2.4 3.0 3.1
NST steady-state (uW) 1.8 2.2 2.7 2.9

process technology.

We see that for the sleep vector technique, the break-even time is around 200 cycles at the

180 nm process, but shrinks to only 24 cycles in the 70 nm process. The sleep vector technique has

high fixed transition energy costs, and so below the break-even time, the energy consumption is

much higher than the original leakage energy.

For the leakage-biased bitline, the break-even time in the 180 nm process is only around 10

cycles. Moreover, the cumulative energy rises slowly from the initial deactivation time, and is not

much larger than the original leakage before the break-even time. With technology scaling, the

break-even time becomes less than a cycle and this technique can therefore give useful leakage

energy savings even for a few cycles of dead time.

The NMOS sleep-transistor performs better than the leakage-biased bitlines in the coarser fea-

ture sizes, but suffers from a long transition time in the finer-pitch process technologies. The time

taken to charge the virtual GND node leaves this scheme with higher cumulative leakage energy for

small numbers of cycles in the 70 nm technology, though at large numbers of cycles the cumulative

energy drops below that of the leakage-biased bitline scheme.

91

0 500 1000
0

10

20

30

40

50
180nm

en
er

gy
 (

pJ
)

0 500 1000
0

10

20

30

40

50
130nm

0 500 1000
0

10

20

30

40

50
100nm

en
er

gy
 (

pJ
)

cycles
0 500 1000

0

10

20

30

40

50
70nm

cycles

Idle Energy
Sleep Vector
Leakage−Biased Bitline
NMOS Sleep Transistor

Figure 5-12: Sleep-time-dependent cumulative leakage energy of different register file dynamic
leakage reduction techniques for different processes (optimistic leakage current was used).

5.3.4 Evaluation

In this section, we use detailed simulation of an out-of-order microprocessor to estimate the energy

savings that can be achieved by using dynamic leakage reduction techniques on instruction cache

subbanks and a multiported register file.

Simulation Methodology

We instrumented SimpleScalar 3.0b [BA97], an out-of-order, superscalar processor simulator, to

track the activity of the instruction cache and the physical register file. We obtained results for

a four-wide issue machine with the configuration shown in Table 5.4. We also simulated a four-

wide issue machine with 128 register-update-units (RUUs) and performed cache simulation on an

eight-wide issue machine with 256 RUUs, but the results were similar and thus we omit them for

brevity. We used the SPECint95 benchmark suite and the benchmarks were run on their reference

data sets until 100 million instructions had committed. In the figures that follow, black bars denote

the optimistic assumptions of future leakage as described in subsection 5.3.1. White bars denote the

92

0 10 20 30 40 50
0

1

2

3

4

5

6
70nm

en
er

gy
 (

pJ
)

cycles

Idle Energy
Leakage−Biased Bitline
Sleep Vector
NMOS Sleep Transistor

Figure 5-13: Expanded view of cumulative leakage energy in a 70 nm process technology (opti-
mistic leakage current was used).

pessimistic view of the future (greater leakage).

Cache Subbank Deactivation Results

Figure 5-14 shows the energy savings achieved for the instruction cache subbank deactivation

scheme. For the 180 nm generation, there is a net energy increase, but for all other process tech-

nologies there is a net energy savings. In the 70 nm generation, over 20% of total instruction cache

energy is saved.

As discussed in subsection 5.3.2 there can be a performance penalty from the additional precharge

latency if the subbank precharge cannot be overlapped with the rest of the bank address decode. We

modeled the effect of lengthening the fetch pipeline by one cycle to allow for subbank precharge,

which increases branch misprediction latency from 3 to 4 cycles. Our results show that this de-

creases IPC by around 2.5% on average across all benchmarks. We note that this estimate of per-

formance impact is highly pessimistic, as the precharge latency is much less than one cycle and the

extended pipeline could be used to support a much larger instruction cache.

93

Table 5.4: Simulated Processor Configuration
Issue Width 4
RUUs 64
Integer Physical Registers 100
Integer ALUs (Mult/Div) 4 (1)
FP ALUs (Mult/Div) 1 (1)
Load/Store Units 2
Load/Store Queue Depth 32
Instruction length 4 Bytes
I-Cache/D-Cache 16KB/4-Way/32B Block
Unified L2-Cache 256KB/4-Way/64B Block

6 cycle latency
Memory Latency First access: 50 cycles.

Subsequently: 2 cycles.

Dead Register Deactivation Results

To quantify energy saved by deactivating dead registers, we modified SimpleScalar to model a

machine with a separate unified physical register file pool holding both committed architectural

registers and renamed registers. We maintain a set of physical register tags which move between a

free list and the register update units. We restricted our study to the integer register file. The number

of physical registers is determined by the number of writable architected registers (fixed by the ISA

at 33) plus the number of values that can be produced by in-flight instructions.

Figure 5-15 presents results for the dead register deactivation techniques. For reference, we

present two variants of the NMOS sleep transistor (NST) technique. The two variants of NST

are FIFO and LIFO free list policies. A FIFO policy (or circular queue) is the conventional free

list policy, but a LIFO policy (stack) has the advantage of keeping some registers dead for very

long times. Experiments with the 70 nm process reveal that LIFO gives an additional 2.4 to 10.0%

savings over FIFO in terms of total register file energy saved. The figure also shows the benefits of

LIFO increasing as feature size decreases.

We also show results for LBBs used in a subbanked register file, where a subbank’s read ports

are deactivated when all registers in the subbank are dead. The allocation policy is a stack of

subbanks, where registers are allocated from a new bank only when the previous bank is empty. As

shown in Figure 5-15, despite the increased granularity of deactivation, LBB is competitive with

NST in terms of energy savings. Because the cumulative sleep energy of LBB circuits is less than

that of NST circuits for the majority of sleep times encountered in practice, LBB outperforms NST

94

0

10

20

30
Leakage energy saving at 70nm process

co
m

p
 g

cc g
o
jp

eg li

m
88

k
per

l
vo

rt
 av

g

p
er

ce
n

t
(%

)

0

10

20

30
Total energy saving at 70nm process

co
m

p
 g

cc g
o
jp

eg li

m
88

k
per

l
vo

rt
 av

g

p
er

ce
n

t
(%

)

180nm 130nm 100nm 70nm
−10

0

10

20

30
Leakage energy saving across processes

pe
rc

en
t (

%
)

180nm 130nm 100nm 70nm
−10

0

10

20

30
Total energy saving across processes

p
er

ce
n

t
(%

)

Figure 5-14: I-cache energy savings for subbank deactivation.

by 31.5% for the worst case leakage. In addition, LBB has no performance penalty, whereas NST

has a 5% performance slowdown. The figure also shows that having fewer registers per bank (eight

rather than sixteen) allows deactivation at a finer granularity which translates to greater savings.

Regfile Global Read Port Deactivation Results

Figure 5-16 shows the energy savings achieved by deactivating the read ports. As with cache sub-

bank deactivation, there is a net energy increase for the 180 nm generation, but for the remaining

process technologies, there is a net energy savings. In the 70 nm generation, nearly half of the

leakage energy is removed, resulting in a total register file energy savings of over 20% with no

performance penalty.

As the processor’s issue width increases, the peak number of read ports increases. However,

IPC does not scale linearly with issue width, so in general a greater percentage of read ports will be

idle. Thus, we expect the energy savings to be greater for wider-issue processors.

The savings from global read port deactivation can be combined with those from dead subbank

deactivation, giving greater total energy savings while still avoiding any performance penalty.

95

0

20

40

60

Leakage energy savings (70nm)

 g
cc g

o
jp

eg li

m
88

k
per

l

co
m

p
vo

rt
 av

g

p
er

ce
n

t
(%

)

0

20

40

60

Total energy savings (70nm)

 g
cc g

o
jp

eg li

m
88

k
per

l

co
m

p
vo

rt
 av

g

p
er

ce
n

t
(%

)

180 130 100 70
0

20

40

60

Process (nm)

Leakage energy savings

p
er

ce
n

t
(%

)

180 130 100 70
0

20

40

60

Process (nm)

Total Energy Savings

p
er

ce
n

t
(%

)NST Queue
NST Stack
LBB 16 regs/bank
LBB 8 regs/bank

Figure 5-15: Register file energy savings by dead register deactivation.

5.3.5 Related Work

A few researchers have proposed fine-grain deactivation techniques that place portions of an ac-

tive processor into low-leakage states. The dynamically-resized instruction cache [Pow00] uses a

virtual-GND power gate to supply power to just enough RAM subbanks to hold the active working

set of the current application. An adaptive hardware algorithm is used to determine an adequate

cache capacity by monitoring miss rates as the active partition size is varied. This scheme is more

complex than using leakage-biased bitlines, and is limited to a direct-mapped instruction cache,

but reduces leakage further as both storage cell and access port leakage is cut off. Cache decay

[KHM01] dynamically predicts which cache blocks are unlikely to be accessed in the near future,

marks them invalid, then powers them down using a power gate. Both of these techniques have

long deactivation times of thousands of cycles. Hamzaoglu et al. briefly describe a “precharge-as-

96

0

20

40

60

Leakage energy saving at 70nm process

co
m

p
 g

cc g
o
jp

eg li

m
88

k
per

l
vo

rt
 av

g

p
er

ce
n

t
(%

)

0

20

40

60

Total energy saving at 70nm process

co
m

p
 g

cc g
o
jp

eg li

m
88

k
per

l
vo

rt
 av

g

p
er

ce
n

t
(%

)

180nm 130nm 100nm 70nm

0

20

40

60

Leakage energy saving across processes

p
er

ce
n

t
(%

)

180nm 130nm 100nm 70nm

0

20

40

60

Total energy saving across processes

p
er

ce
n

t
(%

)

Figure 5-16: Register file energy savings by global read port deactivation.

needed” scheme [Ham00], apparently similar to our leakage-biased bitlines, but do not describe the

dynamic transient effects of the leakage reduction or the use of this technique within a micropro-

cessor.

97

5.4 Leakage-Biased Domino Logic for Critical Functional Units

In this section, we present Leakage-Biased Domino (LB-Domino) that uses sleep transistors only

on non-critical paths and uses the leakage current itself to bias internal critical paths into a minimal

leakage state. A 32-bit Han-Carlson domino adder circuit is used to compare the LB-Domino with

the conventional single and dual
� �

domino circuits.

Section 5.4.1 describes related work. Section 5.4.2 shows how LB-Domino works. Section 5.4.3

describes how we evaluate LB-Domino logic family. Section 5.4.4 shows the evaluation results with

the Han-Carlson domino adder circuits.

5.4.1 Related Work

Domino logic is often used on critical paths, and several fine-grain dynamic leakage reduction tech-

niques have been proposed to reduce leakage on idle domino blocks. Dual-
� �

domino [KC00]

requires additional input gating to force the internal nodes into a sleep state which reduces per-

formance and increases switching energy. Also, as shown below, the high-
� �

keepers increase

switching energy once noise margin is equalized [KC00]. MHS-Domino [AAE00] modifies a

clock-delayed keeper circuit to force internal dynamic nodes into a low leakage state. However,

the internal node is pulled down through a PMOS leaving the possibility of an intermediate voltage

on the dynamic node of the first stage of a domino chain if the data inputs are not high. This can

cause short-circuit current in the static output inverter until the leakage through the input transistors

finally pulls the dynamic node to ground.

5.4.2 Leakage-Biased Domino

Sleep

Sleepb

clk

in

node1 node2

Figure 5-17: A leakage-biased domino buffer.

98

An LB-Domino buffer is shown in Figure 5-17. This example is a footless domino buffer with-

out a clock transistor in the dynamic pull-down stack, but the LB technique can also be applied to

footed domino stacks. Only two small sleep transistors are added to a conventional CMOS domino

gate: a high-
���

PMOS in series with the keeper power supply and a high-
� �

NMOS in series with

the static output logic pulldown. When the sleep signal is de-asserted, the circuit operates as a con-

ventional domino gate with minimal performance degradation because there are no additional series

transistors in the critical evaluate path.

To place the circuit into sleep mode, the clock signal is left high after an evaluate cycle and

the sleep signal is asserted (sleep=1 and sleepb=0). If the data input was high, node1 would

have been discharged. If the data input was low, node1 is high but the leakage through the NMOS

dynamic pull-down stack will slowly discharge the node to ground (the precharge and keeper pull-

up transistors are high-
� �

devices with significantly lower leakage than the pull-down stack). The

NMOS sleep transistor is added to prevent any short-circuit current in the static output logic while

the dynamic node discharges to ground. The static output, node2, will rise as the static pull-up

turns on. As the leakage current of one domino gate causes its output node to rise, this will cause

the NMOS transistors in the pulldown stacks of the following domino gates to turn on, accelerating

the discharge of their internal dynamic nodes. In this way, LB-Domino gates bias themselves into a

low-leakage state where the internal dynamic nodes are discharged low and static nodes are charged

high regardless of input vector state.

When the internal dynamic node is discharged, the main leakage is across the high-
� �

PMOS

precharge transistor which is turned off by the clock signal remaining high. The leakage path of the

static output includes at least two series NMOS transistors, one of which is a high-
� �

device. A

conventional precharge cycle is used to move from sleep mode back to active mode.

Compared with MHS-Domino, LB-Domino has a simpler sleep mechanism that is compatible

with, but does not require, a clock-delayed keeper. LB-Domino also avoids short-circuit current in

the static output inverter of the first gate of a domino chain.

Table 5.5: Processes.
Process 180 nm 70 nm

High
���

(NMOS/PMOS) 0.46V/-0.45V 0.39V/-0.40V
Low

���
(NMOS/PMOS) 0.27V/-0.23V 0.15V/-0.18V

Vdd 1.8V 0.9V
Temperature 100 � C 100 � C

99

(a) Low VT (LVT) (b) Dual VT (DVT)

(c) Leakage-Biased 1 (LB) (d) Leakage-Biased 2 (LB2)

*HVT: green

sleep

sleepb

sleep

sleepb

Figure 5-18: Cells for a 32-bit Han-Carlson adder.

5.4.3 Evaluation Methodology

The carry-generation circuit of a 32-bit Han-Carlson adder [Mat01] was used to evaluate LB-

Domino. The carry-generation circuit is pure domino with six levels of alternating dynamic and

static logic. The basic propagate-generate cells are shown in Figure 5-18. Four variants of the design

were compared. The first uses only low-
� �

transistors (LVT), while the second is a dual-
� �

(DVT)

design where only evaluation phase transistors are low-
� �

. The third variant is an LB-Domino (LB)

design based on the DVT design but with high-
� �

sleep transistors added to the keeper feedback

circuits and the static logic pull-downs. The fourth variant (LB2) is another LB-Domino design

which only uses high-
� �

for the precharge transistors and for the added sleep transistors.

For all four designs, the input and output noise margin of all dynamic circuits was set to 10% of

100

Table 5.6: Input vectors.
a b ci

Vector 1 0x00000000 0x00000000 0
Vector 2 0xffffffff 0x00000000 0
Vector 3 0xffffffff 0xffffffff 1

the supply voltage and the precharge/evaluation delays were equalized to within 1% error through

transistor sizing. The circuits were designed for an existing TSMC 180 nm process and a projected

70 nm process obtained from the BPTM project [Dev01] (Table 5.5). All simulations used HSPICE.

Since both switching energy and leakage power are dependent upon inputs, three different input

vectors were considered (Table 5.6): vec1 does not discharge any dynamic nodes, vec3 discharges

all dynamic nodes, and vec2 discharges half and leaves half high.

5.4.4 Results

Figure 5-19 and Figure 5-20 show the delay and switching energy consumption for 180 nm and

70 nm processes respectively. The switching energy of DVT is greater than that of LVT because

the high-
���

keeper transistors must be sized up to give equal noise margin and equal precharge

delay. For the same reason, the switching energy of LB is greater than that of DVT. However, LB2

can meet the delay constraints with only a small increase in switching energy over the LVT design

because it uses only a small number of high-
� �

transistors.

Figure 5-21 and Figure 5-22 show the steady-state leakage power for 180 nm and 70 nm pro-

cesses respectively. The leakage power of DVT is very sensitive to input values. For vec3 with

clk=1, all the high-
� �

transistors in DVT are turned off and the lowest leakage power is obtained.

On the other hand, for vec1 with clk=1, the leakage is comparable to the LVT design. The sleep-

state leakage power of LB and LB2 is independent of input vector because leakage currents bias

the internal nodes into the lowest leakage state over some transition time. The LB schemes have

worst-case sleep-state leakage currents that are around two decades lower than the LVT and DVT

designs. For the 180 nm process, the LB scheme is preferred for circuits that spend enough time in

sleep mode as it has lower leakage than LB2, but for circuits that are more active, LB2 has lower

switching energy and reasonable steady-state leakage. For the 70 nm process, LB2 is always better

than LB since it has lower switching energy and lower steady-state leakage than LB.

Figure 5-23 and Figure 5-24 show how energy consumption evolves over time when the circuit

is put into a sleep state for 180 nm and 70 nm processes respectively. The energy curves show the

101

LVT DVT LB LB2
0

50

100

150

200

250

d
el

ay
 (

p
s)

eval/prech delay

eval
prech

LVT DVT LB LB2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

en
er

g
y

(n
J)

active energy

vec1
vec2
vec3

Figure 5-19: Delay and switching energy consumption : 180 nm process.

energy consumption when the circuit sleeps for the specified time, including the cost to transition

the circuit into and out of the sleep state (e.g., the energy to switch the gates of the sleep transistors).

For LVT and DVT schemes, the sleep energy is just linearly proportional to sleep time as leakage

currents are constant. The sleep energy curve of LB shows a very different characteristic. There is a

large jump in energy after a short sleep time (around 20 ns for 180 nm and around 1 ns for 70 nm). At

this point, the static output of the first domino stage charges up to the threshold voltage, and causes

the following stage to move rapidly to the low-leakage state. This process quickly ripples through

the chain of domino gates. The energy stored in any precharged dynamic nodes is lost and must be

restored during precharge when the circuit is next woken up, hence the steep rise in effective sleep

energy dissipation. After this point, the energy curve has a very shallow slope due to the lowered

leakage currents.

