
Vector Processors for Energy-Efficient Embedded Systems

Daniel Dabbelt, Colin Schmidt, Eric Love, Howard Mao, Sagar Karandikar, and Krste Asanovic
University of California: Berkeley

{dpd,colins,ericlove,zhemao,sagark,krste}@eecs.berkeley.edu

ABSTRACT
High-performance embedded processors are frequently de-
signed as arrays of small, in-order scalar cores, even when
their workloads exhibit high degrees of data-level parallelism
(DLP). We show that these multiple instruction, multiple
data (MIMD) systems can be made more efficient by instead
directly exploiting DLP using a modern vector architecture.
In our study, we compare arrays of scalar cores to vector
machines of comparable silicon area and power consump-
tion. Since vectors provide greater performance across the
board - in some cases even with better programmability - we
believe that embedded system designers should increasingly
pursue vector architectures for machines at this scale.

1. INTRODUCTION
Modern computing platforms of all sizes must meet de-

mands for improved energy efficiency even as they attempt
to supply increasingly sophisticated functionality. Since clock
frequencies can no longer increase due to the end of Dennard
scaling, architects have been forced to expose some degree of
parallelism to the user in order to continue to provide more
computational throughput. As mobile architectures run ever
more complex algorithms on larger amounts of data, energy
efficiency will continue to be an important concern in the
future.

The simplest and most popular way to exploit parallelism
in embedded systems today is to take an energy-efficient,
lightweight in-order core and replicate it many times to pro-
duce an array of processors that operate independently. This
multiple instruction, multiple data (MIMD) paradigm has
allowed for continued performance scaling, but is far from
optimal. Most of the software being run on these devices -
from DSP code in radio controllers to convolutional neural
networks in more recent internet-of-things (IoT) endpoints
- consists primarily of numerically-intensive, highly data-
parallel kernels. As a result, the multiple cores in a MIMD
array tend to execute copies of the same instructions across
multiple data elements. In power and area terms, this is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MES ’16 June 19-19, 2016, Seoul, Republic of Korea
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4262-9/16/06.

DOI: http://dx.doi.org/10.1145/2934495.2934497

extremely wasteful, since the instruction fetch mechanism is
one of the most expensive components of a general-purpose
processor.

The obvious way to reduce this waste is to execute a sin-
gle instruction on multiple data items. However SIMD, or
packed SIMD as it is generally understood, is also an in-
efficient architecture for embedded devices. SIMD is nor-
mally implemented by instantiating several ALUs and pro-
viding instructions that supply multiple source operands to
these ALUs simultaneously, which then execute in lock-step.
SIMD ISAs usually include a different opcode for every pos-
sible length of input vector. As a result, they are difficult
to program and adding more ALUs cannot improve per-
formance unless software is rewritten to take advantage of
the microarchitectural improvements. Worse, they impose
a heavy area burden on embedded processors, because they
require replicating compute resources for each element of
the longest supported vector type. However, these copies
will necessarily remain idle during instructions that use less
than the full width. Furthermore, SIMD architectures can-
not amortize the overhead of instruction fetch over as many
elements as a vector machine since the degree of amortiza-
tion is tied directly to the amount of duplication.

Vector processors are a much more effective design for
exploiting DLP. In addition to spatial replication of compute
resources, vector processors can provide temporal reuse of a
decoded instruction by configuring a single ALU to execute
the instruction across multiple data elements over a number
of cycles. Moreover, they can hide the actual number of
available compute units as a microarchitectural parameter,
allowing software to simply specify the amount of work to be
done. This often permits a single binary to execute at near-
optimal efficiency on cores with varying levels of parallelism.

Though vector processors are commonly associated with
Cray-sized supercomputers, their flexibility also enables them
to scale down to embedded computers. The contribution of
this paper is to show that the vector paradigm is an at-
tractive alternative to MIMD in the embedded space. We
compare mobile processor-sized arrays of in-order cores to
single- and multi-lane vector designs of similar silicon area
and power consumption.

