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ABSTRACT

A natural approach to increasing the performance of
musical applications is to exploit their inherent parallel
structure on general-purpose multi-core architectures. In
this paper, we discuss opportunities for exploiting paral-
lelism in audio DSP graphs as well as within select audio
processing components. We describe Tessellation OS, an
experimental operating system structured around resource
distribution, performance isolation, and QoS guarantees,
and Lithe, a user-level runtime framework that enables
construction of composable, application-specific sched-
ulers. We present the design and implementation of a real-
time parallel musical application on top of Tessellation OS
and conclude with some preliminary experimental results.

1. INTRODUCTION

The age of parallel computing is upon us [36, 3]. Power
consumption has put a limit on processor clock rates,
and techniques for extracting instruction-level parallelism
have faltered. It appears that the only path to in-
creased performance requires embracing multi-core archi-
tectures [1]. But the move to parallel programming is
not without difficulties. It is generally acknowledged that
parallel programming is hard; there are race conditions,
deadlocks, and complex patterns of communication and
synchronization among tasks. Many software develop-
ers have asked for automatic parallelization of programs
– simply to avoid parallelizing them by hand. How can
music applications possibly benefit from this brave new
world? We answer this question in the following pages.

In many respects music is quite parallel in its struc-
ture – as computer scientists would put it, embarrass-
ingly so. Music applications operate on a variety of non-
communicating streams variously called voices, channels,
lines, or tracks. Most digital audio workstations are or-
ganized around this concept and the streams are farmed
out to separate threads running on different cores. Ex-
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amples include the way Ableton Live can use multi-
ple cores and the multi-threading option in Max/MSP
poly∼ abstraction. Unfortunately, when using current
versions of Max/MSP and Ableton Live together, their
multi-threading strategies interfere, and this situation may
lead to disruptions in music performance. So even the em-
barrassingly parallel structure of musical material cannot
always be reliably exploited by multiple processors.

Situations like this are difficult to prevent when ap-
plications with conflicting runtime requirements execute
simultaneously on commodity operating systems such as
Mac OS, Windows, or Linux; such systems rarely pro-
vide sufficient runtime control or performance isolation.
In this paper, we show how to better support these musi-
cal applications. Rather than focusing on some new paral-
lel programming language, operating-system concept, or
computer architecture, our research effort is driven by the
needs of applications themselves.

Popular graphical programming environments, such
as Pure Data (Pd) [27] and Max/MSP [10], use directed
graphs to represent computations performed on audio
streams. One would think that the inherently parallel char-
acter of those graphs would afford automatic paralleliza-
tion. Although there is considerable research on this is-
sue [26, 32], the current widely used versions of Pd and
Max/MSP remain essentially sequential. Further, pro-
gramming real-time musical applications is, for the most
part, carried out by the composition of modules (or plug-
ins) – a growing number of which are parallel (thanks
to component generators like Faust [22]). Thus, assur-
ing that a mix of serial and parallel plug-ins, such as Pd
and Max/MSP objects, and VST [33] plug-ins, work ef-
ficiently together becomes important. In this paper we
discuss how a signal flow graph can be dynamically par-
allelized and how to meet the needs of parallel plug-ins.

As a unifying theme, we show how a multi-core op-
erating system can be architected to support musical ap-
plications. Of particular interest is the fact that musi-
cal applications often require simultaneous execution of
real-time, interactive, and parallel computations. Tes-
sellation OS [9, 19], our experimental operating system,
has two distinctive features: (1) it provides performance
isolation and strong partitioning of resources, and (2) it
separates global decisions about resource allocation from
application-specific scheduling of resources (i.e., two-
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level scheduling). Central to Tessellation’s approach are
user-level runtime frameworks, such as Lithe [24], that
produce composable, module-specific schedulers. Via
Lithe, Tessellation supports a variety of parallel program-
ming models in a uniform and composable way.

In this paper, we also present the design of a real-
time parallel musical application on top of Tessellation
OS, along with its implementation status and some pre-
liminary experimental results.