For short sleep times, the LB schemes require more total energy than simply idling an LVT or

DVT circuit. But for longer sleep times the energy cost of discharging the internal dynamic nodes

is amortized and the lower sleep leakage current yields lower overall energy. For LB and LB2, the

cross-over point is around 2 � s in the 180 nm process for the worst case (vec1). However, the

cross-over point in the 70 nm process is under 10 ns because switching energy scales down faster

than leakage power.

102

LVT DVT LB LB2
0

10

20

30

40

50

60

70

d
el

ay
 (

p
s)

eval/prech delay

eval
prech

LVT DVT LB LB2
0

5

10

15

20

25

30

en
er

g
y

(p
J)

active energy

vec1
vec2
vec3

Figure 5-20: Delay and switching energy consumption : 70 nm process.

LVT DVT LB LB2
0

10

20

30

40

50

60

70

80

90

100

110

le
ak

ag
e

po
w

er
 (

uW
)

steady−state leakage power

vec1
vec2
vec3

Figure 5-21: Steady-state leakage power : 180 nm process. clk is high for all and sleep is asserted for
LB and LB2.

103

LVT DVT LB LB2
10^+0

10^+1

10^+2

10^+3
le

ak
ag

e
po

w
er

 (
uW

)

steady−state leakage power

vec1
vec2
vec3

Figure 5-22: Steady-state leakage power : 70 nm process. clk is high for all and sleep is asserted for LB
and LB2. Note that y-axis is log-scale.

0 1 2 3
0

50

100

150

200

250
vec1

en
er

g
y

(p
J)

time (us)
0 1 2 3

0

50

100

150

200

250
vec2

time (us)
0 1 2 3

0

50

100

150

200

250
vec3

time (us)

LVT
DVT
LB
LB2

Figure 5-23: Cumulative sleep energy : 180 nm process.

104

0 5 10
0

2

4

6

8

10

12

14

16

18

20
vec1

en
er

g
y

(p
J)

time (ns)
0 5 10

0

2

4

6

8

10

12

14

16

18

20
vec2

time (ns)
0 5 10

0

2

4

6

8

10

12

14

16

18

20
vec3

time (ns)

LVT
DVT
LB
LB2

Figure 5-24: Cumulative sleep energy : 70 nm process.

105

5.5 Dynamically Resizable Static CMOS Logic (DRCMOS)

For some critical microarchitectures such as SRAM arrays and ALUs, fine-grain power gating or

leakage biasing [HBHA02, HA02] can be used to save leakage power, provided the unit’s activity

pattern includes sufficiently long idle times to repay the often large energy cost of switching in and

out of a low-leakage mode. Unfortunately, many critical logic blocks within a high-performance

digital system are busy every cycle and so are not amenable to the block-level deactivation. For such

blocks, we introduce Dynamically Resizable CMOS (DRCMOS) logic that dynamically downsizes

transistors on idle paths while maintaining speed along active critical paths.

Section 5.5.1 describes the deterministic limited activity phenomenon. Section 5.5.2 introduces

Dynamic resizing (DR), a new FG-DLR technique that exploits the deterministic limited activity to

save leakage power by resizing each subblock dynamically according to its activity. Section 5.5.3

proposes a new static CMOS logic family, Dynamically Resizable Static CMOS Logic (DRCMOS)

to implement DR. Section 5.5.4 shows the test circuit blocks for evaluation. Section 5.5.5 discusses

the results from our evaluation.

5.5.1 Deterministic Limited Activity

The observation is that often some inputs to a large fan-in logic block remain inactive for a signifi-

cant amount of time even when the block is always busy. Inactive inputs generate inactive interme-

diate signals and consequently inactive subblocks. Moreover, in many cases, the activity pattern can

be exactly determined ahead of time based on previous input signals. We refer to this phenomenon

as Deterministic Limited Activity. For example, many logic blocks attached to queues or arrays,

which are ubiquitous in modern superscalar processors, exhibit deterministic limited activity. Fig-

ure 5-25 shows an example of deterministic limited activity. The top six inputs are determined to be

inactive for a while. Busy subblocks constitute critical paths. Only a subset of the subblocks are on

the critical path and the rest remain idle for a while.

There are two key concerns when exploiting deterministic limited activity to save leakage power.

First, idle subblocks should maintain their output values to preserve the functionality of the entire

block. Second, the critical path within a block changes dynamically; and therefore, soon-to-be

active subblocks must be woken from a low-leakage and probably low-speed state sufficiently early

to avoid a delay penalty.

106

Inactive
Inactive

*Blue: idle, Red: busy

Inactive
Inactive

Inactive
Inactive

Active
Active

Figure 5-25: Deterministic limited activity.

5.5.2 Dynamic Resizing

Dynamic resizing (DR) is a new FG-DLR technique that exploits deterministic limited activity to

save power by resizing each subblock dynamically according to its activity. DR determines the idle

subblocks for the first stage of logic based on input patterns. Subsequent stages of logic will be

idle if all subblocks feeding their inputs will be idle. When a subblock is determined to be idle, DR

downsizes the transistors in the subblock to save leakage power. To maintain speed along critical

paths, DR upsizes transistors in soon-to-be active subblocks before critical paths change. Figure 5-

26 shows an example of dynamic resizing. It is determined that the top six inputs will be inactive for

subsequent cycles. The idle subblocks are resized small to save leakage, while the active subblocks

are resized large to maintain speed.

Inactive
Inactive

Inactive
Inactive

Inactive
Inactive

Active
Active

*Blue: idle, Red: busy

Figure 5-26: Dynamic resizing.

107

5.5.3 Dynamically Resizable Static CMOS

We propose a new static CMOS logic family, Dynamically Resizable Static CMOS Logic (DRC-

MOS), to implement DR. Although dynamic logic has been common in the critical paths of high-

speed digital systems, increasing leakage currents and coupling noise are making static logic more

attractive [And03]. Some researchers even predict that conventional domino circuits could cease to

be useful below the 70 nm generation [And01].

Input (subblock A)

Fast Circuit

Slow Circuit

Input (subblock A)

Input (subblock B)

Wakeup (subblock A)

Wakeup (subblock B)

Wakeup
(this subblock)

Fast Circuit

(a) Typical DRCMOS circuit (b) Simplified DRCMOS circuit

Figure 5-27: Dynamically resizable static CMOS logic (DRCMOS).

A DRCMOS circuit consists of a fast subcircuit and a slow subcircuit connected in parallel

between inputs and outputs (Figure 5-27(a)). The fast subcircuit is built with large, low
� �

tran-

sistors that are high speed but leaky. The slow subcircuit has the same functionality but is built

using smaller, high
� �

transistors to give low leakage. The slow subcircuit might also implement

the logic function using more complex gates with deeper transistor stacks to reduce leakage fur-

ther. When a DRCMOS circuit is active, both subcircuits are powered on and cooperate to generate

output results. When the circuit is idle, the fast subcircuit is dynamically deactivated using sleep

transistors to cut its subthreshold and gate leakage, while the slow subcircuit remains on to preserve

output values. In effect, DRCMOS provides dynamic resizing between high-speed/high-leakage

and low-speed/low-leakage modes of operation.

The slow subcircuit can be further optimized when the inactive state has a limited set of input

patterns. A trivial case is where the inactive state always has a zero output in which case the slow

subcircuit degenerates to a single NMOS pulldown transistor as shown in Figure 5-27(b).

DRCMOS requires additional control logic to generate the wakeup signals. The wakeup signal

108

must be generated early enough (typically at least one clock cycle earlier) to ensure each subcircuit

will be activated in time to propagate a critical transition at full speed. The wakeup signals for the

first stage subblocks are generated from external logic associated with the inputs. Subsequent stage

subblocks generate their wakeup signals by OR-ing the wakeup signals from their input subblocks.

subcircuit
Slow

1

1 10 0

0 1subcircuit
Fast

Figure 5-28: Sneak leakage path problem.

A sneak leakage path can occur when the fast subcircuit is deactivated as shown in Figure 5-28.

To prevent this, the fast subcircuit must use both NMOS and PMOS sleep transistors, or its output

stage must have separate power gating.

5.5.4 Evaluation Methodology

To evaluate DRCMOS logic, two key blocks of a modern superscalar processor are chosen: a static

64-entry register free list slice (Figure 5-29), and a static 64-entry pick-two arbiter (Figure 5-30).

The register free list slice is a FIFO containing a list of currently unassigned 9-bit physical reg-

ister numbers (Figure 5-29). The FIFO is implemented as a small circular RAM with two pointers

giving the head and tail of the list. The whole free list would use multiple slices to allow parallel

access to multiple distinct registers. The free list uses a static mux tree to provide the read port. The

read mux trees exhibit deterministic limited activity and so DR can be applied. Only one input to

the mux tree, the input from the entry pointed to by the read pointer, is active. Thus, many muxes in

the tree remain idle for multiple cycles. Also, the location of the next active input to the tree is pre-

determined to be circularly sequential from the current input owing to the circular FIFO structure.

In the DRCMOS register free list design, only the muxes in the first stage of the mux tree where the

read pointer is currently pointing or will point next cycle are upsized. In the second stage, any mux

which has any upsized children is also upsized. The root mux is always on the critical path and is

109

not resized.

64−entry
9−bit
SRAM array

select<0:11>

rp<0:63>

wp<0:63>

9

9

9

9

Read
pointer

pointer
Write trees

mux
64−entry

Root mux

x9

(a) 64−entry register free list slice (b) 64−entry mux tree

From
other

subtrees

data<0:8> wen<0:63>

Figure 5-29: A static 64-entry register free list slice.

The arbiter selects instructions for execution from the pool of ready instructions in the issue

window. The inputs to the arbiter are request signals from ready instructions and the outputs are

issue grant signals. Our arbiter selects the two oldest ready instructions (Figure 5-30). The issue

window contains full and empty regions delimited by the read and write pointers (Figure 5-31). To

simplify control, we treat the empty region as inactive inputs to the arbiter and the entire full area as

active, even though some entries in the full area will be inactive as they are not ready for issue. The

arbiter shows deterministic limited activity as the borders between the full and empty areas move

sequentially as instructions are fetched and retired. When idle, the arbiter cell has zero outputs and

the DRCMOS slow subcircuit can be simplified as shown in Figure 5-27(b).

In addition to comparing DRCMOS to baseline designs, architectural pipelining is also evalu-

ated as another way to lower active and leakage power for the free list and arbiter. A pipelined struc-

ture has relaxed performance demands and so can use slower and lower-power transistors. However,

pipelining adds clock and switching power. Also, the increased area and number of transistors can

lead to more leakage power. Although pipelining lowers local cycle time, it adds global latency

and so can impact the overall CPI (clocks-per-instruction) performance of the synchronous digital

system by adding more hazards. When pipelining the register free list, timing elements are inserted

110

reqs<0:63>

Arbiter
Pick−one
64−entry

64−entry
Pick−one
Arbitergrant1<0:63>

grant2<0:63>

req<0:63>

req0
grant0
req1
grant1
req2
grant2
req3
grant3

enable
anyreq

req0
grant0
req1
grant1
req2
grant2
req3
grant3

enableOther
Subtrees

req0
grant0
req1
grant1
req2
grant2
req3
grant3

anyreq
enable

req0
grant0
req1
grant1
req2
grant2
req3
grant3

anyreq
enable

req0
grant0
req1
grant1
req2
grant2
req3
grant3

anyreq
enable

req0
grant0
req1
grant1
req2
grant2
req3
grant3

anyreq
enable From/to

Root Cell

req0
req1
req2
req3

anyreq

(a) Arbiter cell

grant0
grant1
grant2
grant3

enablePriority
Encoder

(c) Pick−two 64−entry arbiter(b) Pick−one 64−entry arbiter

Figure 5-30: A static 64-entry pick-two arbiter.

between the mux select control logic (read pointer) and the mux tree, that is, select<0:11>

in Figure 5-29(a) is pipelined. For the pipelined arbiter, timing elements are inserted between the

AND gates and the second pick-one arbiter, that is, reqs<0:63> in Figure 5-30 is pipelined. All

flip-flops have appropriate clock gating.

WRITE
POINTER

READ
POINTERfull area

empty area

Figure 5-31: Logical structure of issue window.

111

5.5.5 Results

The circuits were designed for a projected 70 nm process obtained from the BPTM project [Dev01].

All simulations used HSPICE and the results for the DR scheme include the power overhead of the

wakeup control logic and of switching the sleep transistors.

140 160 180 200 220
0

2

4

6

8

p
o

w
er

 (
m

W
)

read af=0%

base
DR
pipeline

140 160 180 200 220
0

2

4

6

8

read af=10%

140 160 180 200 220
0

2

4

6

8

delay (ps)

p
o

w
er

 (
m

W
)

read af=50%

140 160 180 200 220
0

2

4

6

8

delay (ps)

read af=90%

Figure 5-32: PD curves for register free list’s mux tree using supply voltage scaling.

Figure 5-32 shows power-delay (PD) curves for the baseline, DRCMOS, and pipelined versions

of the static 64-entry register free list under supply voltage scaling. Supply voltage was varied from

0.7 V to 1.35 V. Temperature was set at 100 � C. The SRAM array was assumed to contain 50%

zero bits. The read activity factor is the rate at which entries are read and was varied from 0% to

90%. The graph clearly shows that DR gives the best PD curve except for the 0% read activity

factor case. Even when the read activity factor is high, DR upsizes only a small subset of the muxes

keeping others small. At 90% read activity, DRCMOS gives around 10% delay reduction for equal

power or 1.5 � total power reduction at equal delay. The pipelined version suffers from flip-flop

switching power overhead and only performs well at low activity factors where the advantage of

small low-leakage transistors becomes apparent.

Figure 5-33 shows alternate PD curves of the baseline, DRCMOS, and pipelined free lists when

112

140 160 180 200 220
0

1

2

3

4

p
o

w
er

 (
m

W
)

0% read AF

Base
DRCMOS
Pipeline

140 160 180 200 220
0

1

2

3

4
10% read AF

140 160 180 200 220
0

1

2

3

4

delay (ps)

p
o

w
er

 (
m

W
)

50% read AF

140 160 180 200 220
0

1

2

3

4

delay (ps)

90% read AF

Figure 5-33: PD curves for register free list’s mux tree using transistor sizing.

conventional design-time transistor sizing is used to vary delay with supply voltage fixed at 0.9 V.

The graph clearly shows that DRCMOS gives the best PD curve. At 90% activity factor, DRCMOS

gives at least 10% delay reduction for equal power or around 50% total power reduction at equal

delay.

Figure 5-34 shows PD curves of the alternate designs of the static 64-entry pick-two arbiter using

supply voltage scaling, and varying the number of the entries in full area from 0 to 32. DR performs

better when the instruction window is emptier as more arbiter cells remain small reducing total

leakage power. Instruction window occupancies vary greatly during program execution depending

on application program characteristics. With only 6 entries in the full area, around 10% delay

reduction for equal power or 2 � total power reduction for equal delay can be achieved with DR. On

the other hand, when half the entries in the issue window are ready, the DRCMOS curve is close

to the baseline at shorter delays. The pipelined version supports lower delays at low power, but at

looser delay constraints, the flip-flop power overhead overwhelms the power saving from the use of

small and high
� �

transistors.

Figure 5-35 shows PD curves of the arbiter with transistor sizing at a 0.9 V supply. When there

are 16 ready entries, around 3% delay reduction for equal power or 50% total power reduction

113

200 300 400 500
0

5

10

p
o

w
er

 (
m

W
)

0 entries

base
DR
pipeline

200 300 400 500
0

5

10

p
o

w
er

 (
m

W
)

6 entries

200 300 400 500
0

5

10

delay (ps)

p
o

w
er

 (
m

W
)

16 entries

200 300 400 500
0

5

10

delay (ps)

32 entries

Figure 5-34: PD curves for arbiter using supply voltage scaling.

for equal delay can be achieved by using DRCMOS logic, compared to the baseline. Pipelining

always gives a better PD curve than baseline as transistors can be downsized to take advantage of

the pipelining.

Although pipelining works well for the arbiter, it introduces an architectural hazard that prevents

dependent instructions from issuing in consecutive cycles, which causes a significant global system

performance penalty [Pal97] and so would usually be avoided in a high performance design.

5.6 Summary

Most leakage current is dissipated on critical paths, especially after slower, low-leakage transistors

are used on non-critical paths. To reduce leakage energy further without impacting performance,

it is desirable to dynamically deactivate the fast transistors on the critical path. We have shown

that fine-grain leakage reduction techniques, whereby a small piece of a digital system is placed

in a low-leakage state for a short amount of time, can yield significant energy savings in future

process technologies. To attain savings, the circuit-level leakage reduction technique must have low

transition energy and rapid wakeup times.

We present leakage-biased bitlines, a circuit technique that has these properties. To exploit a

114

290 300 310 320
0

2

4

6

8

p
o

w
er

 (
m

W
)

0 entries

Base
DRCMOS
Pipeline

290 300 310 320
0

2

4

6

8
6 entries

290 300 310 320
0

2

4

6

8

delay (ps)

p
o

w
er

 (
m

W
)

16 entries

290 300 310 320
0

2

4

6

8

delay (ps)

32 entries

Figure 5-35: PD curves for arbiter using transistor sizing.

dynamic leakage reduction technique, the microarchitecture must be designed to force blocks to be

idle for multiple cycles and preferably to give early notice when the blocks are to be reawakened.

We have presented three applications of leakage-biased bitlines that apply these principles and have

shown how they enable leakage current reductions in the context of a wide superscalar processor.

SRAM read path deactivation saves over 22% of leakage energy and nearly 24% of total I-cache

energy when using a 70 nm process. Dynamically deactivating idle registers reduces register file

leakage energy by up to 67.1% and total register file energy by 57.1%. Dynamically deactivating

read ports within a multiported register file saves 42.7-49.8% of leakage energy and 3.9-22.3% of

total energy depending on the prediction of the future process.