More specifically, we compare Hwacha, a modern vector
core based on the vector-fetch [12] paradigm to an array
of single-issue, in-order RISC-V Rocket [8] cores. We per-
formed cycle-accurate comparisons between all designs by
simulating complete RTL for each processor. Both types of
processors were instantiated in Rocket Chip [2], an SoC gen-
erator that supplies core-to-core and core-to-memory inter-

http://dx.doi.org/10.1145/2934495.2934497


connect and I/O peripherals. Rocket, Hwacha, and Rocket
Chip are all written in the Chisel [3] HDL, an object-oriented,
functional hardware design language embedded in Scala and
targetted at producing reusable, highly-parameterizable hard-
ware generator libraries. We synthesized all designs in a
popular, high-performance 28nm mobile-oriented process to
obtain area and timing measurements. In the interest of
time, no layout was done and gate-level activities were not
taken into account when calculating power numbers. How-
ever, our estimates are validated by measurements taken
from real silicon that has been fabricated in the past from
the same RTL.

1.1 Related Work
Energy efficient mobile processors are a very hotly con-

tested area, both in academia and industry; therefor it is
be impossible to provide an exhaustive list of all related
projects. A few representative projects are listed below:

• Rigel[5] explored a highly parallel MIMD architecture
that might compete with high performance GPUs in
the 10-100W range. Our own baseline MIMD proces-
sor, Rocket, is significantly less scalable than the Rigel
architecture, but since we only evaluate the baseline for
smaller core counts, these differences should be negli-
gible. Rocket’s microarchitecture is similar to Rigel’s
and thus is comparable to many other MIMD designs
in this space.

• The Maven[9] project provides another comparison of
vector-thread machines with a host of different archi-
tectural patterns, including MIMD architectures. It
introduces the vector-thread architectural pattern; we
later summarize in detail how traditional vector archi-
tectures differ from the Hwacha’s vector-fetch model.

• A whole host of embedded processors focus on short
integer performance: for example[4][6][7]. This work
focuses on floating-point performance. Since floating-
point operations are significantly more expensive than
short integer operations, evaluations of systems focused
on short integer operations cannot be extrapolated to
systems focused on floating-point operations.

• ARM’s Mali GPU is a commercial implementation of
an explicitly data-parallel mobile processor. Since it is
the most closely-related product to our Hwacha vector-
fetch architecture, a detailed comparison of the two
systems has been performed to demonstrate that Hwacha
is competitive with modern commercial multicore em-
bedded systems [11].

The contribution of this paper is to dispel the myth that
MIMD processor arrays are always the best means of ex-
ploiting parallelism in embedded devices, and that vector-
and other data-parallel architectures are too costly for such
use cases.

2. DATA-PARALLEL PROGRAMMING
MODELS

DLP is pervasive in signal processing, computer vision,
and machine learning workloads that constitute much of the
processing demand of modern mobile systems. In fact, many
of these applications can be structured as data-flow graphs

of small, data-parallel kernels such as DGEMM, FFT, sten-
cils, filters, and others. As a result, very few computational
cycles are spent in branchy integer control code, and the
need to exploit instruction-level parallelism is correspond-
ingly small. Exploiting DLP, however, is crucial to attaining
the low-power operating regime required by these devices’
limited battery capacities, so we now describe the way in
which our data-parallel engine exposes DLP architecturally.

2.1 Vector-Fetch: The Hwacha Programming
Model

The Hwacha programming model is best explained by con-
trast with other, popular data-parallel programming models.
As a running example, we use a conditionalized SAXPY ker-
nel, CSAXPY. Figure 1 shows CSAXPY expressed in C as
both a vectorizable loop and as a SPMD kernel. CSAXPY
takes as input an array of conditions, a scalar a, and vectors
x and y; it computes y += ax for the elements for which
the condition is true.

The simplest way to exploit DLP is, as described pre-
viously, to use a MIMD architecture targeted by a single
program, multiple data (SPMD) programming model. The
SPMD implementation of CSAXPY is hardly different from
the original serial loop, containing only a little more logic
to divide inputs between all available threads. This is thus
the easiest programming model to target, as each thread can
operate as if on a general-purpose CPU.

Figure 2a shows CSAXPY kernel mapped to a hypothet-
ical packed SIMD architecture, similar to Intel’s SSE and
AVX extensions. This SIMD architecture has 128-bit regis-
ters, each partitioned into four 32-bit fields. As with other
packed SIMD machines, ours cannot mix scalar and vec-
tor operands, so the code begins by filling a SIMD register
with copies of a. To map a long vector computation to
this architecture, the compiler generates a stripmine loop,
each iteration of which processes one four-element vector.
In this example, the stripmine loop consists of a load from
the conditions vector, which in turn is used to set a predi-
cate register. The next four instructions, which correspond
to the body of the if-statement in Figure 1a, are masked by
the predicate register1. Finally, the address registers are in-
cremented by the SIMD width, and the stripmine loop is re-
peated until the computation is finished—almost. Since the
loop handles four elements at a time, extra code is needed to
handle up to three fringe elements. For brevity, we omitted
this code; in this case, it suffices to duplicate the loop body,
predicating all of the instructions on whether their index is
less than n.

