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1 Introduction

Power consumption is emerging as a key factor limit-
ing computational performance in both mobile and teth-
ered systems. Although there has been significant progress
in low-power circuit design and low-power CAD and some
work in low-power microarchitectures, there has been lit-
tle work to date at the level of instruction set architecture
(ISA) design for low power computing.

Modern ISAs such as RISC or VLIW are based on
extensive research into the effects of instruction set de-
sign on performance, and provide a purelyperformance-
oriented hardware-software interface. These instruction
sets avoid features that would impede a high-performance
implementation. They also avoid providing alternate ways
to perform the same task unless it will increase perfor-
mance significantly. Implementations of these ISAs per-
form many energy-consuming microarchitectural opera-
tions during execution of each user level instruction and
these dominate total power dissipation. For example, when
executing an integer add instruction on a simple RISC pro-
cessor only 1/50th of the total energy consumption is due
to the adder circuitry itself. The rest is dissipated by cache
tag and data accesses, TLBs, register files, pipeline regis-
ters, and pipeline control logic. Modern machine pipelines
have been refined to the point where most of the additional
microarchitectural work is performed in a pipelined or par-
allel manner that does not affect the throughput or user-
visible latency of a “simple” add instruction. Because their
performance effects can be hidden, there is no incentive
to expose these constituent micro-operations in a purely
performance-oriented hardware-software interface —their
energy consumption is hidden from software.

This short paper reports on ongoing work in the
SCALE (Software-Controlled Architectures for Low-
Energy) project at MIT, where we are developing new
energy-exposedhardware-software interfaces that give
software fine-grain control over energy consumption. The
key idea is to reward compile-time analysis with run-time
energy savings. Our designs provide software with alterna-
tive methods of executing an operation, possibly with the
same performance, but where greater compile-time knowl-

edge can be used to deactivate unnecessary portions of the
machine microarchitecture.

We are initially focusing on integer applications with
complex control flow as we believe this type of code will
become the energy bottleneck in future embedded sys-
tems. Other highly regular and/or parallel computations
can be readily mapped to energy-efficient computing struc-
tures such as vector/SIMD units [1], reconfigurable units
[5], or application-specific coprocessors [3]. The follow-
ing section gives examples of the techniques we are cur-
rently exploring. All simulation numbers we report are
for a MIPS R3000-like processor running gcc-compiled
SPECint95 binaries. Section 3 discusses the technology
we are developing for more sophisticated processor energy
accounting, and Section 4 concludes.

2 Example Energy-Exposed ISA Techniques

Tag-Unchecked Loads and Stores:In some cases,
static analysis can determine that a memory access will al-
ways hit in the cache. For these cases, we provide versions
of load and store instructions that do not check cache tags.
Our initial design only allows a tag-unchecked load/store
to the same cache line as the previous load/store executed.
Apart from reducing energy from tag matching (which
dominates total energy for associative caches), we do not
need to generate a full memory address but only sufficient
low-order bits to index within one cache line. A single
control bit remembers any interrupts since the last memory
access, in which case a tag-unchecked instruction is exe-
cuted as a regular tag-checked access.

Register File Hierarchy: Fetching register operands
consumes a large portion of processor energy. We are in-
vestigating a four-level register file hierarchy as a way to
reduce this energy. The highest level is the bypass network.
Our simulations show that 25–40% of regfile reads can be
avoided because values will be supplied by the bypass net-
work. The second level exposes the ALU input latches to
software. This creates a hybrid accumulator-RISC archi-
tecture that allows software to avoid regfile writes in the
frequent case that a value’s lifetime only extends from one
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instruction to the next. The third level is obtained by split-
ting the register file into the most popular 8 registers and
the remaining 23 real registers (which form the last level
in the hierarchy). Our simulations show that these 8 most
popular registers account for 80–90% of all regfile accesses
in SPECint95. This split is implemented with a transmis-
sion gate on the bitlines which adds slightly to the access
time and energy for the fourth level but halves access en-
ergy for the third level. The bitline split is invisible to exist-
ing software, but a smart register allocator can try to keep
frequently accessed values in the low-energy registers.

Energy-Reduced Instruction Alternatives: We have
found that a high-energy instruction is often used to per-
form a trivial task because it is fast or convenient. As
an example, a fast shifter consumes considerable energy
per operation because it drives a large collection of wires
stretching across the datapath [4]. Yet, NOPs are encoded
as shift instructions in the MIPS instruction set and com-
prise around 4% of dynamic instructions in our SPECint95
traces. Around 3% of all dynamic instructions are shift left
by one, accounting for over half of all left shifts. Also,
around a third of right shifts use a shift by 31 to extract the
sign bit. In a purely performance-oriented ISA there is no
incentive to provide alternative forms because a fast shifter
can complete in a single cycle, but in an energy-conscious
ISA we might consider alternatives that perform these fre-
quent cases with less energy than a full shift.

Explicit Exception State Management: Current
pipelined machines invest significant energy in preserv-
ing precise exception semantics. Instruction results are
buffered before being committed in order, requiring reg-
ister rename logic to find the correct value for new instruc-
tions. Even a simple five stage MIPS pipeline has a by-
pass network that effectively performs these functions. In
addition, other information such as PC and faulting mem-
ory addresses must be preserved in the pipeline until the
exception can be serviced. We are exploring the use of
relaxed exception semantics to reduce implementation en-
ergy. Here a compiler indicates where and when it requires
exception information to be preserved by the machine. In
other cases, the compiler generates code that can recon-
struct machine state in the event of an exception.

3 Processor Energy Accounting

Others have noted that energy consumption in a micro-
processor is split across many different circuit blocks, com-
plicating the task of reducing energy [2]. However, we’ve
observed that several of the above changes at the ISA level
cause energy savings that ripple through the microarchitec-
ture. For example, tag-unchecked load/stores can be used
to reduce energy in address generation and TLB access,

as well as the cache itself. The accumulator-RISC hybrid
saves energy in the register file and writeback pipeline, but
can also save instruction fetch energy by enabling a more
compact instruction encoding. To find other example tech-
niques that have similar globally beneficial effects, we be-
lieve we must perform processor energy accounting at a
level higher than microarchitectural circuit blocks. We are
developing a fast energy-performance simulation frame-
work that allows energy consumption to be attributed to
various higher level entities such as procedure calling, ex-
ception state management, and operand accesses, as well
as to individual instructions and circuit blocks.

4 Summary and Future Work

The SCALE project is working towards low-power pro-
cessors with an integrated approach spanning compiler,
ISA, microarchitectural, and circuit-level designs. We aim
to demonstrate an initial prototype “Pekoe” within the next
year which should provide comparable performance to a
MIPS R3000 but at much lower energy by adopting some
of the techniques described above.
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