We apply leakage biasing to domino logic and introduce LB-Domino logic. When used to

dynamically deactivate critical path circuits in projected 70 nm process technologies, LB-Domino

provides two decades reduction in steady-state leakage current compared with low-
� �

or dual-
� �

domino at equal delay and noise margin. LB-Domino has sub-cycle deactivation and reactivation

latencies, and because leakage currents are used to bias the circuit, LB-Domino also has low tran-

sition energy overheads. Using LB-Domino to place circuits into a sleep state can yield net energy

savings even for sleep times of under 10 ns. This makes dynamic fine-grain circuit deactivation

115

practical, where small pieces of an active system can be powered-down for short periods of time to

save leakage energy.

DRCMOS reduces leakage power of critical path transistors in active digital systems. DRCMOS

exploits the regular predictable patterns of activity within microarchitectural blocks to downsize

transistors that are known to be off the critical path in the next cycle. DRCMOS can be used at a

very fine-grain within blocks that are active every cycle, but where many subblocks will be idle.

Dynamically resizable CMOS is shown to reduce power consumption by up to 50% at equal delay

in critical components of a modern superscalar processor implemented in a 70 nm technology.

116

Chapter 6

Pipelining Logic Datapaths

Pipelining is a representative energy-delay trading tool. We describe various aspects of energy-delay

tradeoffs for digital system optimization using pipelining as an example throughout two chapters.

Optimal pipelining is sought in two contexts: pipelining logic datapaths for lower energy (this

chapter) and pipelining global wires and structuring them into a wire network (Chapter 7).

In this chapter, we show how power-optimal pipelining of datapaths varies for different oper-

ating regimes in deep submicron technology 1. We examine the tradeoffs among pipeline depth,

supply voltage, threshold voltage, and total power using circuit-level simulations and analytical

models. We also explore the effects of the activity factor and of clock gating.

6.1 Power-Optimal Pipelining

Pipelining exploits parallelism among the instructions in a sequential instruction stream [HP96]

(Section 4.1.1). Because of ample instruction-level parallelism in computation models and applica-

tion software, it has been and is likely to continue to be one of the most effective and popular ar-

chitectural innovations for many high-performance VLSI digital systems such as processors, DSPs,

FPGAs, and even memory systems.

Pipelining has been extensively used in logic datapaths. It reduces the number of logic gates

between stages by inserting more stage latches or flip-flops and overlapping more instructions. The

reduced amount of computation for a clock cycle is exploited to increase clock frequency and im-

prove throughput. Clock frequency increase through pipelining has been a crucial technique for the

success of high-performance microprocessors in recent years. Deep pipelining (or super-pipelining)

1The work in this chapter was a joint work with Krste Asanovi ć and was previously published in [HA04b].

117

has made modern high-performance digital systems include enormous number of timing elements

such as latches and flip-flops. Their power consumption contributes to a significant portion of total

power consumption now.

The time slack obtained from pipelining can also be used to reduce power consumption by

employing other energy-delay tradeoffs in a different direction, such as lowering supply voltage, at

a fixed clock frequency (Figure 6-1). This technique can be effective for digital systems with fixed

throughput requirements and highly parallel computations.

Clk

Clk-Q Setup
Propagation Delay

Time Slack

Time Slack

Clk

Clk

Traded
for Power

Vdd

Figure 6-1: Pipelining datapath for lower energy.

A parallel architecture could also be used to trade the excess performance for lower energy, but

pipelining has the advantage of less area penalty and lower leakage energy. Power reductions from

pipelining are eventually limited by the power overhead of the pipeline latches or flip-flops required

for additional pipe stages, with a resulting power-optimal pipelining.

6.2 Related Work

The trend towards deeper pipelines in high-performance digital systems is clearly seen in the evolu-

tion of the Intel x86 family, with a factor of 7 reduction having taken place in logic depth per stage

over the last decade [Hri02]. This reduction in logic depth has combined with improvements in tran-

sistor speed resulting from technology scaling to yield an even larger increase in clock frequency.

An increase in the number of pipeline stages for an operation also increases latency in clock cycles,

which in turn increases the number of pipeline stalls experienced by dependent operations. The re-

sulting reduction in instructions completed per cycle (IPC) reduces the performance advantage from

118

greater clock frequency and has a greater impact on codes with lower instruction-level parallelism

(ILP).

Digital system architects have explored this tradeoff between increased clock frequency and re-

duced IPC to determine performance-optimal pipelining depth. Early work by Kunkel and Smith [KS86]

considered pipelining in vector supercomputers and found that 8–10 ECL gate levels was performance-

optimal for scalar code, and as little as 4 gate levels was optimal for more parallel vector code.

Recently, several authors have investigated the performance-optimal pipeline depth for superscalar

microprocessors [HP02, Hri02, SC02], with a consensus in the range of 8–11 FO4 delays for SPEC

integer codes and around 6 FO4 delays for SPEC floating-point codes, which generally have higher

ILP. These performance-optimal numbers ignore power issues as well as the design and verifica-

tion complexities that would inevitably accompany such high-frequency designs (roughly twice the

clock rate of existing systems [SC02]).

Several authors have extended superscalar performance models with power models that include

the power overhead of additional pipeline latches [Sri02, HP03]. Srinivasan et al. [Sri02] found that

power-performance optimal logic depth is about 18 FO4 for SPEC benchmarks and around 24–28

FO4 for TPC-C, a commercial application. Hartstein and Puzak [HP03] found 22.5 FO4 is the

power-performance optimum, according to their power-performance metric. They also found that

clock gating pushes the optimum back to deeper pipelines [HP03], which agrees with our results.

Previous work focuses on processor performance, where limited instruction parallelism reduces

the benefits of deep pipelines, and these studies limit power optimization to the selection of the

correct number of additional pipeline stages. Other types of digital systems, including digital signal

processors, network processors, and graphics engines, have much greater levels of parallelism and

often have fixed throughput requirements. For these systems, pipelining can be used together with

supply and threshold voltage scaling to reduce total energy consumption without variations in a

clock rate. The use of pipelining for power reduction was proposed by Chandrakasan et al.[Cha92]

but without an attempt to determine a power-optimal pipelining strategy.

6.3 Methodology

Our main target is a logic-dominant pipeline stage. We make several simplifying assumptions in

our analysis. Since we are interested in fixed-throughput designs for highly parallel computations,

we do not include any performance loss from an increased frequency of pipeline stalls as pipeline

119

depths increase. Global wire delay does not scale as fast as gate delay since feature size is reduced,

and some modern microprocessors have so-called drive stages which include only wires and re-

peaters [Hin01b]. We leave wire-dominant pipeline stages for next chapter (Chapter 7) but note that

the wire RC delay in logic-dominant pipeline stages becomes relatively less important as supply

voltage is scaled down in a fixed technology, because wire resistance remains constant while effec-

tive transistor resistance increases. We do not include local wire capacitance due to the absence of

detailed circuit layouts, but note that wire cap can be an important component of total load in deep

submicron technology even for a logic-dominant stage.

24 stages

….

Figure 6-2: Baseline pipeline stage model. Input and clock buffers are not shown.

Figure 6-2 shows the baseline pipeline stage model assumed in our study. To model a well-

designed path in a circuit, we use a simple static inverter chain with each inverter driving four

copies of itself to yield a FO4 load. We use 24 FO4 delays as a baseline clock period, representing a

current high-performance microprocessor circuit (the high-frequency Pentium-4 has a 20 FO4 cycle

time while the core execution units have an even smaller cycle time, 10 FO4 [SC02]. Most other

designs have shallower pipelines).

Even though different circuit styles and logic gates might lead to different power-optimal pipelin-

ing results, we assume that our FO4 inverter chain model is fairly representative and that in-

sights gathered from our simulation results can be applied to other cases. Flip-flops were cho-

sen as the timing elements rather than latches due to their simplicity of usage, and the PowerPC

transmission-gate flip-flop was chosen because it is a popular choice due to its robustness and

energy-efficiency [HKA01]. While the transistor sizes of inverters and flip-flops were fixed, the

sizes of clock buffers were varied to ensure the appropriate clock rise and fall times when varying

the depth of pipelining.

We used the BPTM 70 nm transistor models with different threshold voltages [Dev01] and

120

HSPICE for circuit simulation. In this analysis, clock frequency was fixed at 2 GHz and tem-

perature was constant at 100 � C. We only considered subthreshold leakage; although gate leakage

might become significant at some point in these technology generations. It is also possible that new

gate dielectrics will make gate leakage insignificant again.

6.4 Pipelining and Supply Voltage

We begin by showing the effect of pipeline depth on supply voltage. With delay fixed, supply

voltage scales down as pipelining deepens because the logic amount per pipeline stage decreases.

Synchronous circuit delay is approximately given by

� ����� � �
�
� � � �

�
���

� �
��� �

��� � � (6.1)

where � is the logic depth per pipeline stage in term of FO4 delay (or the number of FO4 inverters

per pipeline stage), � is the timing element delay normalized by FO4 delay, 	 is a velocity saturation

effect factor,
�
� � and

� �
are supply and threshold voltages respectively. Assuming 	 is 2 (actual

value of 	 in deep submicron technology is close to 1.5 due to the short-channel effect),

�
� � � �

� � �
� � � � � ��

�
� �

(6.2)

Now assuming
� �� ��� is close to zero, we get a simple linear equation between

�
� � and � , where � �

is a constant:

�
� � � � � � � � � (6.3)

� � �
� � � � �

�

� �
��� �

(6.4)

Figure 6-3 shows the simulated supply voltages when varying the number of FO4 inverters

per stage for different threshold voltages. In the figure, � � � , � � �
, and � � � represent low,

medium, and high threshold voltages respectively and their values are shown in Table 6.1. Low

threshold voltage results in low supply voltage for the same delay. The least square method was

used to calculate � � and � � and the obtained values are shown in Table 6.1. We can see that � � is

proportional to
� �

as well as � � (our simplified equations fail to explain the effect).

121

0 5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of FO4

V
d

d
 (

V
)

LVT
MVT
HVT

Figure 6-3: Supply voltage scaling shown as voltage required to achieve 2 GHz with given number
of FO4 logic levels per pipeline stage.

� �
(V) NMOS(PMOS) name � � � �

0.17 (-0.20) LVT 0.0207 0.1450
0.19 (-0.22) MVT 0.0266 0.2119
0.21 (-0.24) HVT 0.0286 0.2389

Table 6.1: Threshold voltages and supply voltage scaling coefficients.

6.5 Pipelining Power Components

In this section, we explore the impact of pipelining on the components of total power consumption

when delay is fixed. We use the supply voltage scaling results shown above in Section 6.4 and

investigate switching, leakage, and idle components of power consumption assuming no clock-

gating mechanism.

6.5.1 Pipelining and Switching Power

Switching power remains the dominant component of total power consumption when the activity

factor is high, even in leaky deep submicron technology. Switching power is the power consumed

122

while charging and discharging load capacitances. The load capacitances include transistor parasitic

and wire capacitances. Because we assume our pipeline stage is logic-dominant, wire capacitances

are not included in our simulation.

The switching power of a pipelined logic stage can be divided between power due to logic gates

and power due to timing elements, and can be modeled as:

� � � ����� 	 ��� 	�� ��� � � �
�
�

� � �
��� (6.5)

� � � � �� � � �
�
�

� � �
�

� �
�
� � �
� �

� �
(6.6)

The overhead includes clock and switching power of timing elements and it is inversely proportional

to, � , the number of logic gates per stage. We assume that the number of latches increases linearly

with the number of pipeline stages. All the switching power components are proportional to
� �
� � .

The ratio of switching power coefficients
� �� � is approximately the ratio of the parasitic capacitances

of one FO4 inverter and one timing element.

When � is much greater than
� �
� � and

� �� � , � � � ����� 	 ��� 	 becomes quadratic to � as shown in Eq. 6.7,

which represents the dominance of logic gate switching power.

� � � ����� 	 ��� 	 � � � � �� � � (6.7)

On the other hand, if � gets much smaller than
� �
� � and

� �� � , � � � ����� 	 ��� 	 becomes inversely pro-

portional to � , as shown in Eq. 6.8, which represents the dominance of timing element switching

power:

� � � ����� 	 ��� 	 � �
� �
�
�
�
� (6.8)

Note that the
�
�
� � �

� � � � term in Eq. 6.6 makes relative � � � ����� 	 ��� 	 scale down slowly when
� �
� �

is large. Since a higher
� �

process has a higher
� �
� � , as shown in Table 6.1, a higher

� �
process gets

less switching power reduction from pipelining.

The optimal logic depth �
�

is given by:

�
� � �

�
�
� �
�

� �
� ��� � �

� �
�
�

� � �
�
�

� � � (6.9)

The equation indicates that the capacitance ratio of a timing element and an FO4 inverter,
� �� � , is

123

positively correlated to �
�
. That is, larger timing element parasitics lead to less deep pipelining.

However, �
�

is not as sensitive to
� �� � as it is to

� �
� � . This means that

� �
and timing element delay �

affect �
�

and correspondingly optimal power reduction more significantly (Eq. 6.4).

0 10 20
0

20

40

60

80

100

120

140

160

180

Number of FO4

P
o

w
er

 (
u

W
)

LVT
MVT
HVT

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of FO4

R
el

at
iv

e
p

o
w

er

Figure 6-4: Switching power scaling.

Figure 6-4 shows the switching power obtained through HSPICE simulation of our model

pipeline stage. Optimal logic depth �
�

was six and optimal power reduction was from 79 to 82%

compared to the baseline of � � � � . The graphs show that lower threshold voltages gives slightly

lower optimal logic depth and also slightly greater switching power reduction. The variances are

quite small since the variance of
� �
� � is small.

6.5.2 Pipelining and Leakage Power

The leakage power of our pipelined circuit can be given by the following equations:

� � � � � � � � � � � �
�

� �
� �

 � ����� ����!� (6.10)

� � � � �
����!� �
� � � �

� � �
�

� �
�
� � �
� �

�
��� ���� ����� � �

� � � (6.11)

124

where � � � is a constant representing leakage current slope, is a Drain-Induced-Barrier-Lowering

(DIBL) coefficient, and
� �� � is the ratio of leakage power of one FO4 inverter versus one timing

element. As in the switching power model, the leakage power in a stage can be divided into logic

gate leakage and timing element leakage, with timing element leakage inversely proportional to � .

When � is much greater than
� �
� � and

� �� � , � � � � � becomes proportional to the product of � and

the exponential term
��� ���� � :

� � � � � � � � � �
�� ��� �
��� ��!� � (6.12)

The exponential term,
��� ���� ����� � �

� � � represents the dependence of leakage current on the drain

voltage (from DIBL). In modern deep submicron technology, for an appropriate supply voltage

range, this term is larger than
� �

� � but smaller than
� �
�
�
, therefore leakage power is reduced in a

super-linear fashion as � decreases, though less than the quadratic reduction for switching power.

Also, it is noted that the exponential term scales down faster as � decreases when � � is larger. A

higher
� �

process has higher � � as shown in Table 6.1, and so it is expected that higher
� �

process

will see greater leakage power reduction from pipelining, which is opposite to the switching power

case, but higher
� �

processes have less absolute leakage to begin with.

On the other hand, if � becomes much smaller than
� �
� � and

� �� � , � � � � � becomes inversely pro-

portional to � just as in the � � � ����� 	 ��� 	 case:

� � � � � � � � � �

�� �!� �

�
��� ��!� (6.13)

Figure 6-5 shows the simulated leakage power while varying the number of logic gates per stage.

Optimal logic depth �
�

was around six and optimal power reduction was around 70–75%. The

graphs show that lower threshold voltages gives less leakage power reduction and slightly greater

optimal logic depth.

6.5.3 Idle Power without Clock-Gating

Clock-gating is a popular switching power reduction technique which inactivates the clock signal

to timing elements within an inactive block when a circuit block is idle. But clock gating is not

always possible due to the increase control complexity or the insufficient setup time of the clock

125

0 10 20
0

1

2

3

4

5

6

7

8

9

10

Number of FO4

P
o

w
er

(u
W

)

LVT
MVT
HVT

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of FO4

R
el

at
iv

e
p

o
w

er

Figure 6-5: Leakage power versus logic depth per stage.

enable signal. This section focuses on the impact of pipelining on an idle pipeline stage without

clock-gating. The following section discusses the effects of clock-gating.

The following equations model idle power with no clock-gating mechanism as simply the sum of

the switching power of the timing elements and the total leakage power. Because of the exponential

dependency of leakage current on
� �

as represented in the

 � ��� term, � � � � � approximately follows

the switching power of the timing elements when
� �

is high and follows the total leakage power

when
� �

is low.

� � � � � �
�
�
�
� �
� �
� � � � � � �

�
� �

� �

��� ������� ���� (6.14)

� � � � � � �
� �
�� �
�

�
�
� � �
� �

� � �
(6.15)

� � � �
����!� �
� � � �

� � �
�

� �
�
� � �
� �

�
� � � ���� � � � � �

� � � (6.16)

When � is much greater than
� �
� � and

� �� � , � � � � � becomes proportional to the product of � and

the exponential function of � or just proportional to � , depending on
� �

:

126

� � � � � � � ��� � � � � � �
� �
�� � (6.17)

� � � � � � � � � � � � � � � � �
 � ��� �
��� ���� � (6.18)

When
���

is high, � � �
�
� shows a linear reduction as � decreases, which is slower than a quadratic

reduction as in switching power or a super-linear reduction as in leakage power. Thus, we can

expect that idle power reduction from pipelining is lower than those of switching and leakage power

reduction when
� �

is high.

On the other hand, if � is much smaller than
� �
� � and

� �� � , � � � � � becomes inversely proportional

to � :

� ��� � � � � ��� � ��� � � �
� �
�
�
�
� (6.19)

� ��� � � � � � � ��� � � � � � �

������ �

�

��� ���� (6.20)

Figure 6-5 shows the simulated idle power without clock-gating, varying the number of FO4

inverters per pipeline stage. Optimal logic depth �
�

was eight, which is greater than the optimal

logic depths for switching and leakage power. Also, optimal power reduction was smaller (50

to 70%) compared to the switching and leakage power cases. For idle stages, the overhead of

timing elements is more significant compared to active stages. The graphs show that lower threshold

voltages gives more idle power reduction and slightly lower optimal logic depth.