The most important drawback to packed SIMD architec-
tures lurks in the assembly code: the SIMD width is ex-
pressly encoded in the instruction opcodes and memory ad-
dressing code. When the architects of such an ISA wish
to increase performance by widening the vectors, they must
add a new set of instructions to process these vectors. This
consumes substantial opcode space: for example, Intel’s newest
AVX instructions are as long as 11 bytes. Worse, application
code cannot automatically leverage the widened vectors. In
order to take advantage of them, application code must be

1We treat packed SIMD architectures generously by assum-
ing the support of full predication. This feature is quite
uncommon. Intel’s AVX architecture, for example, only sup-
ports predication as of 2015, and then only in its Xeon line
of server processors.



recompiled. Conversely, code compiled for wider SIMD reg-
isters fails to execute on older machines with narrower ones.
As we later show, this complexity is merely an artifact of
poor design.

A key feature of Cray-style vector architectures is the vec-
tor length register (VLR), which represents the number of
vector elements that will be processed by the vector instruc-
tions, up to the hardware vector length (HVL). Software ma-
nipulates the VLR by requesting a certain application vec-
tor length (AVL); the vector unit responds with the smaller
of the AVL and the HVL. As with packed SIMD architec-
tures, a stripmine loop iterates until the application vector
has been completely processed. But, as Figure 2b shows,
the difference lies in the manipulation of the VLR at the
head of every loop iteration. The primary benefits of this
architecture follow directly from this code generation strat-
egy. Most importantly, the scalar software is completely
oblivious to the hardware vector length: the same code ex-
ecutes correctly and with maximal efficiency on machines
with any HVL. Second, there is no fringe code: on the final
trip through the loop, the VLR is simply set to the length
of the fringe.

The Hwacha baseline architecture builds on the tradi-
tional vector architecture, with a key difference: the vec-
tor operations have been hoisted out of the stripmine loop
and placed in their own vector fetch block. This allows the
scalar control processor to send only a program counter to
the vector processor. The control processor then completes
the stripmining loop faster and is able to continue doing
useful work, while the vector processor is independently ex-
ecuting the vector instructions.

Like the traditional vector machine, Hwacha has vector
data registers (vvn) and vector predicate registers (vpn),
but it also has two flavors of scalar registers. These are the
shared registers (vsn), which can be read and written within
a vector fetch block, and address registers (van), which are
read-only within a vector fetch block.

Figure 2c shows the CSAXPY code for the Hwacha ma-
chine. The structure of the stripmine loop is similar to the
traditional vector code, but instead of explicitly executing
the vector instructions, this stripmine loop simply moves
the array pointers to the vector unit, then executes a vec-
tor fetch instruction, causing the Hwacha unit to execute
the vector fetch block. The code in the vector fetch block is
equivalent to the vector code in Figure 2b, with the addition
of a vstop instruction, signifying the end of the block.

3. EXPERIMENTAL METHODOLOGY
We validate our claims about the effectiveness of vec-

tor designs by configuring the Rocket Chip paramaterizable
system-on-chip generator to emit two kinds of processors,
both of which are described below.

3.1 MIMD Baseline
Our baseline MIMD microarchitecture consists of four or

more instances of the Rocket single-issue, in-order pipeline,
which is shown in Figure 3. Each Rocket core contains split
16KiB L1 data and instruction caches, a floating point unit,
and a coherent interface to a shared multi-banked L2 cache.

3.2 Hwacha
Hwacha is designed as a decoupled co-processor that at-

taches to the Rocket in-order core. Configuration instruc-

Rocket

I-Cache

L2 L2

PC

Frontend

Branch
Prediction

Integer
Register

File

Floating
Point

Register
File

D-Cache

Memory W
ri
te
b
a
ck

Figure 3: Rocket 5-stage in-order pipeline

tions and vector fetch blocks are pushed to Hwacha’s com-
mand queue for execution. Hwacha consists of one or more
replicated vector lanes assisted by a single scalar unit. A
scheduler for the entire machine distributes the work to each
of the lanes, which individually schedule their own execu-
tion, allowing lanes to slip with respect to each other. Lanes
are composed of: a banked register file, for vector and predi-
cate registers; pipelined functional units, including four dou-
ble precision FMAs; and a memory interface to the L2, with
a TLB for virtual memory support[1]. Extensive decoupling
enables the microarchitecture to effectively tolerate long and
variable memory latencies with an in-order design, which is
detailed in [10].