2. PARALLELIZING AUDIO DSP GRAPHS

Real-time audio processing applications are often repre-
sented by an audio DSP graph (or “audio graph”), a di-
rected tree structure to specify transformations of audio
streams. In this section, we discuss techniques for paral-
lelizing such graphs.

Each node in an audio graph represents an audio mod-
ule (“plug-in”) that generates one or more channels of
output in response to zero or more channels of input.
The complexity and computational cost of the audio mod-
ules can range from small (e.g., scaling by a constant)
to large (e.g., convolution with a long impulse response).
Connections between nodes represent the flow of audio
streams, and introduce dependency constraints on the or-
der in which modules may be processed. Computations
within an audio graph are repeated with the arrival of
each new block of input samples, on the order of once
every 1ms to 10ms. Presently, most audio applications
perform DSP computations within a single high-priority
thread in a per audio-stream basis; they are therefore un-
able to take advantage of multiple cores in processing in-
dividual streams.

2.1. Opportunities for Exploiting Parallelism

Using task-level parallelism is natural in the execution of
an audio graph. Independent modules in the audio graph
can be executed in parallel as separate tasks. There are
also cases where it is useful for a module to create sub-
tasks that can be executed on different processing ele-
ments (e.g., cores), such as in Section 3.1,

Data-level parallelism, on the other hand, can be ex-
ploited by dividing the block of input audio samples into
segments such that multiple processing elements perform
the same transformation on different segments.

The optimal mix of task- and data-level parallelism
in the execution of an audio graph is determined by the
topology and computational intensity of the elements in
the graph, as well as the parallel processing capabilities of
the selected hardware platform. Figure 1 shows an exam-
ple audio graph with both types of parallelism.

2.2. Scheduling the Execution of an Audio DSP Graph

The goal of parallel scheduling is to ensure that the timing
requirements of a music application are met while making
efficient use of available processing resources. Task-graph
parallel scheduling strategies can be static or dynamic.

Example audio graph 
with three modules:

Example task execution 
timeline for two cores:

In

A B

C

A

B

C1

C2

Core 1:

Core 2:

Out

Task Parallelism:
A and B can run concurrently 
since they do not depend on 
one another.

Data Parallelism:
C can be divided into parts 
(C1 and C2) by partitioning 
blocks within the audio stream.

Figure 1. Multi-level parallelism within an audio graph.

A static scheduler creates a complete execution plan be-
fore audio streaming begins, while a dynamic scheduler
makes online decisions about task ordering and assign-
ment. It is also possible to combine these paradigms, such
as choosing a task grouping in advance but scheduling the
groups dynamically. Computer music practitioners often
prefer dynamic scheduling strategies because they allow
for rapid modification of the task graph (i.e., while exper-
imenting or performing).

Dynamic scheduling can be accomplished via global
or local approaches [6]. Global approaches involve a cen-
tralized queue of ready tasks that can be executed immedi-
ately because they have no remaining dependencies. Pro-
cessing elements access the central queue to acquire their
next task, and upon completion they update the depen-
dency count and activation status of all connected tasks.
In contrast, local approaches use a separate queue of ready
tasks for each processing element. This eliminates the
synchronization penalty incurred by accessing and updat-
ing a global queue, but requires load-balancing strategies
to distribute tasks evenly among the processing elements.
One example of a load-balancing strategy is work steal-
ing [4].

Treating each node in the audio graph as an indepen-
dent task offers flexibility with parallel scheduling, but in
practice suffers relative high overhead. The overhead can
be reduced by aggregating multiple nodes into a single ex-
ecutable unit. The goal is to find a sweet spot in the level
of aggregation that offers reduced overhead while main-
taining enough parallelism to utilize the available process-
ing elements. Any grouping that preserve the dependen-
cies in the original graph is valid. The search space for an
optimal grouping can be quite large, but there exist algo-
rithms for finding good approximations [26].