6.6 Combined Results

In this section, we combine the results for the individual power components to calculate optimal

logic depths and optimal power reduction for different operating regimes including threshold volt-

age, activity factor, and presence of clock-gating. Power-optimal pipelining varies depending on the

activity factor and
� �

because these change the proportion of switching power and leakage power

(or idle power with no clock-gating mechanism), and each impacts pipelining power differently as

seen in Section 6.5. This section is divided into two parts: the first part details the case with a clock-

gating mechanism for pipeline stages and the second part considers the case without clock-gating.

127

0 10 20
0

5

10

15

20

25

Number of FO4

P
o

w
er

 (
u

W
)

LVT
MVT
HVT

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of FO4

R
el

at
iv

e
p

o
w

er

Figure 6-6: Idle power scaling.

6.6.1 Case 1: Clock-Gating Present

Figure 6-7 shows the simulated total power when a clock-gating mechanism is present for different

activity factors. With a low activity factor, total power curves follow leakage power curves and high
���

leads to more power reduction by pipelining. As the activity factor increases, total power curves

follow switching power curves and high
� �

leads to less power reduction by pipelining.

Figure 6-8 shows the simulated optimal total power reduction when a clock-gating mechanism is

present. With zero activity factor, optimal power reduction compared to a 24 FO4 design vary from

70 to 75% depending on
� �

. Since switching power reduction from pipelining is less dependent

upon
� �

, optimal power reduction reaches around 80% regardless of
� �

as activity factor increases.

Because both switching power and leakage power are minimized when � is six as seen in

Section 6.5.1 and Section 6.5.2, optimal logic depth was found to be six regardless of activity factor

or threshold voltage when a clock-gating mechanism is present. However, as seen in Figure 6-4

and Figure 6-5, both switching and leakage power curves are quite flat around the optimum, and the

total power reduction is quite insensitive to modest deviations from the optimum. Therefore, 8 FO4

delays per stage might be a better choice since it simplifies design complexity with a small loss of

128

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

re
la

ti
ve

 p
o

w
er

activity factor = 0.00

LVT
MVT
HVT

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
activity factor = 0.05

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of FO4

re
la

ti
ve

 p
o

w
er

activity factor = 0.20

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of FO4

activity factor = 1.00

Figure 6-7: Total power scaling with a clock-gating mechanism.

0 0.5 1
0

20

40

60

80

100

120

140

160

180

Activity factor

P
o

w
er

 (
u

W
)

Optimal power saving

LVTbase
MVTbase
HVTbase
LVTpipe
MVTpipe
HVTpipe

0 0.5 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Activity factor

R
el

at
iv

e
p

o
w

er

Optimal power saving

LVT
MVT
HVT

Figure 6-8: Optimal power saving with a clock-gating mechanism.

129

power reduction.

6.6.2 Case 2: No Clock-Gating Present

Figure 6-9 shows the simulated total power without clock-gating for different activity factors. With

a low activity factor, total power curves follow idle power curves and low
� �

leads to more power

reduction (Section 6.5.3). As the activity factor increases, total power curves follow switching

power curves.

Figure 6-10 shows the simulated optimal total power reduction when there is no clock-gating

mechanism. With zero activity factor, optimal power reduction is around 5 to 15% less than the

clock-gating present case because of the timing element switching power overhead which is not

present when there is a clock-gating scheme. Optimal power reduction reaches 80% slowly as

activity factor increases compared to the clock-gated case. It is noted that low
� �

gets the most

power reduction regardless of activity factor.

Figure 6-11 shows the optimal logic depths when the clock is not gated for different threshold

voltages. Because the idle power is minimized when � is eight (Section 6.5.3), optimal logic depths

remain at eight until the activity factor reaches around 0.2 (0.3 at high
� �

) and after 0.2 (0.3 at high
���

), it falls to six.

6.7 Discussion

Our study has a number of limitations. The number of latches was assumed to grow linearly with

the number of pipeline stages, whereas previous authors have used a superlinear latch count scaling

formula of the form ��� , with an exponent � ��� � [Sri02, HP03]. It is not clear how latch counts

scale in highly parallel architectures, but larger values of would increase the optimal logic depth.

Depending on the computation being parallelized, additional states in the form of larger memory

arrays might be required to track the increased number of operations in flight. A growth in the size

of these memory structures would tend to increase energy per operation and hence increase optimal

logic depth per stage, though we expect this effect to be minor as memories are generally lower

power than processing units.

Our study did not include the effects of glitching on power. Others have noted that glitching

activity reduces linearly with pipeline depth as it becomes less likely that inputs to a gate would have

very different path lengths [Sri02]. This effect would tend to push the optimum towards shallower

130

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

re
la

ti
ve

 p
o

w
er

activity factor = 0.00

LVT
MVT
HVT

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
activity factor = 0.05

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of FO4

re
la

ti
ve

 p
o

w
er

activity factor = 0.20

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of FO4

activity factor = 1.00

Figure 6-9: Total power scaling with no clock-gating mechanism.

0 0.5 1
0

20

40

60

80

100

120

140

160

180

Activity factor

P
o

w
er

 (
u

W
)

Optimal power saving

LVTbase
MVTbase
HVTbase
LVTpipe
MVTpipe
HVTpipe

0 0.5 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Activity factor

R
el

at
iv

e
p

o
w

er

Optimal power saving

LVT
MVT
HVT

Figure 6-10: Optimal power saving with no clock-gating mechanism.

131

0 0.5 1
2

3

4

5

6

7

8

Activity factor

N
u

m
b

er
 o

f
F

O
4

Low Vt

0 0.5 1
2

3

4

5

6

7

8
Medium Vt

Activity factor
0 0.5 1

2

3

4

5

6

7

8
High Vt

Activity factor

Figure 6-11: Optimal logic depth with no clock-gating mechanism.

pipeline stages.

We did not include parasitic wire capacitance. Adding wire load capacitance to our model will

increase total switching power, and it will push the optimum towards shallower pipeline stages

again.

For deeply pipelined circuits, fast path problems are more likely, as there will be an increase in

the number of short logic paths between timing elements and an decrease in the relative wire delay.

Because clock frequency is not increased, clock skew and jitter problems are not as apparent as in

a frequency-scaled design, but clock jitter might increase as power supply to the clock drivers is

reduced.

One benefit of supply scale-down is that wire delay becomes relatively less significant as gates

slow down. This helps reduce some of the design effort of building a highly pipelined circuit

compared with pipelining for increased clock frequency.

132

6.8 Conclusions

Pipelining can be an effective power-reduction tool when used to support voltage scaling in digital

systems implementing highly parallel computations. Simulation results show that power-optimal

logic depth is 6 to 8 FO4 and optimal power reduction varies from 55 to 80% compared with a 24

FO4 design depending on threshold voltage, activity factor, and the presence of clock-gating.

Even though the exact power-optimal pipelining is technology-dependent, we can gain some

important insights from the simulation results. First, higher activity factors decrease the power-

optimal logic depth and increase the optimal power reduction because pipelining is most effective at

reducing the additional switching power. Second, pipelining is more effective with lower threshold

voltages, resulting in lower logic depths and lower power, except for low activity factors when

leakage power is dominant. Third, clock-gating enables deeper pipelining and more power reduction

because it reduces timing element overhead when the activity factor is low.

Therefore, power-optimal pipelining with clock gating should be an efficient low-power tech-

nique for high throughput blocks in systems implementing highly parallel computations.

133

134

Chapter 7

Power-Optimal On-Chip Networks

Cross-chip global wires are becoming progressively problematic as feature sizes shrink, with their

delay and power consumption rapidly increasing relative to individual logic gates [Ho 01]. These

worsening trends have led to proposals that replace design-specific global wires with structured

on-chip networks in large ASIC designs [Sgr01, DT01].

This chapter explores the power implications of use of an on-chip network in two steps 1. We

first develop detailed power models for power-optimized wires, including the effects of leakage cur-

rents. Deep wire pipelining can reduce communication power with a small increase in latency, and

the increased latency can be tolerated by exploiting the ample parallelism present within the typical

applications that the custom ASIC or FPGA chips run. We next examine the use of power-optimized

wires in two contexts: 1) conventional ASIC or FPGA designs where dedicated global wires are

replaced with dedicated but power-optimized wires, and 2) tiled architectures where all inter-tile

global communication is via a dynamic packet-routed on-chip network using power-optimized links.

We vary the tile size and use Rent’s rule [CS00] to estimate interconnect density. Smaller tiles put

more connections on the power-optimal wires of the on-chip network, but require more routers.

Although power-optimized wires can reduce global wire power significantly in wire-routed ASIC

or FPGA designs, it is difficult to achieve significant power reduction in packet-routed tiled designs

due to the energy expended in routers even for highly multiplexed inter-tile traffic.

1The work in this chapter was a joint work with Krste Asanovi ć and was previously published in [HA05].

135

Table 7.1: Delay scaling of logic gates and wires. � is the process scaling factor.
Components Delay
Logic gates ��
Local wires �
Unrepeated global wires � �
Repeated global wires �

7.1 Global Wires

Previously, pipelining was solely used for logic gates. On-chip wires were ignorable in terms of

delay and power, compared to the gates. However, the continuous scaling of wire dimensions, as

with transistor feature sizes, has changed the situation totally, particularly for global wires. Global

wires have become comparable to gates in terms of both delay and power [Ho 01]. In this deep

submicron technology era, global wires are definitely precious resources for optimal VLSI digital

system design and pipelining is often indispensable.

Constant scaling, where all the dimensions of wires scale linearly proportional to the scaling

factor, � , makes wire resistance, � , increase proportional to � (� �
�

��� �
� � , where � , � , and � are

the length, thickness, and width of wire respectively), while making wire capacitance, � , decrease

inversely proportional to � (����� ��� � � � � � � �
�	 � �� � �

	 � ����� � � � ���
�
� � �� , where
 and

�
is the

wire spacing and height respectively and fringe caps are ignored), leading to the constant ��� wire

delay when the delay of transistors scales down linearly (� � ��� � � ��� ��� � � ��). As for global wires, the

situation is worse. With the chip size, � , remaining constant, the global wire length, � 	 � � � � � , does

not scale but remains constant (� 	 � � � � � � �). Thus, � becomes quadratically proportional to ��� � � � ��� 	
(� 	

� � � � � �
�

��� �
� � �) while � remains constant (����� ��� � � � � � � � �	 � � � � 	 � ����� � � �� � � ��� �� � �),

resulting in the quadratic increase of ��� global wire delay. To make the problem even worse,

the average chip size is, in fact, slowly increasing, resulting in the increase of average global wire

length.

To enhance speed, numerous repeaters built with large transistors for speed are inserted. In

global wires, repeaters segment the wires into multiple segmented wires with fixed length and make

the wire delay proportional to the wire length. However, even with the repeaters, the global wires’

delay does not scale with the transistor and linearly increases as the technology shrinks (Table 7.1).

Along with delay, global wire power has also increased rapidly. The power consumed by re-

peaters is already comparable to the power from switching wire caps, and some dimensions of

global wires, such as height, thickness, and spacing, do not scale down linearly for speed, result-

136

ing in increased wire caps. To make the power problem worse, the number of cross-chip global

wires has also increased, as larger-scale digital systems, such as system-on-chip (SoC) and chip

multiprocessor (CMP), tend to include multiple cores and previous off-chip interconnects are being

replaced with on-chip cross-chip global wires. All these changes have made the power consump-

tion of global wires comparable to that of logic gates. In addition to delay and power increases, the

problems of traditional automatic ASIC routing such as routing congestion and noise coupling are

being exacerbated, as the relative length of global wires increases.

As a solution for all these problems of global wires, two levels of innovations can be made:

optimizing wires through pipelining and structuring wires [Sgr01, DT01]. For many applications

such as streaming multimedia, software can be mapped to hardware such that global communication

between units can be made latency-tolerant. Pipelining and other energy-delay trading tools, such

as supply voltage scaling and repeater sizing and spacing, can achieve significant energy reduction

while keeping the same wire bandwidth, with only a small increase in latency (Figure 7-1).

Vdd

Figure 7-1: Pipelining wires and scaling supply voltages for energy reduction at a fixed bandwidth.

Structuring global wires or, more specifically, replacing global wires with an on-chip network,

provides a higher level of optimization. The on-chip network links can be highly optimized by

controlling their electrical environment to allow the use of optimized signaling techniques. Wiring

efficiency can be improved by replacing a large number of low activity dedicated wires with fewer

multiplexed communication links.

137

7.2 Related Work

Bakoglu [Bak90] reported the delay-optimal repeater sizing and spacing for a repeated wire. Ho

et al. [Ho 01] pointed out that the power consumption of the delay-optimal repeated wire is pro-

hibitively large, and suggested increasing repeater spacing and decreasing repeater size to save

power while sacrificing some speed. Kapur et al. [Kap02] and Banerjee and Mehrotra [BM02]

calculated the power-optimal repeater sizing and spacing for global interconnects using a simple

first-order ��� repeated wire model. Gupta et al. [Gup03] described a high-level interconnect power

model for wires of a single core chip.

Chandrakasan et al. [Cha92] first suggested the use of pipelining for power reduction in digital

circuits. Heo and Asanovic [HA04b] examined power-optimal pipelining for logic datapaths in deep

submicron technology both analytically and through circuit simulation. Cocchni [Coc02] estimated

the effect of concurrent flipflop and repeater insertion while considering routing tree topology, but

focused only on minimizing wire latency. Liao and He [LH03] modeled full-chip interconnect

power using a more sophisticated concurrent repeater and flipflop insertion scheme, and showed how

increased wire pipelining could reduce communication power. The power-optimal wire pipelining

model we develop in this chapter is similar to that of Liao and He [LH03], but adds the effects of

leakage currents.

Sgroi et al. [Sgr01] and Dally and Towles [DT01] proposed replacing design-specific global

on-chip wiring with a general-purpose on-chip interconnection network. Eisley and Peh [EP04]

first provided a high-level network power analysis with link utilization as the abstraction of net-

work power. Some previous work focused on the low-level power estimation of routers. Wang et

al. [Wan02b] provided a low-level general framework for different types of routers, Orion, and

verified the simulator with Alpha 21364 and Infiniband router examples [Wan02c]. Chen and

Peh [CP03] added a leakage power model to the Orion simulator. Ye et al. [Ye 02] focused only

on the power consumption of the switch fabric in a router.

We build a complete system-level power model for on-chip networks including routers and

power-optimal links. We examine the trade off in tile size versus communication power, using

Rent’s Rule to estimate inter-tile and intra-tile interconnect.

138

7.3 Wire Power Model

In this section, we present an analytical latency and power model for a pipelined and repeated wire

when throughput is fixed. We include the switching and leakage power consumed by repeaters and

flipflops in addition to the switching power of the wire capacitance.

7.3.1 Methodology

We choose BPTM 70 nm technology as our deep submicron process technology [Dev01]. Base

supply voltage is 0.9 V and
� �

is 0.20(-0.22) V.
� �

is set quite high to reduce leakage power of

repeaters and flipflops. We assume that clock period is fixed at 24 FO4 delays (clock frequency of

2 GHz), representing a high-performance digital circuit [HA04b]. For most designs, clock frequency

will be set by logic within a tile, and we assume the network links run at the same frequency with a

fixed throughput requirement.

We assume three categories of metal interconnect: local, semi-global, and global. Table 7.2

shows the characteristic dimensions and ��� components of these wires.

70 nm Cu tech Local Semi-global Global
Width (� m) 0.10 0.14 0.45
Spacing (� m) 0.10 0.14 0.45
Thickness (� m) 0.20 0.35 1.20
Height (� m) 0.20 0.20 0.20
Resistivity (

� � �) 2.2 2.2 2.2
�
� �����

� � ��� � �
�

152 178 228
� � �����

� � �
� �

�
1100 449 41

� � ����� �
� ����� (FO4) 8.03 3.84 0.45
Max. distance in 24 FO4 (mm) 2.10 3.04 8.88
Max. distance in 24 FO4 (mm) 2.10 3.04 8.88
Latency-optimal repeater spacing (mm) 0.29 0.42 1.22

Table 7.2: Wire characteristics of our example 70 nm technology.

7.3.2 First-Order ��� Wire Model

Figure 7-2 shows a first-order ��� model of a wire [Ho 01]. We assume minimum-sized flipflops.

In the ��� circuit, the wire segment is modeled inside the dotted box and the repeaters are outside.

Wire delay is represented as a function of the repeater sizing (ratio of the repeater gate cap and

139

src dest
a stage

a segment

Rd/w w(+1)Cd

Cwl/2 Cwl/2

Rwl/w
w(+1)Cg

driver wire receiver

Figure 7-2: First-order ��� model of wire. The length of the whole wire is � .
�

is the ��� ratio, �
is the width of the repeater NMOS transistor, � � , � � , and � 	 are the unit-length wire cap and drain
and gate caps of the minimum-sized inverters respectively.

wire cap within a wire segment), � .

� �
� � � � � � �
	

�
� �

where � is the wire segment length.

When interconnect supply voltage is scaled, the scaling factor,

� �
�
� ��
� �
� �

�
�
� �
�
�

� �
�
� � �

��� � �

is used. 	 is a velocity saturation effect factor.

Wire delay and link latency are calculated as:

� ���	� � � ��� � � �
�
� �
�

� � � � � � �
�
� � � � 	 � � � � � � (7.1)

�
� ��� � � �

�
�
�
� � � �
�

�
� � � � �

� � � � � � 	 � (7.2)

� � ��� � � � � �� �
� �

� � �
� � �

�
� � � � � �

� �
� (7.3)

� � � � � � � � ��� ��
�

� �	�
� �
� �
� �

� � �
� � �

�
� � � � � (7.4)

where
�

is the clock period,
� �	� the flipflop delay, and � is the unit-length wire ��� delay in FO4.

140

We calculate power as:

� � � �� � �
�
��� � �

� �
�
� � � � � � � � �	� ��� � � � � � � � �� � (7.5)

� � � ����� �
�
� � � � � � � ���	� � � � ��� � � � � � � �

���
� � (7.6)

where
���

is the activity factor and � � � is the flipflop cap. The repeater drain cap is assumed to be

half of the repeater gate cap. � ����� and � �	� are leakage power coefficients for repeaters and flipflops.

The former term of the equation is the switching power component and the latter is the leakage

power component. We assume leakage current remains constant regardless of input patterns or

internal states. Leakage power scales super-linearly in deep submicron technology (� � � � � � �
)

[HA04b].