3.3 Memory System
In addition to generating core arrays, Rocket Chip is capa-

ble of generating an interconnect, L2 cache, and connection
to an array of memory controllers. In order to perform a
fair comparison between the baseline and Hwacha, similar
memory system configurations were generated for both the
baseline MIMD architecture and the proposed Hwacha vec-
tor architecture. Figure 5 shows the memory system for the
MIMD-8 configuration evaluated in this paper.

3.4 Benchmarks
In order to compare the performance of Hwacha with the

baseline MIMD microarchitecture we use a suite of 5 mi-
crobenchmarks designed to span the range of common com-
putations that embedded processors must perform. These
benchmarks were hand-tuned for each of the configurations,
both MIMD and vector, under evaluation

• vvadd: A 1000-element, double-precision vector-vector
addition. This benchmark has no contention, but has
a low arithmetic intensity.

• dgemm: A 32 × 32, double-precesion matrix multipli-
cation. Deep neural networks heavily rely on good
matrix multiplication performance.

• mask-sfilter: A masked stencil filter. This is rep-
resentative of common image processing applications,
which are frequently run on high-performance embed-
ded processors. This benchmark was written in OpenCL
and compiled for each configuration under evaluation.

• csaxpy: A conditional SAXPY. Filters with condi-
tional elements are common in image processing ap-
plications This serves to demonstrate the performance



void csaxpy(size_t n, bool cond[],
float a, float x[], float y[])

{
for (size_t i = 0; i < n; ++i)
if (cond[i])
y[i] = a*x[i] + y[i];

}
(a) vectorizable loop

void csaxpy_spmd(size_t n, size_t threads, size_t tid,
bool cond[], float a, float x[], float y[])

{
const size_t chunk_sz = n / threads;
const size_t max = MIN((tid+1)*chunk_sz, n);
for(size_t i = tid * chunk_sz; i < max; i++)
if (cond[i])
y[i] = a*x[i]+y[i];

}
(b) SPMD kernel

Figure 1: Conditional SAXPY kernels written in C. The SPMD kernel launch code for (b) is omitted for
brevity. 1 csaxpy_simd:

2 slli a0, a0, 2
3 add a0, a0, a3
4 vsplat4 vv0, a2
5 stripmine:
6 vlb4 vv1, (a1)
7 vcmpez4 vp0, vv1
8 !vp0 vlw4 vv1, (a3)
9 !vp0 vlw4 vv2, (a4)

10 !vp0 vfma4 vv1, vv0, vv1, vv2
11 !vp0 vsw4 vv1, (a4)
12 addi a1, a1, 4
13 addi a3, a3, 16
14 addi a4, a4, 16
15 bleu a3, a0, stripmine
16 # handle edge cases
17 # when (n % 4) != 0 ...
18 ret

(a) SIMD

1 csaxpy_tvec:
2 stripmine:
3 vsetvl t0, a0
4 vlb vv0, (a1)
5 vcmpez vp0, vv0
6 !vp0 vlw vv0, (a3)
7 !vp0 vlw vv1, (a4)
8 !vp0 vfma vv0, vv0, a2, vv1
9 !vp0 vsw vv0, (a4)

10 add a1, a1, t0
11 slli t1, t0, 2
12 add a3, a3, t1
13 add a4, a4, t1
14 sub a0, a0, t0
15 bnez a0, stripmine
16 ret

(b) Traditional Vector

1 csaxpy_lov:
2 vsetcfg ...
3 vmss vs0, a2
4 stripmine:
5 vsetvl t0, a0
6 vmsa va0, a1
7 vmsa va1, a3
8 vmsa va2, a4
9 vf csaxpy_work

10 add a1, a1, t0
11 slli t1, t0, 2
12 add a3, a3, t1
13 add a4, a4, t1
14 sub a0, a0, t0
15 bnez a0, stripmine
16 ret
17

18 csaxpy_work:
19 vlb vv0, (va0)
20 vcmpez vp0, vv0
21 !vp0 vlw vv0, (va1)
22 !vp0 vlw vv1, (va2)
23 !vp0 vfma vv0, vv0, vs0, vv1
24 !vp0 vsw vv0, (va2)
25 vstop

(c) Hwacha

Figure 2: CSAXPY kernel mapped to data-parallel architectures. Pseudo-
assembly implements kernel in Figure 1 for (a) packed SIMD, (b) traditional
vector, and (c) Hwacha. In all implementations, a0 holds variable n, a1 holds
pointer cond, a2 holds scalar a, a3 holds pointer x, and a4 holds pointer y.

degradation the various microarchitectures experience
in the presence of control flow divergence.

• histogram: A histogram with 1000 bins. This kernel is
bound by contention in the cache, and serves to char-
acterize the performance of each design in the presence
of irregular memory access patterns.

3.5 Simulated Design Configurations
We simulated Hwacha and the baseline MIMD architec-

ture at several different design points, and compared con-
figurations that have the same functional unit bandwidth.
Since one Hwacha lane can perform up to 8 double-precision
operations per cycle (as 4 FMAs), we compare it against a
4-core MIMD machine, which offers the same peak through-
put. In both cases, we also use the same memory system,
consisting of a 256KiB L2 cache (arranged into 4 banks) and
a single channel of LPDDR3 memory.

We maintained the equality of functional unit bandwidth
between MIMD and vector designs as we scaled to larger
configurations. Thus, we compare 2-lane Hwacha against an
8-tile MIMD machine, and 4 vector lanes against 16 scalar
cores. We also chose to scale memory bandwidth upwards,
adding an additional LPDDR3 channel for each vector lane
or group of four cores. This is consistent with the trend
in mobile devices to scale memory bandwidth aggressively
with area via a combination of flip chip and die stacking. A
separate paper provides a more detailed comparison of these
designs to extant mobile SoCs [11].

3.6 Performance

The Rocket Chip system-on-chip generator was extended
to generate all of the configurations under evaluation in this
paper. Rocket Chip generates working, synthesizeable RTL,
which greatly simplifies the evaluation methodology: cycle-
accurate simulation data can be obtained for the bench-
marks from the same RTL as was used to generate VLSI
synthesis results. All benchmarks were run to completion
on all evaluated platforms under cycle-accurate RTL simu-
lation.

In addition to producing cycle-accurate runtime numbers,
the RTL generated by Rocket Chip for each configuration
was synthesized Synopsys’ Design Compiler to produce gate-
level clock speed, area, and power numbers. Results were
produced using Synopsys’ reference methodology for a popu-
lar commercial 28nm high-performance mobile process, with
memories compiled using the foundry’s SRAM compiler.

While the authors acknowledge that measurements taken
from synthesis and before place-and-route can be wildly in-
accurate, we believe that the clock frequency and area num-
bers are reasonable for the presented Hwacha configurations
and are optimistic for the baseline MIMD architecture. Sim-
ilar configurations to those listed in the paper have been
implemented in silicon at similar area and clock frequency
targets by both the authors and others on both this and
similar processes[13].

4. RESULTS
Table 1 reports the execution times in cycles for each

benchmark, while Table 2 gives the VLSI synthesis results



Design MIMD-4 Vector-1 MIMD-8 Vector-2 MIMD-16 Vector-4
vvadd [cycles] 4573 2354 2803 1714 2500 1331

dgemm [cycles] 51139 16411 37987 11499 26074 9147
mask-sfilter [cycles] 38441 22195 21373 18401 13324 18306

csaxpy [cycles] 47552 18213 23353 11586 14358 6543
histogram [cycles] 528983 544913 230787 245010 238078 104090

Table 1: Cycle Time Results

Design MIMD-4 Vector-1 MIMD-8 Vector-2 MIMD-16 Vector-4
Clock Frequency [GHz] 1.09 0.95 1.08 0.90 0.92 0.85

Logic Area [mm2] 0.237 0.354 0.481 0.642 1.026 1.226
Macro Area [mm2] 1.164 1.290 2.322 2.387 4.780 4.530

Full Design Area [mm2] 1.565 1.861 3.163 3.395 6.523 6.414
Full Design Power [mW] 162 172 332 275 738 481