7.3.3 Pipelining Wire

Latency is minimized when � � is �� � and � � is
� �
� � , where wire delay and repeater delay are equal.

However, this minimum latency point requires very large, power-consuming repeaters [Ho 01].

We can save power by using deeper pipelining to provide additional time slack in each wire

stage. Although there are many ways of exploiting the time slacks obtained from pipelining, we

focus on two variables: repeaters and supply voltage. We can either reduce the size and increase the

spacing of repeaters, or scale down supply voltages, or both.

Figure 7-3 shows latency-power curves of wires while varying repeater sizing, spacing, and

supply voltage. In the figure, the sizing curve shows power-latency tradeoff through repeater

sizing only, while repeater spacing is fixed at the minimum latency point and supply voltage is

constant at the nominal voltage. Increasing repeater size over the minimum latency point results

in larger latency and power. The +spacing curve shows power-latency tradeoff through repeater

sizing and spacing. Repeaters are power-optimally sized and placed while supply voltage is fixed.

Finally, the +scaling curve adds supply voltage scaling to the optimally sized and spaced

repeaters. Supply voltage scaling is by far one of the most effective techniques for trading time

slack for power. Supply voltage reduction leads to a cubic reduction in switching power and also

a super-linear reduction in leakage power, as leakage current has a strong dependency on drain

voltage in deep submicron processes [HA04b]. Adding supply voltage scaling enables much greater

power saving compared to optimal repeater sizing and spacing alone, especially when latency is

allowed to increase by greater than 10%, but requires a second power supply to be distributed to the

141

1 1.2 1.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative latency

re
la

ti
ve

 p
o

w
er

AF = 25%

sizing
+spacing
+scaling

1 1.2 1.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative latency

re
la

ti
ve

 p
o

w
er

AF = 2.5%

sizing
+spacing
+scaling

Figure 7-3: Wire latency-power curves for activity factors of 25% and 2.5%, while changing re-
peater sizing, spacing, and supply voltage. Both axes are normalized to the minimum latency point.

interconnect network.

Repeater sizing and spacing is more effective when the activity factor is low since it reduces the

leakage power of repeaters as well as their switching power. On the other hand, at higher activities,

the power due to wire capacitance switching becomes dominant and thus the total wire power is less

affected by repeater sizing and spacing.

Overall, the combined techniques achieve a three- to four-fold reduction in communication

power when latency is allowed to increased by 50%.

7.4 On-Chip Interconnect Network Power Model

We develop a system-level interconnect power model for large digital designs. We assume the

design is for a highly parallel system, such as a DSP engine or network processor, and assume the

design can be divided easily and flexibly into any number of smaller tiles. Each tile represents

a computation module including local memory. We examine three design points: 1) a single tile

containing the whole design, 2) a tiled design where tiles are connected with a statically wire-routed

network, and 3) a tiled design with a dynamically packet-routed inter-tile network.

142

We focus only on power consumption for this analysis and assume that the performance impact

from additional inter-tile latency is not significant. When we divide the chip, we keep the logic

and local memory ratio the same regardless of the tile size. We assume the total power consumed

by logic and memory transistors remains roughly the same regardless of network configuration, and

focus on power consumed by communication wires (intra-tile or inter-tile) and supporting transistors

(repeaters or registers). Communication power is already comparable to logic and memory power

and increases as digital systems become more communication-centric than computation-centric.

Communication power can be divided into three parts: inter-tile wire power, router power, and

intra-tile wire power. The intra-tile wire is the power consumed by design-specific wires connecting

logic and memory transistors. As tile sizes shrink, more intra-tile wires turn into the inter-tile wires

depending on tile and network architecture.

Table 7.3 summarizes the dimensions of our example chips. Estimates are based on ITRS 2004

[Int04]. We assume that gates are uniformly distributed on a chip. Although Rent’s rule provides

the estimates of number of wires, it does not give the bandwidth requirements. For simplicity, we

assume a uniform activity factor regardless of wire length.

Chip length (mm) 20
Tile length (mm) 0.5 – 20
Gate density (gates/ � �

�
)

�
�
�

� � ���
Gate pitch (� m) 1.8

Table 7.3: Dimensions of our example chips.

7.4.1 Single Tile Baseline

We first use Donath’s method to estimate the wire distribution for the whole chip treated as a single

tile. Estimation of wire distribution is an important application of Rent’s rule, which is an empirical

rule stating that the number of wires leaving a circuit block is exponentially proportional to the

number of gates in the block. We assumed a nominal value,
�
� for the Rent exponent, � which

agrees with the wire distribution of Intel microprocessors (�
�
� � � � � ��� � �) [Yan98].

We chose the following wire distribution equations, which divide wires into two regions [CS00]:

�
�
� � � � � �

� �

� � �
� � � � � � � �

� � � � � � � � � � �
(7.7)

� � � � � � � � �
� � � � � � � � � � � � � �

(7.8)

143

where � is the length of a wire, � is the chip length, and
� � is the length of the longest wire within

the chip assuming Manhattan wiring.

We assumed that a local wire is used if the wire length is less than 100 gate pitches, a semi-global

wire if less than 1400, and a global wire if 1400 or more. Figure 7-4 shows the wire distribution

of our base chip. We can see that the number of wires decreases drastically as we reach the very

longest wires in region 2. Figure 7-6 shows the wire power of the base chip, at the point where the

tile size is 20 mm (that is, when the whole chip is one tile).

region2
region1

100

102

104

106

108

101 102 103 104

Local Semi-
global

Global

wire length (gate pitch)

o

f
w

ir
es

100 105

Figure 7-4: Wire distribution of our base chip. Two dotted vertical lines divide wires into local,
semi-global, and global wires. The vertical solid line shows the boundary between region 1 and 2
wires.

7.4.2 Wire-Routed Tiles

We now divide the chip into multiple tiles, and replace inter-tile wires with power-optimal pipelined

wires. First, we build a statically wire-routed on-chip network by making wire channels between

tiles and moving global wires onto the wire grid (Figure 7-5). The number and total length of wires

do not change. We assume that all the wires longer than twice the tile size (
� �) are replaced with

inter-tile wires, while the rest remain intra-tile wires.

We assume that all the intra-tile wires regardless of dimensions are latency-optimized. In par-

144

Global
Wires

Wire Grid

Figure 7-5: Wire-routed ASIC design.

ticular, compared to inter-tile wires, they are more performance-critical. The following equations

show that the total power of the intra-tile wires.

�
�
� � � �

� � � �
(7.9)

� ��� � ��� �
� ��
���
�
�

�
� � � (7.10)

� � � � � � (7.11)

where � is the tile size.

Figure 7-6 shows the wire power consumption of a tiled wire-routed chip. As the tile size

decreases (smaller than half of the chip), intra-global wire power decreases exponentially while

intra-semi-global or intra-local wire power remain roughly unchanged. However, the increase in

power on inter-tile wires matches the power loss of the intra-global wires and so the total wire

power stays roughly the same.

Figure 7-7 shows the power saving of a tiled wire-routed chip when inter-tile latency is increased

by 25% and the network wires are pipelined. Smaller tiles result in greater power saving as more

signals are pipelined. In particular, when leakage power is significant (
���

= 0.1%), pipelining

through repeater optimization and voltage scaling is more effective at reducing the inter-tile wire

power, since pipelining is more effective at saving leakage power (Section 7.3.3). When
���

is

0.1%, almost half of the total power can be saved.

145

0 10 20
0

5

10

15

20

25

30

tile size (mm)

po
w

er
 (

W
)

AF = 1%

0 10 20
0

5

10

15

20

25

30

tile size (mm)

po
w

er
 (

W
)

AF = 0.1%

intra−local
intra−semi−global
intra−global
intra−total
inter
total

Figure 7-6: Wire power consumption of tiled wire-routed design for varying tile sizes, assuming
uniform activity factors of 1% and 0.1%.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

tile size (mm)

re
la

ti
ve

 p
o

w
er

AF = 1%

intra
inter
inter−25%−rep
inter−25%−rep−vs
total
total−25%−rep
total−25%−rep−vs

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

tile size (mm)

re
la

ti
ve

 p
o

w
er

AF = 0.1%

Figure 7-7: Tiled wire-routed design: power saving by pipelining. inter-25% means 25% in-
creased latency requirements for the inter-tile wires. rep represents repeater sizing and spacing
and vs also includes voltage scaling.

146

7.4.3 Packet-Routed Tiles

We finally consider a packet-routed tiled architecture. We build a dynamically packet-routed on-chip

network by adding routers and IOs and connecting routers with links. Figure 7-8 shows an example

of a tiled ASIC architecture (4 by 4) and a mesh interconnect network. A mesh interconnect network

was chosen since it is simple to design, power-efficient, and scalable. Tiles communicate with others

only through routers and links between routers.

Routers

IOs

Links

Intra-Tile
Wires

Figure 7-8: Tiled packet-routed ASIC design.

On-chip network links are much cheaper in terms of area and power, than traditional off-chip

network links. Thus it is natural that tiles exploit wider links than a single-tile chip does. However,

an excessive number of on-chip IO wires result in a huge power and area overhead for routers.

Usually, some degrees of multiplexing and packet encoding are employed to reduce the number of

IO wires while increasing the activity on link wires. We define the multiplexing factor, � �
, as the

ratio between activity on packet-routed link wires and that on the inter-tile wire-routed links they

replace. The multiplexing factor will vary according to application and tile architecture.

We assume the total chip bandwidth (BW) is conserved and the total sum of global wire length

times activity factor remains the same regardless of the tile size. The left side of the following

equality shows the BW of a wire-routed tiled chip, and the right side shows that of the base single

147

tile chip.

� �� �
�
� � ��� � � � � �

�
� � � � � ���

�

����
���
� �
�

�
� � � (7.12)

where � ��� is the activity factor on link wires and � �
��� � is the number of wires between two

adjacent routers.

The following equations show the total inter-tile wire power. The total inter-tile wire power

increases as the tile size decreases at the same rate as the decrease of the intra-tile wire power.

� ��� �� � � � ��� � � � �
�
� � � � ���	� � � (7.13)

� � �
�

� � � � � � � � � � � � � (7.14)

Figure 7-9 shows the number of IO wires per tile (��� �), �
�
���	� , and the total length of inter-tile

wires when the tile size varies. While the total length is exponentially increasing as the tile size

decreases, �
�
��� � and ��� � are maximized when the tile size is 5 mm.

0 10 20
0

50

100

150

200

250

tile size (mm)

n
u

m
b

er
 o

f
w

ir
es

IO
Link

0 10 20
0

5

10

15

20

25

30

35

40

45

50

tile size (mm)

to
ta

l l
en

g
th

 o
f

lin
ks

 (
m

)

Link

Figure 7-9: Number and total length of inter-tile wires.

We assume a low-latency virtual channel router [Mul04]. Virtual-channel flow control maintains

148

high throughput even when the packet traffic is high. The inter-tile wire latency becomes relatively

significant since the router has a low-latency. A router design can be divided into three main com-

ponents: input and output packet storage, switch fabric, and arbiters. The power consumption of

arbiters is insignificant and thus is ignored here [Wan02c]. We choose a matrix crossbar for a switch

fabric implementation because it is easy to design and low-power. Since the number of ports for

the switch is rather large, the wires dominate power consumption of the crossbar [Ye 02], and we

ignore power consumed by the internal switches.

Table 7.4 describes the router parameters we assumed. Buffers are implemented with SRAM

arrays.

Phit (bits) 32
Number of input ports 5
Number of output ports 5
Number of virtual channels per physical channel 2
Number of input buffers per virtual channel 4

Table 7.4: Virtual channel router parameters. Phit is the physical transfer size of the link.

We fix phit size and the size of routers, and instead allow multiple routers per tile rather than one

large router. In case the number of IOs between routers or between a tile and the router connected

exceeds the phit size, multiple phits are sent simultaneously through multiple fixed-sized routers.

The following equations show that the total power of routers, � � � � �� � , grows even faster than

the total power of inter-tile wires, � ��� �� � , as the tile size decreases.

� � � � �� � � � � �
�
� � � �

���	� (7.15)

�
� � � � � � � � � � � � �

� (7.16)

Figure 7-10 shows the power consumption of a packet-routed tiled chip. We assume zero-power

routers and vary the multiplexing factor (� �
) and activity factor (

��
). We can see that smaller

and hence more numerous tiles results in large achievable power reduction, as more global wires

are replaced with fewer and thus lower-leakage network wires. When the leakage is more dominant

(
��

=0.1%) and more multiplexing is employed (� �
=25), more inter-tile wire power is saved.

Figure 7-11 shows the power saving by pipelining. When � �
is 25 and

��
is 1%, more than 35%

of power can be saved through pipelining the network wires.

Figure 7-12 and Figure 7-13 show the power consumption when considering the power overhead

149

of routers. In all cases, the power saving is limited by the energy cost of the routers. The router

overhead limits peak wire power savings to around 0–20% with optimal tile sizes of around 2 mm.

7.5 Conclusions

We have developed a system-level interconnect power model that predicts the power savings possi-

ble by moving global traffic onto a power-optimized on-chip network. The switch to packet-routed

on-chip networks has many advantages over wire-routed circuits, but we show that large power re-

ductions are unlikely due to router power overheads. A tile size of around 2 mm is optimal in a

70 nm technology, balancing global wire power reduction with router overhead. Additional work is

needed to develop low-power on-chip router units.

0 10 20
0

50

100

re
la

ti
ve

 p
o

w
er

mf=25, af=1%

intra
inter
total

0 10 20
0

50

100
mf=25, af=0.1%

0 10 20
0

50

100

tile size (mm)

re
la

ti
ve

 p
o

w
er

mf=5, af=1%

0 10 20
0

50

100

tile size (mm)

mf=5, af=0.1%

Figure 7-10: Packet-routed ASIC with ideal zero-power routers.

150

0 10 20

60

80

100

re
la

tiv
e

po
w

er

mf=25, af=1%

intra
total
total−25%−rep
total−25%−rep−vs

0 10 20

60

80

100

mf=25, af=0.1%

0 10 20

60

80

100

re
la

tiv
e

po
w

er

tile size (mm)

mf=5, af=1%

0 10 20

60

80

100

tile size (mm)

mf=5, af=0.1%

Figure 7-11: Packet-routed ASIC with ideal routers: power saving by pipelining.

0 10 20
0

50

100

re
la

ti
ve

 p
o

w
er

mf=25, af=1%

intra
inter
router
total

0 10 20
0

50

100

mf=25, af=0.1%

0 10 20
0

50

100

re
la

ti
ve

 p
o

w
er

tile size (mm)

mf=5, af=1%

0 10 20
0

50

100

tile size (mm)

mf=5, af=0.1%

Figure 7-12: Packet-routed ASIC with real routers: power consumption.

151

0 10 20

80

90

100

110

re
la

tiv
e

po
w

er

mf=25, af=1%

intra
total
total−25%−rep
total−25%−rep−vs

0 10 20

80

90

100

110
mf=25, af=0.1%

0 10 20

80

90

100

110

re
la

tiv
e

po
w

er

tile size (mm)

mf=5, af=1%

0 10 20

80

90

100

110

tile size (mm)

mf=5, af=0.1%

Figure 7-13: Packet-Routed ASIC with real routers: power saving by pipelining.

152

Chapter 8

Power Density Reduction through

Activity Migration

The rapid increase of power densities has caused a significant die temperature increase, which leads

to the reduced circuit speed and reliability. Previously, designers set a peak power constraint to

ensure the thermal safety and optimized the system conservatively under the peak power constraint.

However, we can overcome the thermal limit directly for a further optimization with dynamic ther-

mal management. This chapter introduces and evaluates the use of activity migration (AM) to

mitigate the power density problem 1.

Elevated die temperatures reduce device reliability and transistor speed, and increase leakage

currents exponentially. Providing adequate heat removal with low cost packaging is particularly

challenging as high-performance digital systems’ power densities rise above 100 W/cm
�
. Moreover,

power dissipation is unevenly distributed across a die. Highly active portions of the design such as

the issue window or execution units may have more than twenty times the power density of less

active blocks such as a secondary cache [Dee02]. Even with dynamic thermal management, these

hot spots limit performance because total power dissipation must be reduced until all hot spots

have acceptable junction temperatures. Hot spots develop because silicon is a relatively poor heat

conductor and cannot spread heat efficiently across a die.

With activity migration (AM), we instead spread heat by transporting computation to different

locations on the die. Computation proceeds in one unit until it heats past a temperature threshold.

The computation is then transferred to a second unit allowing the first to cool down. We show

1The work in this chapter was a joint work with Kenneth Barr and Krste Asanovi ć and was previously published
in [HBA03].

153

how AM can be used either to double the power that can be dissipated by a given package, or to

lower the operating temperature and hence the operating power. Our thermal model predicts that the

intervals between migrations needed to obtain maximum benefit can be much smaller than typical

operating system context swap times, and will scale to smaller intervals in future technologies. We

evaluate the performance impact of such small migration intervals, and examine various alternative

architectural configurations that trade area for power/performance.

8.1 Related Work

We divide related work into two parts: temperature-aware simulators and dynamic thermal manage-

ment (DTM) techniques.

8.1.1 Temperature-Aware Simulators

There has been a great deal of research effort on temperature-aware simulators. Dhodapkar et

al. developed a thermal enabled power/performance simulator [Dho00]. They also used ther-

mal resistance and capacitance to model the heating and cooling of a chip or a functional block.

Brooks and Martonosi modeled temperature as a moving average of chip-wide power dissipation,

which is a poor model since it cannot explain hot spots spatially or temporally [BM01]. Huang

et al. built a framework with two goals in mind: temperature control and energy efficiency con-

trol while minimizing any slowdown. The framework makes use of various energy-management

techniques in a spatially and temporally fine-grain manner according to a given policy [Hua00].

Skadron et al. proposed the formal feedback control theory for adaptive fetch toggling to man-

age temperature dynamically [Ska02a]. The work uses the lumped ��� based thermal model with

the granularity of individual functional blocks. Recently, the authors developed an architecture-

level floorplan-based dynamic thermal simulator with the functional block granularity, “HotSpot”

[Ska02b, Ska03]. It models an equivalent circuit of thermal resistances and capacitances that cor-

respond to microarchitecture blocks and essential aspects of the thermal package. The simulator is

based on “Wattch” [Bro00] power model.