Table 2: Synthesis Results

Hwacha

SchedulerCommand Queue
ControlI-Cache

Vector Length

E
xe

cu
te

a
t 

P
C

C
o
n
fi
g

u
re

Le
n
g

th

S
e
t

R
e
g

is
te

r

R
o
ck

e
t

Register File
Bank
Bank

Bank
Bank

Bank

Register File
Bank
Bank

Bank
Bank

Bank

Register File
Bank
Bank

Bank
Bank

Bank

Register File
Bank
Bank

Bank
Bank

Bank

Memory Unit TLB

L2

Lane

C
ro

ss
b
a
r

C
ro

ss
b
a
r

Figure 4: A 1 lane, 4 bank Hwacha vector unit

Coherence-Side Interconnect

Bank

M
e
ta

d
a
ta

D
a
ta

MSHRMSHR

Memory-Side Interconnect

Bank

M
e
ta

d
a
ta

D
a
ta

MSHRMSHR

Bank

M
e
ta

d
a
ta

D
a
ta

MSHRMSHR

Bank

M
e
ta

d
a
ta

D
a
ta

MSHRMSHR

DRAM

Bank

M
e
ta

d
a
ta

D
a
ta

MSHRMSHR

Memory-Side Interconnect

Bank

M
e
ta

d
a
ta

D
a
ta

MSHRMSHR

Bank

M
e
ta

d
a
ta

D
a
ta

MSHRMSHR

Bank

M
e
ta

d
a
ta

D
a
ta

MSHRMSHR

DRAM

Core Core Core Core Core Core Core Core

Figure 5: The MIMD-8 configuration’s memory sys-
tem

for each reference platform. To compare our design points,
Figure 6a depicts the normalized absolute execution time
for each of our benchmarks on each reference design point
relative to the baseline 4-core MIMD machine. Recall that
the MIMD-4 configuration has roughly equivalent hardware
resources to the single-lane Vector-1 design, while MIMD-8
matches Vector-2, and MIMD-16 matches Vector-4. Across
the board, resource-matched vector designs outperform their
MIMD counterparts. In fact, for highly data-parallel kernels
like VVADD and DGEMM, even the single-lane vector unit
outperforms all MIMD designs. Figure 6b shows the total
energy consumption of each benchmark normalized to the
energy usage of MIMD-4. Although the larger MIMD de-
signs provide performance scaling as compared to MIMD-4,
they all increase overall energy use. The single-lane vector
design, on the other hand, nearly always uses less energy
than all of the MIMD designs.

5. CONCLUSIONS
Despite their popular association with high-area, high-

power devices like GPUs and out-of-order superscalar SIMD
extensions, data parallel accelerators are also suitable and
even optimal for power-constrained, limited-area embedded
processor designs. In particular, classic Cray-style temporal



vvadd dgemm mask_sfilter csaxpy histogram
0.0

0.2

0.4

0.6

0.8

1.0
Normalized Time

mimd 4
mimd 8
mimd 16
vector 1
vector 2
vector 4

(a) Execution Time Normalized to MIMD-4

vvadd dgemm mask_sfilter csaxpy histogram
0.0

0.5

1.0

1.5

2.0

2.5
Normalized Energy

mimd 4
mimd 8
mimd 16
vector 1
vector 2
vector 4

(b) Total Energy Normalized to MIMD-4

vector processors can be built at small sizes, and substan-
tially outperform multicore MIMD arrays of equivalent area
on workloads of interest to mobile application developers.
They do this in spite of their flexible programming model,
which can accommodate a much wider variety of codes than
fixed-function or even SIMD-based accelerators. We have
shown, through synthesis and simulation of RTL for com-
plete MIMD and vector machines validated against fabri-
cated silicon, that vector extensions really are feasible in
tight area and power budgets, and that they are an attrac-
tive competitor to arrays of in-order cores. We hope design-
ers will consider this approach for their future products.

6. ACKNOWLEDGEMENTS
Research partially funded by DARPA Award Number HR0011-

12-2-0016, the Center for Future Architecture Research, a
member of STARnet, a Semiconductor Research Corpora-
tion program sponsored by MARCO and DARPA, and AS-
PIRE Lab industrial sponsors and affiliates Intel, Google,
Hewlett-Packard, Huawei, LGE, NVIDIA, Oracle, and Sam-
sung. Earlier work was supported in part by Intel Corpora-
tion and DARPA awards W911NF-08-1-0134, W911NF-08-
1-0139, and W911NF-09-1-0342. Research also supported
in part by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discov-
ery (Award #DIG07-10227). Any opinions, findings, conclu-
sions, or recommendations in this paper are solely those of
the authors and does not necessarily reflect the position or
the policy of the sponsors.

7. REFERENCES
[1] A case for os-friendly hardware accelerators. 7th

Workshop on the Interaction between Operating
System and Computer Architecture
(WIVOSCA-2013), at the 40th International
Symposium on Computer Architecture (ISCA-40),
2013.

[2] Krste Asanović, Rimas Avizienis, Jonathan Bachrach,
Scott Beamer, David Biancolin, Christopher Celio,
Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu
Kim, John Koenig, Yunsup Lee, Eric Love, Martin
Maas, Albert Magyar, Howard Mao, Miquel Moreto,
Albert Ou, David A. Patterson, Brian Richards, Colin
Schmidt, Stephen Twigg, Huy Vo, and Andrew
Waterman. The rocket chip generator. Technical
Report UCB/EECS-2016-17, EECS Department,
University of California, Berkeley, Apr 2016.

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup
Lee, Andrew Waterman, Rimas Avižienis, John
Wawrzynek, and Krste Asanović. Chisel: constructing
hardware in a scala embedded language. In
Proceedings of the 49th Annual Design Automation
Conference, pages 1216–1225. ACM, 2012.

[4] J. Balfour, W. Dally, D. Black-Schaffer, V. Parikh,
and J. Park. An energy-efficient processor architecture
for embedded systems. IEEE Computer Architecture
Letters, 7(1):29–32, Jan 2008.

[5] John H. Kelm, Daniel R. Johnson, Matthew R.
Johnson, Neal C. Crago, William Tuohy, Aqeel
Mahesri, Steven S. Lumetta, Matthew I. Frank, and
Sanjay J. Patel. Rigel: An architecture and scalable
programming interface for a 1000-core accelerator. In
Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09,
pages 140–151, New York, NY, USA, 2009. ACM.

[6] C. E. Kozyrakis and D. A. Patterson. Scalable, vector
processors for embedded systems. IEEE Micro,
23(6):36–45, Nov 2003.

[7] Christoforos Kozyrakis. Scalable Vector
Media-processors for Embedded Systems. PhD thesis,
2002. AAI3063439.

[8] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun,
V. Stojanović, and K. Asanović. A 45nm 1.3ghz 16.7
double-precision gflops/w risc-v processor with vector
accelerators. In European Solid State Circuits
Conference (ESSCIRC), ESSCIRC 2014 - 40th, pages
199–202, Sept 2014.

[9] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard
Xia, Derek Lockhart, Christopher Batten, and Krste
Asanović. Exploring the tradeoffs between
programmability and efficiency in data-parallel
accelerators. SIGARCH Comput. Archit. News,
39(3):129–140, June 2011.

[10] Yunsup Lee, Albert Ou, Colin Schmidt, Sagar
Karandikar, Howard Mao, and Krste Asanović. The
hwacha microarchitecture manual, version 3.8.1.
Technical Report UCB/EECS-2015-263, EECS
Department, University of California, Berkeley, Dec
2015.

[11] Yunsup Lee, Colin Schmidt, Sagar Karandikar, Daniel
Dabbelt, Albert Ou, and Krste Asanović. Hwacha



preliminary evaluation results, version 3.8.1. Technical
Report UCB/EECS-2015-264, EECS Department,
University of California, Berkeley, Dec 2015.

[12] Yunsup Lee, Colin Schmidt, Albert Ou, Andrew
Waterman, and Krste Asanović. The hwacha
vector-fetch architecture manual, version 3.8.1.
Technical Report UCB/EECS-2015-262, EECS
Department, University of California, Berkeley, Dec
2015.

[13] Yunsup Lee, Brian Zimmer, Andrew Waterman,
Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic, Ben
Keller, Stevo Bailey, Milovan Blagojevic, Pi-Feng
Chiu, Henry Cook, Rimas Avizienis, Brian Richards,
Elad Alon, Borivoje Nikolic, and Krste Asanovic.
Raven: A 28nm risc-v vector processor with integrated
switched-capacitor dc-dc converters and adaptive
clocking. HotChips, 2015.


	Introduction
	Related Work

	Data-Parallel Programming Models
	Vector-Fetch: The Hwacha Programming Model

	Experimental Methodology
	MIMD Baseline
	Hwacha
	Memory System
	Benchmarks
	Simulated Design Configurations
	Performance

	Results
	Conclusions
	Acknowledgements
	References