8.1.2 Dynamic Thermal Management

We divide DTM schemes into two groups. The first category reduces power consumption through

energy-delay tradeoff techniques. This category is sometimes called “thermal throttling”. Perfor-

154

mance loss is a major disadvantage. On the other hand, the second category increases the effective

area to lower power density while keeping power consumption the same.

Decreasing Power through Energy-Delay Trades

Some DTM schemes actively gate the clock toggling of hot spots to lower power and tempera-

ture while sacrificing performance, though clock gating is usually utilized to cut down the power

waste of unused blocks. The clock gating for DTM can be done on the chip-level [Hua00, Ska03,

Gun01] or in a finer-grain, controlling the toggling rates of individual functional blocks (e.g., fetch

block) [Ska03, BM01]. Dynamic voltage and/or frequency scaling is another popular energy-

delay trading tool utilized by many DTM schemes [Hua00, Ska03, Gun01]. Throttling instruction

flows [San97, BM01], turning on low-power features [Hua00], or turning off performance-oriented

features such as speculation [BM01] are other examples of DTM techniques that trade performance

for lower power.

Techniques such as clock gating and throttling reduce the activity rate and save only the switch-

ing energy. Thus, the techniques become less effective when leakage power is dominant. Even

though thermal emergencies are rare events, the performance loss by DTM techniques can be sig-

nificantly large enough that the overall performance degradation can be severe.

Increasing Effective Area

Increasing effective area can reduce power density while keeping power and performance the same.

A straightforward way of trading area for reduced power density is to spread out hotspot blocks

such as register files, but it is not an attractive option as latency and switching energy and delay are

increased due to increased wire length. Using empty space on the die can help spread heat [Dee02]

for thicker wafers, but this becomes much less attractive for thinner wafers as the lateral conductance

decreases relatively.

A few researchers have tried to increase the effective area by migrating computations on dupli-

cated blocks. Unlike spreading, the longer wires are placed out of the critical paths and infrequently

used. Another advantage of migration is that we can run the multiple duplicated blocks in parallel

to increase throughput when the application has that type of parallelism. Intel described a scheme

called ”core hopping” [Int02]. However, swapping threads at OS timescales is too slow to get the

maximum benefit and has a large area overhead. Time constants will also get smaller in absolute

time in future technologies. Intel also described this only as a means of avoiding thermal crisis

155

rather than as a way of improving performance or reducing energy. Skadron et al. emphasized the

importance of fine-grain dynamic thermal management and proposed a scheme, called “migration

computation” [Ska03]. The dual-pipeline scheme [Lim02] can be considered a coarse-grain form of

activity migration. When the primary out-of-order high-power pipeline gets too hot, the secondary

in-order low-power pipeline is turned on and utilized until the primary pipeline becomes cool.

8.2 Thermal Model

In this section, we develop a thermal model we later use to evaluate AM. To determine the maximum

achievable benefit, we can simplify the model to consider a single circuit block with a given power

density.

We are primarily interested in the case where performance is constrained by thermal packaging

and hence we are only worried about the worst case hot spot. Considering a digital system in thermal

crisis, one block (for example, the scheduler or regfile or ALUs) will hit the peak temperature. It

does not actually matter which block it is, which is why we use a single power density number to

model the power density of the hot block. The rest of the blocks on the die will have varied power

densities of course, and the average power density across the whole die will be much lower. At

thermal crisis, the best thing to do is to alternate between the two sites to cool the hot spot.

One concern is that the detailed dynamic behavior of a program will determine whether or not a

digital system hits thermal crisis, and so will determine how often our scheme gives a benefit. Our

limited study assumes that one of the various forms of thermal management allows us to deliberately

run as hot as possible without violating the junction temperature, i.e., the optimal performance point

is when we run fast enough to always be at the verge of a thermal crisis. As absolute power grows,

and the gap between maximum and typical power dissipation grows, we expect this to be the usual

case, i.e., it will be rare that an active digital system is not on the verge of overheating – otherwise we

have wasted money on packaging (Energy-constrained systems will have other criteria, of course).

If the system is not operating at this extreme point, then periods of lower dissipation mean that

we can run for longer without triggering AM, hence lowering the performance overhead.

From this model, we can find the necessary thermal time constants and the expected benefit in

terms of sustainable power increase or temperature reduction.

156

8.2.1 Thermal and Process Properties

Table 8.1 shows the thermal properties and process technology data we used in this model. We

present two technology cases: a present mature technology (Current case) and a near-future tech-

nology (Future case). The transistor models for 180 nm and 70 nm processes were based on TSMC

180 nm and BPTM 70 nm [Dev01] processes respectively.

Symbol Current case Future case
Die thickness (� m)

�
250 100

Die conductivity (W/K/m) � 100 100
Die specific heat (J/K/ � �) � 1e6 1e6

Die area (� �
�
)

�
��� � 100 100

Block area (� �
�
)

� � � �
��� 2 2
Block switching power density (W/ � �

�
) � � � � � 5 7.5

Block leakage power density (110 � C) � � � � � � 0.015 0.15
Isothermal point (� C)

�
����� � 	 � ���
�

�
70 70

Leakage-Temperature coefficient (1/K)
�

0.036 0.017
Channel length (nm) � 180 70
Supply voltage (V)

� ���
1.5 1.0

NMOS threshold (V) � � � 	 � 0.269 0.120
PMOS threshold (V) � � � 	 � -0.228 -0.153

Table 8.1: Process technology, thermal properties and transistor data.

Because most heat is removed through the back of the die, an important parameter in the thermal

properties of digital systems is die thickness. During manufacture, wafers are approximately 750 � m

thick, but are then thinned to improve thermal properties. For the mature technology, we assume a

250 � m thickness, and for the future case we assume the wafer is thinned to 100 � m. We note that

current smart card chips are already thinned to 100 � m thicknesses, and commercial vendors offer

thinning to 50 � m.

The switching power density numbers were chosen to be aggressive for current technology, at

5 W/mm
�
. Under ideal scaling theory, power density remains constant. However, we expect power

density to scale higher in the future because voltages will not scale down as rapidly as feature size,

and clock frequency is increasing faster than transistor speed due to deepening of pipelines. We

chose 7.5 W/mm
�

as the scaled future power density.

157

8.2.2 Equivalent ��� Thermal Model

Junction temperature was modeled by a simple first-order equivalent ��� circuit (Figure 8-1) using

the well-known analogy between electrical circuits and thermal models [Ska02a]. Temperature and

power are represented by voltage and current respectively.

+
− Isothermal Point

Effective Thermal Resistance

Effective
Thermal
Capacitance

Junction Temperature (Tj)

P_leakage P_active

Figure 8-1: Thermal model: an equivalent ��� circuit.

Vertical thermal resistance comes from silicon and packaging and we can assume that those two

resistances are connected in series.

� � � � � ��� ��� ��� ��� � � � � �
�

� �
� � � �
��� (8.1)

� � � ��� � 	 ��� ��� ��� � � � � � � �

�

� �

�
��� �� � � �
��� (8.2)

� ��� �� � � ��� ��� � � � � � �
� � � �

�
��� �

�
�

�

� �
� � � �
��� (8.3)

The formula for � � � ��� � 	 � , thermal resistance from the die to the isothermal point in the package

for the specific block, is from [Bar02]. [Bar02] assumed that � � � ��� � 	 � is proportional to the thick-

ness of silicon die since the isothermal point in the package approximately is proportional to the

die thickness. [Bar02] shows that this simple formula matches the time-consuming 3D simulation

results well. (� was measured by 3-D thermal simulation to be 120).

Most heat is dissipated vertically in a chip, particularly when wafers are thinned, since horizontal

cross-section is usually much smaller than the area of a typical hotspot. Therefore, we assumed

infinite lateral thermal resistance, which will lead to the worst-case temperature gradients between

junctions in a chip.

Deeney [Dee02] notes that lateral conductance can be used to spread the heat of hot spot and

suggests the use of blank silicon around hot spots, but these experiments were done on an un-

thinned 750 � m HP PA-8700 die. As die thickness drops, vertical conductivity improves and lateral

conductivity increases.

158

The lateral resistance of the heat spreader can change our results somewhat, but because the heat

spreader has a much lower resistance than silicon, its main effect is to make the heatsink act as a

constant thermal source (this is where the isothermal point in the package is derived from). We have

taken the worst case by assuming no lateral conductance but we don’t believe this will qualitatively

change our results.

Vertical thermal capacitance of die can be derived as

� � � � � � � � � ��� ��� � � � � � � �
�

�
� � � � � � (8.4)

Thermal capacitance of the packaging was ignored, because the package capacitance is so mas-

sive that it effectively acts as a temperature source. Lateral thermal capacitance of silicon can be

ignored for the same reason as that of the lateral thermal resistance case.

8.2.3 Temperature Dependency of Leakage Power

Leakage power is a significant part of total power in deep submicron technology. It has exponential

dependency on temperature since the effective threshold voltage decreases linearly with the increase

of temperature. Therefore, for the accurate temperature calculation, the dependency of leakage

power on temperature should be included in the thermal model. The dependency of switching

power on temperature is comparably weak and ignored in this work.

This exponential temperature dependency was measured by simulating an inverter chain with

Hspice for the 180nm and 70nm processes and the temperature-dependency was extracted from the

temperature-voltage curves (Figure 8-2). (In this work,
�

is defined as the thermal dependency of

leakage on temperature: �
�
� � � � 	 � �

�
�
�
� � � .) It is a well-known physical fact that

�
decreases as

channel length shrinks, as seen in our measurements.

We modeled leakage power in our thermal model as a voltage-dependent current source using
�

(�
�
� � � � � � is leakage power measured at 110 � � .):

� � � � � � � � � � � � � � �
� � ��� � � � � �

(8.5)

Figure 8-3 compares the simulation results for a thermal power model with constant leakage

power at the worst-case temperature 110 � � and our temperature-dependent thermal model at dif-

ferent conditions.

159

60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temp (Celcius)

N
o

rm
al

iz
ed

 L
ea

ka
g

e
P

o
w

er

180nm: beta=0.036

Hspice Simulation
Beta Model

60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temp (Celcius)

N
o

rm
al

iz
ed

 L
ea

ka
g

e
P

o
w

er

70nm: beta=0.017

Figure 8-2: Leakage power versus temperature.

In Figure 8-3 (a), we can see that the constant leakage model overestimates the junction tem-

perature. Figure 8-3 (b) shows the notorious thermal runaway phenomenon. The thermal runaway

phenomenon happens due to exponential dependency of leakage power on temperature. Increased

temperature increases leakage power and increased total power (switching power + leakage power)

increases temperature. This positive feedback can bring exponential temperature increase, which

means circuit failure. We found that this phenomenon only happens when certain conditions be-

tween switching power and leakage power at certain temperature and
�

are met. The constant

leakage model cannot predict the thermal runaway phenomenon.

8.3 Activity Migration

AM can be done through software or hardware. However, we found that the OS timescale will be

too slow for AM especially for the future processes. For our limited and first-cut evaluation to show

the benefit of AM, we restrict our analysis to a simple hardware policy, where activity alternates

between a block and the duplicated block with a fixed period. Using more than two sites would lead

160

0 2000 4000
70

75

80

85

90

95

100

105

Time (us)

T
em

p
er

at
u

re
 (

C
el

ci
u

s)

(a)

Beta=0.036
Beta=0(original)

0 2000 4000

80

100

120

140

160

180

200

Time (us)

T
em

p
er

at
u

re
 (

C
el

ci
u

s)

(b)

Figure 8-3: Comparison of thermal models. Simulation is based on Current case and we assume
that

���
starts from

�
. Different switching and leakage power conditions are assumed for simulation

(a) and (b).

to greater power density reduction but would require even greater area.

Figure 8-4 shows the equivalent ��� circuit for our AM technique. The migration duty cycle

is fixed at 50%. The lateral resistance and capacitance between the original and duplicated blocks

are not modeled assuming the worst case that the two sites are spatially and thermally separated.

If the two sites are next to each other, and the lateral resistance between them is comparable to the

vertical resistances, then we will get lower temperature increase since the second site which is not

burning power can help cool the first. In the extreme, if the lateral resistance between them is zero,

the effective thermal resistance becomes half of the baseline.

By alternating between two sites, the ideal activity for each site is halved, which means half the

total power density and half the temperature increase from the isothermal point. The same benefit

could be achieved without AM if the computational load could be parallelized across the two sites.

We are primarily interested in improving single thread performance and so do not consider parallel

execution further here.

Reducing the power density could be used in two ways to increase performance or reduce en-

161

+
−

Tj2Tj1

C C

R RTiso

P_act1 P_act2

P_leak P_leak

P_act1

P_act2
AM Period

Original P_act

Original P_act

Figure 8-4: AM thermal model : an equivalent ��� circuit.

ergy. Figure 8-5 shows the qualitative benefit of AM in terms of new operating points. First, we can

lower die temperature at the same clock frequency, which leads to lower leakage power. We can also

exploit the time slack due to the cooler operation by lowering
� ���

to save some switching power.

Second, we can increase sustainable power and clock frequency at the same or lower temperature

with power-performance tradeoff along with AM.

Activity
Migration
Only

Activity Migration
With Performance-
Power Tradeoff

Clock Frequency

T
em

p
er

at
u

re

Baseline

Figure 8-5: Conceptual benefits of AM: reduced temperature or increased frequency due to possi-
bility to perform dynamic voltage scaling.

As an example of how this can be used, consider a laptop with limited heat removal capability.

When plugged into a wall socket, we can use AM to burn more power to raise performance without

raising die temperature. When running the system from battery power, we can use AM to lower die

temperature, which lowers leakage and allows more energy-efficient execution.

We restrict ourselves to using dynamic voltage scaling (DVS) to trade off power and perfor-

mance. To get the maximum benefit from the frequency-power tradeoff, supply voltage and thresh-

old voltage should be scaled simultaneously, but for circuits with high activity factor, dynamic sup-

162

ply voltage scaling alone is adequate so we assumed a fixed threshold voltage. Many other power-

performance tradeoff schemes such as dynamic cache configuration modification, fetch/decode

throttling, or speculation control [BM01] could be used with AM, but DVS was just the simplest to

evaluate and one that is likely to be supported in the system in any case.

8.3.1 Activity Migration: Analytical Model

We calculate the benefits of AM technique analytically (Figure 8-6) (Here,
�

is assumed as zero for

the simplicity of computation.):

��	
� 	
	 � � ��� � � � � � ��� � � �

	 ������� �
��� � � �

��� � (8.6)

� � � � � � ��	
� 	
	
�

� � �
	 ������� �

��� � �
(8.7)

� is the time constant of the equivalent ��� circuit. Solving the above equations, we get

� 	
� 	
	 �

� �
��� � � �

� � �
	 ���	��� �

���

� �
(8.8)

The temperature increase from the isothermal point is decreased by � � �
	 ���	��� �

��� through AM. With

very small � �������� , the temperature increase will be halved. On the other hand, we can increase

the power by � � �
	 ���	��� �

��� times, which makes
�
	

� 	
	

the same as
�
�

� � � . If ���������� is considerably

smaller than � , we can double power at the same temperature as the baseline, which means increas-

ing the clock frequency by a factor of
�
�

 (=1.26) with DVS since switching power is approximately

proportional to
� � � � .

8.3.2 Activity Migration: Simulation Results

This section shows the simulation results of AM alone and AM with DVS.

AM Alone

Table 8.2 and Table 8.3 show the Hspice simulation results of the AM technique for various AM

periods.

AM drops temperature more than 12 and 7 � � for Current case and Future case respectively

at the same clock frequency. In addition, AM saves power consumption in two ways. First, re-

duced temperature leads to the reduced leakage power, more than 37% and 12% for Current case

163

Time

Temperature

Tj2 - short

Tj2 - long

Temp can be reduced till (Tbase+Tiso)/2
Tbase

Tiso Migration Period

P_act2 - long
Time

Active Power
Pbase

0

P_act2 - short

Thigh

Thigh’

Tlow
Tlow’

Figure 8-6: Analytical calculation of benefits of AM.
���
� � � is the baseline temperature,

�
����� is the

isothermal point,
� 	

� 	
	

and
��� � � are the highest and lowest temperatures for AM technique, and

���� ��� � is AM period.

AM period (� s) 1800 600 200
Temperature drop (K) 9.2 11.5 12.4

Leakage power reduction (%) 29.6 35.3 37.6
Switching power reduction (%) 3.7 7.6 9.7

Table 8.2: Simulation measurements of AM (Current case).

and Future case respectively. Second, since the on-state drain current of MOSFETs has negative

temperature dependence (even though at a very low supply voltage, it is positive [Kan01]), we gain

some time slack after AM and we can exploit the time slack by scaling down
� ���

to save switching

power, which is the other way of using DVS. Almost 10% reduction was attained for both cases.

The smaller AM period gives the greater temperature drop; however, it results in a bigger cycles-

per-instruction (CPI) penalty. Section 8.5 will examine the impact of short AM periods on CPI.

AM with DVS

Figure 8-8 and Figure 8-9 show the simulation results for the AM technique with dynamic voltage

scaling.

DVS was modeled based on the simulation data of a 15 stage ring-oscillator. We assumed 30

times FO1 delay, the period of the ring-oscillator, as the clock period of the digital system. Switch-

ing power, leakage power, and period were measured for various
� ���

levels in both technology

164

Time

Temperature

Tj2 - long

Tbase

Tiso

Migration Period

P_act2 - long
P_act2 - short

Time

Active Power

Pbase

0

Tj2 - short

Sustainable power can be increased till 2*Pbase

Figure 8-7: Analytical calculation of benefits of AM and a power-performance tradeoff.

AM period (� s) 600 200 60
Temperature drop (K) 3.4 6.4 7.5

Leakage power reduction (%) 5.9 10.8 12.6
Switching power reduction (%) 3.3 9.5 9.7

Table 8.3: Simulation measurements of AM (Future case).

cases. Activity factor was assumed to be as high as 0.2 since usually high activity areas cause hot

spots.

DVS exploits the temperature drops by the AM and brings the frequency increase at the same

or lower temperature. Table 8.4 and Table 8.5 show the clock frequency and power increase at the

same temperature as the baseline through AM with DVS. Around 16% and 6% clock frequency

increase could be attained.

AM period (� s) 1800 600 200
Clock frequency increase at same temperature (%) 10.5 14.1 15.9

Total power increase at same temperature (%) 56.8 79.5 90.9

Table 8.4: Summary of effects of AM(upper section) and AM+Dynamic
� ���

scaling(lower section)
(Current case).

According to our thermal model, the Future case has a time constant more than 6 times smaller

165

1.5 2
75

80

85

90

95

100

Vdd (V)

H
o

t
sp

o
t

te
m

p
er

at
u

re
 (

C
el

ci
u

s)

base
1800us
600us
200us

1.2 1.4 1.6
75

80

85

90

95

100

Frequency (GHz)
10 15 20

75

80

85

90

95

100

Hot spot power (W)

Figure 8-8: Simulation results of AM and DVS for various AM periods (Current case)

AM period (� s) 600 200 60
Clock frequency increase at same temperature (%) 2.3 5.0 5.9

Total power increase at same temperature (%) 25.0 61.4 79.6

Table 8.5: Summary of effects of AM(upper section) and AM+Dynamic
� ���

scaling(lower section)
(Future case).

than that of the Current case since ��� is proportional to the square of die thickness, and therefore

it requires a faster migration period than the Current case. For example, a 600 � s period does not

work well for the Future case though it does for the Current case. Also, it is clear that the typical

OS timescale, 1 to 10 � s, is too large to control migration efficiently.

8.4 AM Architectures

If we perform AM between multiple cores on a die, then long AM periods would be easy to handle

in software as part of a regularly scheduled OS context swap, but Table 8.4 and Table 8.5 show

that small AM periods are necessary to realize performance gains. To investigate the impact of

fine-grain AM, we used the SimpleScalar simulator version 3.0b [BA97] to model AM between two

166

1 1.2 1.4
75

80

85

90

Vdd (V)

H
o

t
sp

o
t

te
m

p
er

at
u

re
 (

C
el

ci
u

s)

base
600us
200us
60us

3.8 4
75

80

85

90

Frequency (GHz)
10 20 30 40

75

80

85

90

Hot spot power (W)

Figure 8-9: Simulation results of AM and DVS for various AM periods (Future case)

four-wide, out-of-order, superscalar processor cores.

We modeled the five different architectural configurations shown in Figure 8-10, using two

different cache sizes: a single-cycle 8 KB cache and a two-cycle 32 KB cache. The size of each

block in the figure roughly corresponds to the size of the same structure on the Alpha 21264 as

measured from a published floorplan [Gie97]. The Simplescalar simulation parameters are given in

Table 8.6.

I$,ITLB,
Branch Predictor

D$,DTLB

Issue Queue,
Rename Table
Execution Units,

Register File

Base A B C D

Figure 8-10: AM processor configurations.

AM implies the use of additional area to hold the replicated units, and so the five configurations

167

Pipeline width 4
of RUUs 64
Load/Store queue depth 64
of integer ALUs (multiplier/divider) 5 (1)
of floating point ALUs (multiplier/divider) 3 (2)
of load/store units 2
Instruction length 32 bits
L2 (64B blocks) 2MB/7cycles
L1 I$/D$ (64B blocks) 8KB/2way/1cycle

or 32KB/4way/2cycles
Branch prediction 1024 entries
Misprediction latency 3 cycles
Memory latency first 100 cycles, Next 2 cycles

Table 8.6: Simulated processor configuration

represent different design points with different degrees of replication. The baseline configuration is

a single complete processor core and primary caches. Each configuration A–C has split execution

cores, and each core contains its own register file and functional units. Though a structure may be

shared by two execution cores, its size remains the same. As only one core can access it at a time,

no additional ports are needed. We pessimistically add an extra cycle to the cache access times to

account for driving a longer bus between two cores. Machine A contains duplicates of all structures

in the baseline machine. Machine B consists of two cores sharing the same data cache (D-Cache)

while Machine C cores share both instruction cache (I-Cache) and D-Cache. Machine D is similar

to the baseline except that it shares an issue queue and rename table so the pipe need not be drained

upon thermal interrupts. In this configuration, only the contents of the physical register file need to

be copied, for which a 32 cycle penalty is assessed every
�
� � � � ��� (16 cycles of pipeline drain plus

16 cycle copying four values per cycle).

To simulate AM, we assume each simulated cycle is 1 ns. When half the
�
� � ��� � � has elapsed, the

pipeline is drained to prepare for execution on the inactive core. Before a core becomes inactive, its

structures should be put into a low-leakage, data-preserving idle state. If a core is powered-off so

that it loses state, the performance penalty often exceeds that provided by the clock speed increase.

In configurations with split D-Caches, the soon-to-be-inactive D-Cache may contain dirty lines

which need to be taken into account. We simulate two policies for handling this condition. In

the naive policy, all dirty lines are written back before execution resumes. We assume this takes

a constant time of 2 cycles per line as the duplicate cores share the same inclusive level 2 cache.

Alternatively, a symmetric multiprocessing (SMP) protocol can be used to transfer lines on demand.

168

The inactive cache participates in the cache coherence protocol to move lines over.

SimPoints [SPHC02] were used to fast forward past benchmark initialization phase and choose

a representative 100 million-cycle section of each program. To further reduce simulation time, a

subset of the SPEC2000 benchmarks [Sta00] was chosen to find the upper and lower bound on

performance change. The integer benchmarks (vpr-route, mcf, perkbmk-perfect, and

gap) include those with the highest and lowest miss rates for reasonably-sized L1 I-Cache and L1

D-Cache as reported by [SC00]. All the SPEC floating point benchmarks tend to have low instruc-

tion cache miss rates; the floating point benchmarks art and lucas are two which reach their

SimPoint relatively quickly and have contrasting D-Cache miss rates. Details of each benchmark’s

performance on our baseline machine are noted in Table 8.7. The benchmarks were compiled with

optimization on an Alpha 21264 with Digital’s C compiler (V5.9-008) and Compaq Fortran (V5.3-

915) [Wea].

8KB Caches 32KB Caches
CPI L1 I$ miss rate L1 D$ miss rate CPI L1 I$ miss rate L1 D$ miss rate

art-110 1.04 0.00 0.33 1.04 0.00 0.32
lucas 1.08 0.00 0.11 1.15 0.00 0.10

gap 0.51 0.01 0.01 0.47 0.00 0.00
p-p 0.58 0.01 0.04 0.55 0.00 0.00
mcf 3.51 0.00 0.22 3.52 0.00 0.21

vpr-route 1.10 0.00 0.11 1.08 0.00 0.06

Table 8.7: Benchmark characteristics. (p-p:perlbmk-perfect)

8.5 Results and Discussion

AM allows one to remove hotspots and cool the die. Alternatively, AM allows the increased sus-

tainable power to be supplied to the chip permitting dynamic voltage scaling and corresponding

increase in clock frequency. However, the clock frequency gain is offset by the architectural migra-

tion overhead. Depending on the particular AM configuration, this overhead comes in the form of

register file copies, additional pipeline drains, new sets of cache write-backs, or stale cache, TLB,

and branch predictor data.

A long AM period favors performance as there are fewer write-backs and pipeline drains. It is

unnecessary to simulate performance with an AM period greater than 200,000 cycles as any over-

head is amortized over the large number of cycles. A short AM period favors thermal considerations,

169

but increases the frequency of overhead-causing events.

art−110 gap lucas mcf perlbmk vpr−rte average
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.1

1.11
1.12
1.13
1.14
1.15
1.16

N
o

rm
al

iz
ed

 C
P

I

Benchmark

8k caches; 200000 cycle pingpong period

baseline
C: i−shared/d−shared
B: i−split/d−shared
A: i−split/d−naive
A: i−split/d−smp
D: i−shared/d−shared

Figure 8-11: CPI with 8KB Caches (1 Cycle Hit Latency)

Figures 8-11 and 8-12 show the architectural performance effect of AM on the two simulated

machines. The policies referred to in Section 8.4 are denoted by shaded bars and labeled in the

format “Machine: I-Cache/D-Cache” (for example, A: i-split/d-naive describes the split I-Cache

of machine A with the naive write-back of the entire data cache upon migration). Shorter peri-

ods were considered (not shown) but have very similar performance characteristics. Architectural

performance is measured in CPI normalized to an architecture without AM.

Although we model a fixed interval, in practice, migration will likely be triggered by thermal

sensors. This should alleviate any problems caused by an application having execution phases

whose period matches that of AM.

The main penalty of AM technique is area increase. Table 8.8 and Table 8.9 show the tradeoff

between area and performance with AM and DVS. Net performance is represented by
� � �
��� � ����� � � �	� �

��� � .

In summary, for the Current case, configuration D is the best choice. With only 18% area

increase, we can increase performance by 14% and maintain the same temperature. Alternatively,

we can cool down the hot spots significantly and save some power at slightly reduced performance

170

art−110 gap lucas mcf perlbmk vpr−rte average
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.1

1.11
1.12
1.13
1.14
1.15
1.16

N
o

rm
al

iz
ed

 C
P

I

Benchmark

32k caches; 200000 cycle pingpong period

baseline
C: i−shared/d−shared
B: i−split/d−shared
A: i−split/d−naive
A: i−split/d−smp
D: i−shared/d−shared

Figure 8-12: CPI with 32KB Caches (2 Cycles Hit Latency)

Configurations A B C D
Normalized area 2.00 1.76 1.41 1.18

Normalized net performance 1.16 1.16 1.14 1.14

Table 8.8: Current case: Effects of AM for area and performance normalized to baseline. 200,000
cycle period for CPI simulation (Figure 8-11 and 8-12) and 200 � s period for clock frequency (Table
8.2) were assumed considering clock frequency is around 1GHz.

due to CPI increase. As for the Future case, configuration D is again the best choice. However, the

performance gain by AM and dynamic voltage scaling is small, so we might prefer to use AM only

to cool down hot spots.

Another way of trading chip area for performance is increasing the size of caches. However, the

IPC gain from a small increase in cache size is relatively tiny if the baseline cache size is already

chosen for near-optimal performance. Furthermore, increasing the cache size can lengthen the clock

period.

The extra power caused by the increased wire length can be another important penalty of AM.

For example, for configuration B, the wire between D-Cache and an execution unit is longer than that

171

Configurations A B C D
Normalized Area 2.00 1.76 1.41 1.18

Normalized Net Performance 1.06 1.04 1.04 1.04

Table 8.9: Future Case: Effects of AM for area and performance normalized to baseline. 200,000
cycle period for CPI simulation (Figure 8-11 and 8-12) and 60 � s period for clock frequency (Table
8.3) were assumed considering clock frequency is around 3.3GHz.

of the baseline. However, we found that the extra power is negligible, in fact, less than 50 mW even

under the worst-case condition: 4 mm increase of 64 top-layer metal wires, as high as 300 fF/mm

wire cap, and as high as 0.2 activity factor.

8.6 Conclusion

We have examined the use of AM, moving computation among multiple replicated units, to reduce

peak junction temperature and improve performance. Using a thermal model that includes the tem-

perature dependence of leakage power, we show that sustainable power dissipation can be increased

by nearly a factor of two for a given junction temperature limit. This increased power capacity can

permit DVS to achieve nearly a 16% clock frequency increase at a 180 nm technology. Cycle loss to

support AM causes only a 2% CPI increase on average. Net performance gain is 14%. We estimate

the minimum area increase necessary for such a change to be 18% to accommodate an additional

register file and execution units. Alternatively, peak die temperature can be reduced by 12.4 � C at

reduced switching and leakage power dissipation. The model predicts that migration intervals of

around 20–200 � s are required to achieve the maximum sustainable power increase.

172

Chapter 9

Conclusions and Future Work

9.1 Summary of Contributions

The main contributions presented in this thesis are:

� Optimal digital system design principles. We claim that there are two basic principles for dig-

ital system optimization in deep submicron technology: energy waste reduction and energy-

delay tradeoff.

� Categorizations of circuit- and architectural-level innovations from the perspective of energy

waste reduction and energy-delay tradeoff. We find that the circuit innovations either tune

transistors’ dimensions, structures, or voltage levels and the architectural innovations are

based on three critical techniques (exploiting parallelism, utilizing predictability, and reduc-

ing energy waste).

� Categorization of leakage reduction techniques. We divide previous approaches to reducing

leakage power into two categories: static and dynamic techniques. We find that critical paths’

leakage dominates after static techniques, which trade delay for lower leakage are applied

to non-critical paths. Dynamic techniques, which dynamically deactivate fast transistors, are

necessary for effective leakage reduction.

� Fine-grain dynamic leakage reduction. We find that leakage energy waste is the most crit-

ical target for energy waste reduction and claim that fine-grain dynamic leakage reduction

(FG-DLR), turning off small pieces for short idle intervals, is the key for successful leakage

reduction. We also find that primary SRAM arrays, fast functional logics, and complex logic

173

arrays are candidate functional units for FG-DLR and that transition energy and delay and

break-even points are important parameters when we compare FG-DLR techniques.

� Leakage Biasing. We introduce a FG-DLR technique, Leakage Biasing (LB) which uses

leakage currents themselves to bias the circuit into the minimum leakage state and has low

transition overheads. We successfully apply LB to the bitline leakage reduction in primary

SRAM arrays (Leakage-Biased Bitlines) with three microarchitectural deactivation policies

and to the domino logic, presenting Leakage-Biased Domino.

� Dynamic Resizing. We introduce an FG-DLR technique, Dynamically Resizing (DR) which

dynamically downsizes transistors on idle paths in a circuit. We apply DR to static CMOS

logics and present Dynamically Resizable CMOS (DRCMOS) logic for FG-DLR.

� Energy reduction through pipelining. We show that energy reduction for high-performance

ASIC systems can be achieved with the same computation throughput and communication

bandwidth by first pipelining logic gates and global wires and then employing other energy-

delay tradeoffs. We find that power reductions from pipelining datapaths are eventually lim-

ited by latch energy overheads.

� Power analysis of on-chip networks. We show that structuring global wires into a network

provides a better environment for global wire optimization (e.g. pipelining). We find that

the energy-efficiency improvement from a dynamically packet-routed network is bounded by

router energy overheads.

� Activity Migration. We present a power density reduction technique, activity migration (AM),

for hot spot removal. With AM, we spread heat by transporting computation to different

locations on the die. We show how AM can be used either to increase the power that can be

dissipated by a given package, or to lower the operating temperature and hence the operating

energy.

9.2 Future Work

The future work that leads on from this work is summarized in three sections: energy waste re-

duction (Section 9.2.1), energy-delay tradeoff (Section 9.2.2), and overcoming thermal limits (Sec-

tion 9.2.3).

174

9.2.1 Energy Waste Reduction

Effects of Process Variation on Leakage Reduction

Process variation is an important non-scalability in deep submicron technology and is getting worse

as technology advances. It leads to large leakage spread as well as delay spread. Leakage reduc-

tion techniques that consider the possible yield loss due to the process variation will be indispens-

able [Aga05].

Gate and BTBT Leakage Reduction

The low oxide thickness gives rise to high electric field, resulting in significant gate oxide tunnel-

ing current. On the other hand, higher doping leads to high electric field across source and drain

junctions, resulting in significant junction BTBT current. In the near future, the gate and junction

BTBT leakages are expected to grow to be comparable to subthreshold leakage [Aga05]. Therefore,

leakage reduction techniques considering all these components will be indispensable.

9.2.2 Energy-Delay Tradeoff

Measuring Energy-Delay Trading Curves of Existing and New Innovations

The energy-delay tradeoffs of many innovations, particularly architectural innovations, are not well

studied yet. Theoretical analysis and measurements through simulating with prototype systems are

necessary to obtain the trading slopes, overheads, effective ranges, and operating regimes of existing

and new innovations. The obtained curves will be used as building blocks for optimal digital system

design.

Optimal-Pipelining for Subthreshold CMOS Circuits

Many applications including medical and wireless applications, require ultra low power dissipation

with low-to-moderate performance (10kHz-100MHz), where subthreshold CMOS circuits are found

the most helpful [Wan02a]. The general concepts of optimal pipelining in this thesis can be easily

applied. The sensitivity to process variation is a substantial pipelining overhead for the subthreshold

CMOS logic in addition to the stage latch overhead [Zha05].

175

Effects of Wire Parameter Variation on Wire Optimization

Wire geometry and material parameter variations and their impacts on long wires’ energy and delay

are increasing rapidly as feature size is shrinking. Wire optimization without considering the effects

of wire parameter variations only results in a suboptimal design.

Low-Power Router Circuit and Architecture

Though packet-routed on-chip networks have many advantages such as scalability and small area

over wire-routed circuits, the fast-growing router power overhead is the major drawback (Chapter 6).

Low-latency and low-power router design is necessary for optimal on-chip packet-routed network

design.

9.2.3 Overcoming Thermal Limit

Activity Migration with Help of Thermal Sensors and OS

For a better utilization of activity migration (AM), the co-operation of temperature sensors and op-

erating system is crucial. The sensors are responsible for identifying the troubled hot spots quickly

and accurately, and the operating system is responsible for migrating computation with minimum

power and performance overheads. AM can be combined with dynamic leakage reduction at the

core-level in a multi-cored architecture and can provide a simple but effective solution for a unified

temperature and leakage management.

176

Bibliography

[AAE00] M. W. Allam, M. H. Anis, and M. I. Elmasry. High-speed dynamic logic styles for

scaled-down CMOS and MTCMOS technologies. In ISLPED, pages 155–160, 2000.

[ACG03] J. Abella, R. Canal, and A. Gonzalez. Power- and complexity-aware issue queue designs.

IEEE Micro, 23:50–58, Sept/Oct 2003.

[Aga05] A. Agarwal et al. Effectiveness of low power dual-Vt designs in nano-scale technologies

under process parameter variations. In ISLPED, 2005.

[And01] M. Anders et al. Robustness of sub-70nm dynamic circuits: analytical techniques and

scaling trends. In Symp. on VLSI Circuits, pages 23–24, 2001.

[And03] H. Ando et al. A 1.3-GHz fifth-generation SPARC64 microprocessor. IEEE JSSC,

38(11):1896–1905, November 2003.

[Asa98] K. Asanović. Vector Microprocessors. PhD thesis, University of California, Berkeley,

1998.

[BA97] D.C. Burger and T.M. Austin. The simplescalar tool set, version 2.0. Technical Report

CS-TR-97-1342, University of Wisconsin, Madison, June 1997.

[Bak90] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addision-Wesley,

1990.

[Bar02] M. Barcella et al. Architecture-level compact thermal R-C modeling. Technical Report

CS-2002-20, Univ. of Virginia Comp. Sci. Dept., Jul. 2002.

[BDH03] L.A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The Google cluster

architecture. IEEE Micro, 23:22–28, Mar/Apr 2003.

177

[BM01] D. Brooks and M. Martonosi. Dynamic thermal management for high-performance mi-

croprocessors. In HPCA, Jan. 2001.

[BM02] K. Banerjee and A. Mehrotra. Power dissipation issues in interconnect performance

optimization for sub-180-nm designs. In Symposium on VLSI circuits, pages 12–15,

June 2002.

[BN71] C. G. Bell and A. Newell. Computer Structures: Readings and Examples. McGraw-Hill,

1971.

[Bro00] D. Brooks et al. Wattch: A framework for architectural-level power analysis and opti-

mizations. In ISCA, pages 83–94, 2000.

[BS00] J. A. Butts and G. S. Sohi. A static power model for architects. In MICRO-33, pages

191–201, December 2000.

[Cal04] B. Calhoun et al. A leakage reduction methodology for distributed MTCMOS. IEEE

JSSC, 39(5):818–826, May 2004.

[CBF00] A. Chandrakasan, W. J. Bowhill, and F. Fox. Design of High Performance Microproces-

sor Circuits. IEEE Press, 2000.

[Cha92] A. Chandrakasan et al. Low-power CMOS digital design. IEEE JSSC, 27(4):473–484,

Apr. 1992.

[Coc02] P. Cocchini. Concurrent flip-flop and repeater insertion for high performance integrated

circuits. In ICCAD, pages 268–273, Nov 2002.

[CP03] X. Chen and L. Peh. Leakage power modeling and optimization in interconnection net-

works. In ISLPED, pages 90–95, 2003.

[CS00] P. Christie and D. Stroobandt. The interpretation and application of Rent’s rule. IEEE

TVLSI, 8(6):639–648, Dec. 200.

[DB99] V. De and S. Borkar. Technology and design challenges for low power and high perfor-

mance. In ISLPED, pages 163–168, 1999.

[Dee02] J. Deeney. Thermal modeling and measurement of large high-power silicon devices with

asymmetric power distribution. In Int’l Symposium on Microelectronics, Sep. 2002.

178

[Dev01] Device Group at UC Berkeley. Predictive technology model. Technical report, PTM,

2001.

[Dho00] A. Dhodapkar et al. TEMPEST: A Thermal Enabled Multi-model Power/performance

ESTimator. In HPCA, Nov. 2000.

[Dob96] D. Dobberpuhl. The design of a high performance low power microprocessor. In

ISLPED, pages 11–16, 1996.

[DT01] W. Dally and B. Towles. Route packets, not wires: On-chip interconection networks. In

DAC, pages 684–689, 2001.

[EP04] N. Eisley and L. Peh. High-level power analysis for on-chip networks. In CASES, Sept.

2004.

[Esp02] R. Espasa et al. Tarantula: A vector extension to the Alpha architecture. In ISCA 29,

pages 281–292, May 2002.

[Fla02] K. Flautner et al. Drowsy caches: Simple techniques for reducing leakage power. In

ISCA 29, pages 148–157, June 2002.

[Gei02] S. Geissler et al. A low-power RISC microprocessor using dual PLLs in a 0.13 � m SOI

technology with copper interconnect and low-k BEOL dielectric. In ISSCC, February

2002.

[Gie97] B. A. Gieseke et al. A 600-MHz superscalar RISC microprocessor with out-of-order

execution. ISSCC, pages 176–177, Feb. 1997.

[Gro96] P. E. Gronowski et al. A 433-MHz 64-b quad-issue RISC microprocessor. IEEE JSSC,

31(11):1687–1696, November 1996.

[Gun01] S. Gunther et al. Managing the impact of increasing microprocessor power consumption.

Intel Journal, 2001.

[Gup03] P. Gupta et al. A high-level interconnect power model for design space exploration. In

ICCAD, pages 551–558, Nov 2003.

[HA02] S. Heo and K. Asanović. Leakage-biased domino circuits for dynamic fine-grain leakage

reduction. In Symp. on VLSI Circuits, pages 316–319, 2002.

179

[HA04a] S. Heo and K. Asanović. Dynamically resizable static CMOS logic for fine-grain leakage

reduction. Technical report, MIT LCS Technical Report, 2004.

[HA04b] S. Heo and K. Asanović. Power-optimal pipelining in deep submicron technology. In

ISLPED, pages 218–223, 2004.

[HA05] S. Heo and K. Asanović. Replacing global wires with an on-chip network: A power

analysis. In ISLPED, 2005.

[Ham00] F. Hamzaoglu et al. Dual-vt SRAM cells with full-swing single-ended bit line sensing for

high-performance on-chip cache in 0.13 � m technology generation. In ISLPED, pages

15 – 19, 2000.

[HBA03] S. Heo, K. Barr, and K. Asanović. Reducing power density through activity migration.

In ISLPED, pages 217–222, 2003.

[HBHA02] S. Heo, K. Barr, M. Hampton, and K. Asanović. Dynamic fine-grain leakage reduction

using leakage-biased bitlines. In ISCA, pages 137–147, 2002.

[Hin01a] G. Hinton et al. The microarchitecture of the Pentium 4 processor. Intel Journal, 2001.

[Hin01b] G. Hinton et al. A 0.18 � m CMOS IA-32 processor with a 4-GHz integer execution unit.

IEEE JSSC, 36(11):1617–1627, Nov. 2001.

[HKA01] S. Heo, R. Krashinsky, and K. Asanović. Activity-sensitive flip-flop and latch selection

for reduced energy. In 19th Conference on Advanced Research in VLSI, Salt Lake City,

UT USA, March 2001.

[HN97] J. P. Halter and F. Najm. A gate-level leakage power reduction method for ultra-low-

power CMOS circuits. In CICC, pages 457–478, 1997.

[Ho 01] R. Ho et al. The future of wires. Proceedings of the IEEE, 89(4):490–504, Apr. 2001.

[HP96] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, 1996.

[HP02] A. Hartstein and T. Puzak. The optimum pipeline depth for a microprocessor. In ISCA

29, pages 7–13, May 2002.

180

[HP03] A. Hartstein and T. Puzak. Optimum power/performance pipeline depth. In MICRO,

Dec. 2003.

[Hri02] M. Hrishikesh et al. The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter

delays. In ISCA 29, pages 14–24, May 2002.

[Hua00] W. Huang et al. A framework for dynamic energy efficiency and temperature manage-

ment. In MICRO, Dec. 2000.

[Int00] International Technology Roadmap for Semiconductors. 2000 update, process integra-

tion, devices, and structures. Technical report, ITRS, 2000.

[Int02] Intel Corp. Intel to introduce new technologies to reduce power consumption of MPUs,

Aug. 2002. http://www.esi-online.com.sg/news/view/default.asp?newId=10.

[Int04] International Technology Roadmap for Semiconductors. 2004 update. Technical report,

ITRS, 2004.

[Inu00] T. Inukai. Boosted Gate MOS (BGMOS): Device/circuit cooperation scheme to achieve

leakage-free giga-scale integration. In CICC, pages 409–412, 2000.

[JSCR02] M. C. Johnson, D. Somasekhar, L. Chiou, and K. Roy. Leakage control with efficient use

of transistor stacks in single threshold CMOS. In IEEE Transactions on VLSI Systems,

February 2002.

[Kan01] K. Kanda et al. Design impact of positive temperature dependence on drain current in

sub-1-V CMOS VLSIs. IEEE JSSC, 36(10):1559–1564, Oct. 2001.

[Kap02] P. Kapur et al. Power estimation in global interconnects and its reduction using a novel

repeater optimization methodology. In DAC, pages 461–466, 2002.

[KC00] J. T. Kao and A. P. Chandrakasan. Dual-threshold voltage techniques for low-power

digital circuits. IEEE JSSC, 35(7):1009–1018, July 2000.

[Kes01] A. Keshavarzi et al. Effectiveness of reverse body bias for leakage control in scaled dual

Vt CMOS ICs. In ISLPED, pages 207–212, August 2001.

[Kha01] B. Khailany et al. Imagine: Media processing with streams. IEEE Micro, 21:35–46,

Mar/Apr 2001.

181

[KHM01] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting generational behavior to

reduce cache leakage power. In ISCA 28, pages 240–251, May 2001.

[Kos01] S. V. Kosonocky et al. Enhanced multi-threshold (MTCMOS) circuits using variable

well bias. In ISLPED, pages 165–169, August 2001.

[KS86] S. R. Kunkel and J. E. Smith. Optimal pipelining in supercomputers. In Proceedings

13th Symposium on Computer Architecture, pages 404–414, Tokyo, Japan, June 1986.

[Kur96] T. Kuroda et al. A 0.9-V, 150-MHz, 10-mW, 4 mm
�
, 2-D discrete cosine transform core

processor with variable threshold-voltage (VT) scheme. IEEE JSSC, 31(11):1770–1779,

November 1996.

[Kur98] T. Kuroda et al. Variable supply-voltage scheme for low-power high-speed CMOS digital

design. IEEE JSSC, 33(3):454–462, March 1998.

[Lee97] W. Lee et al. A 1-V programmable DSP for wireless communications. IEEE JSSC,

32(11):1766–1776, November 1997.

[LH03] W. Liao and L. He. Full-chip interconnect power estimation and simulation considering

concurrent repeater and flip-flop insertion. In ICCAD, pages 574–580, Nov 2003.

[Lim02] C. Lim et al. A thermal-aware superscalar microprocessor. In ISQED, pages 517 – 522,

Mar. 2002.

[LS96] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction. In

MICRO-29, pages 226–237, Dec. 1996.

[Mak98] H. Makino et al. An auto-backgate-controlled MT-CMOS circuit. In Symp. on VLSI

Circuits, pages 42–43, 1998.

[Mar01] D. Marr et al. Hyper-threading technology architecture and microarchitecture. Intel

Journal, 2001.

[Mar04] D. Markovic et al. Methods for true energy-performance optimization. IEEE JSSC,

39(8):1282–1293, Nov. 2004.

[Mat01] S. K. Mathew et al. Sub-500-ps 64-b ALUs in 0.18 � m SOI/bulk CMOS: Design and

scaling trends. IEEE JSSC, 36(11):1636–1646, November 2001.

182

[McP00] T. McPherson et al. 760 MHz G6 S/390 microprocessor exploiting multiple Vt and

copper interconnects. In ISSCC, pages 96–97, 2000.

[Miy00] M. Miyazaki et al. A 1000-MIPS/W microprocessor using speed-adaptive threshold-

voltage CMOS with forward bias. In ISSCC Digest, pages 420–421, 2000.

[Mon96] J. Montanaro et al. A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor. IEEE JSSC,

31(11):1703–1714, November 1996.

[Mul04] R. Mullins et al. Low-latency virtual-channel routers for on-chip networks. In ISCA 31,

pages 188–197, June 2004.

[Mut95] S. Mutoh et al. 1-V power supply high-speed digital circuit technology with

multithreshold-voltage CMOS. IEEE JSSC, 30(8):847–854, August 1995.

[Nar01] S. Narendra et al. Scaling of stack effect and its application for leakage reduction. In

ISLPED, pages 195–200, August 2001.

[Nar02] S. Narendra et al. 1.1V 1GHz communications router with on-chip body bias in 150nm

CMOS. In ISSCC, pages 270–271, 2002.

[Nar03] S. Narendra et al. Forward body bias for microprocessors in 130-nm technology gener-

ation and beyond. IEEE JSSC, 38(5):696–701, May 2003.

[NS00] K. Nose and T. Sakurai. Optimization of Vdd and Vth for low-power and high-speed

applications. In Asia and South Pacific DAC, Jan. 2000.

[Pal97] S. Palacharla et al. Complexity-effective superscalar processors. In ISCA, pages 206–

218, 1997.

[Pie96] R. F. Pierret. Semiconductor Device Fundamentals. Addison Wesley, 1996.

[Pow00] M. Powell et al. Gated Vdd: A circuit technique to reduce leakage in deep-submicron

cache memories. In ISLPED, 2000.

[Pre02] R. P. Preston et al. Design of an 8-wide superscalar RISC microprocessor with simulta-

neous multithreading. In ISSCC Digest and Visuals Supplement, February 2002.

[Rab96] J. M. Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice Hall, 1996.

183

[San97] H. Sanchez et al. Thermal management system for high performance PowerPC micro-

processors. In IEEE Computer Society Int’l Conference, Feb. 1997.

[San03] K. Sankaralingam et al. Exploiting ILP, TLP, and DLP with the polymorphous TRIPS

architecture. In ISCA 30, pages 422–433, June 2003.

[SC00] S. Sair and M. Charney. Memory behavior of the SPEC2000 benchmark suite. Technical

Report RC 21852, IBM, Oct. 2000.

[SC02] E. Sprangle and D. Carmean. Increasing processor performance by implementing deeper

pipelines. In ISCA 29, pages 25–36, May 2002.

[Set95] K. Seta et al. 50% active-power saving without speed degradation using standby power

reduction (SPR) circuit. In ISSCC, pages 318–319, 1995.

[SG83] J. Smith and J. Goodman. A study of instruction cache organizations and replacement

policies. In ISCA 10, pages 132–137, 1983.

[Sgr01] M. Sgroi et al. Addressing the system-on-a-chip interconnect woes through

communication-based design. In DAC, 2001.

[Shi97] S. Shigematsu et al. A 1-V high-speed MTCMOS circuit scheme for power-down appli-

cation circuits. IEEE JSSC, 32(6):861–869, June 1997.

[Ska02a] K. Skadron et al. Control-theoretic techniques and thermal-RC modeling for accurate

and localized dynamic thermal management. In HPCA, Feb. 2002.

[Ska02b] K. Skadron et al. HotSpot: Techniques for modeling thermal effects at the processor-

architecture level. In Int’l Workshop on Thermal Investigations of ICs and Systems, Oct.

2002.

[Ska03] K. Skadron et al. Temperature-aware microarchitecture. In ISCA 30, pages 2–13, June

2003.

[SPHC02] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing

large scale program behavior. In ASPLOS, Oct. 2002.

[Sri02] V. Srinivasan et al. Optimizing pipelines for power and performance. In MICRO, Nov.

2002.

184

[SSH99] I. Sutherland, R. F. Sproull, and D. Harris. Logical Effort: Designing Fast CMOS Cir-

cuits. Morgan Kaufmann, 1999.

[Sta00] Standard Performance Evaluation Corporation. CPU2000, 2000.

[Sto95] V. Stojanovic et al. Energy-delay tradeoffs in combinational logic using gate sizing and

supply voltage optimization. In ISSCC, pages 318–319, 1995.

[TA00] J. Tseng and K. Asanović. Energy-efficient register access. In Proc. of the 13th Sympo-

sium on Integrated Circuits and Systems Design, Manaus, Brazil, September 2000.

[TA03] J. H. Tseng and K. Asanović. Banked multiported register files for high-frequency su-

perscalar microprocessors. In ISCA 30, June 2003.

[Tak98] M. Takahasi et al. A 60-mW MPEG4 video codec using clustered voltage scaling with

variable supply-voltage scheme. IEEE JSSC, 33(11):1772–1778, November 1998.

[Tsc03] J. W. Tschanz et al. Dynamic sleep transistor and body bias for active leakage power

control of microprocessors. IEEE JSSC, 38(11):1838–1845, November 2003.

[Usa98] K. Usami et al. Automated low-power technique exploiting multiple supply voltages

applied to a media processor. IEEE JSSC, 33(3):463–471, March 1998.

[VZA00] L. Villa, M. Zhang, and K. Asanović. Dynamic zero compression for cache energy

reduction. In MICRO-33, 2000.

[Wan02a] A. Wang et al. Optimal supply and threshold scaling for subthreshold CMOS circuits.

In International Symposium on VLSI, pages 5–9, 2002.

[Wan02b] H. Wang et al. Orion: A power-performance simulator for interconnection networks. In

MICRO, pages 294–305, Nov. 2002.

[Wan02c] H. Wang et al. A power model for routers: Modeling Alpha 21364 and infiniband routers.

IEEE Micro, 23(1):26–35, Jan/Feb 2002.

[Wea] C. Weaver. SPEC2000 Alpha binaries (little endian). http://www.eecs.umich.edu/

˜chriswea/benchmarks/spec2000.html.

[Wei98] L. Wei et al. Design and optimization of low voltage high performance dual threshold

CMOS circuits. In DAC, pages 489–494, 1998.

185

[Wit01] E. Witchel et al. Direct addressed caches for reduced power consumption. In MICRO-34,

pages 124–133, Dec. 2001.

[Yan98] S. Yang et al. Scaling and integration of high performance interconnects. In MRS Sym-

posium on Advanced Interconnect, Apr. 1998.

[YBD98] Y. Ye, S. Borkar, and V. De. A technique for standby leakage reduction in high-

performance circuits. In Symp. on VLSI Circuits, pages 40–41, 1998.

[Ye 02] T. Ye et al. Analysis of power consumption on switch fabrics in network routers. In

DAC, pages 524–529, 2002.

[ZA05] M. Zhang and K. Asanović. Victim replication: Maximizing capacity while hiding wire

delay in tiled chip microprocessors. In ISCA 32, June 2005.

[Zha05] B. Zhai et al. Analysis and mitigation of variability in subthreshold design. In ISLPED,

2005.

[Zyu00] V. Zyuban. Inherently Lower-Power High-Performance Superscalar Architecture. PhD

thesis, Notre Dame, 2000.

186