2.3. Task-level Parallelism within Pd Patches

It is useful for computer music developers to utilize multi-
core processors while programming in familiar languages.
We have developed a prototype system that runs compat-
ible Pd patch files and exploits task-level parallelism by
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Figure 2. Top - Partitioning scheme for an impulse re-
sponse using increasing block sizes. Bottom - Scheduling
requirements for the tasks for each block size.

assigning the execution of audio modules (“externals”) to
arbitrary number of processors. It uses either a global or
local variety of dynamic scheduler implemented on top
of Lithe, a user-level scheduling framework. The system
runs on Linux and Tessellation OS (see Section 4), and it
is a first step to exploring the concepts presented in the
previous sections. We are currently working to support
more features of the original Pd runtime, as well as ex-
ploring ways to exploit data-parallelism in Pd patches.

3. SUPPORTING PARALLEL AUDIO PLUG-INS

In this section, we discuss support for complex audio
plug-ins. Some plug-ins may benefit from parallel ex-
ecution; in some cases, parallel execution may even be
necessary to meet deadlines. Other plug-ins may make
use of long-running tasks that are started in one callback
(sample period) but do not need to complete until several
callbacks later. Supporting parallel execution and long-
running tasks within plug-ins complicates scheduling and
resource sharing between tasks but is necessary to fully
utilize parallel hardware and improve performance.

3.1. Supporting Partitioned Convolution

Partitioned convolution is an important technique for low-
latency filtering using long finite impulse response (FIR)
filters [13, 3]. It is typically used to simulate, in real-time,
the acoustic response of a space (convolution reverb). Par-
titioned convolution operates by breaking up the impulse
response of a long FIR filter into many smaller filters
which can be computed in parallel. Chopping up the filter
into smaller blocks helps to achieve lower latency; how-
ever, smaller blocks are less computationally efficient.

Non-uniform partitioned convolution addresses this
problem by allowing the processing block size to increase
as we progress through the impulse response. At the be-
ginning of the filter, the smaller blocks allow for low la-
tency; at the end of the filter, larger blocks allow for more
efficiency. Further, each of these sub-filters can be com-
puted independently, as separate parallel tasks.

This convolution technique has special scheduling
needs, as shown in Figure 2. The non-uniform size of
the sub-filters implies that some processing blocks will

execute less often than the callback rate, since they must
wait for a larger buffer of input samples to be filled. Con-
sequently, we would like to allow tasks to complete in a
later callback period than when they are started to avoid
forcing large processing blocks to complete within a sin-
gle callback period.

These special scheduling needs are not exclusive to
partitioned convolution. Any plug-in that requires large
amounts of computation during each callback would ben-
efit from parallel execution of its tasks, and support for
long-running tasks is important to all plug-ins with non-
uniform, multi-rate processing needs.

3.2. Supporting Task-level Parallelism

To support task-level parallelism within a plug-in, the
plug-in developer must insert processing tasks into the
scheduler’s ready queue(s) and convey task dependencies.
In effect the plug-in author provides an audio sub-graph,
which defines the tasks associated with the plug-in and
their dependencies. A potential difference between the
main audio graph and the plug-in sub-graph is that the
number and arrangement of tasks in the sub-graph may
change during execution based on changing parameters or
computational requirements. Consequently, it may be im-
portant to define an API to handle the plug-in tasks rather
than relying on a static graphical arrangement.

3.3. Supporting Long-running Tasks

Adding support for plug-ins with long-running tasks re-
quires adjustments to the basic dependent-task graph
scheduler of Section 2.2. A long-running task that is not
required to finish during the current callback should not
prevent the execution of a task with a deadline in the cur-
rent callback. Below we present two alternatives for sup-
porting plug-ins of this type.

One alternative is to add task preemption to the task
graph scheduler. It allows tasks with sooner deadlines to
interrupt long-running tasks. This option is simplest for
the plug-in developer; however, preemptive scheduling in-
troduces the overhead of task context-switching.

A second alternative is to divide long-running tasks
into time-distributed sub-tasks. The original computation
must be carefully divided so that (1) each sub-task can
complete during the callback in which it starts, and (2)
all sub-tasks are completed by the deadline of the original
long-running task. This solution incurs no task context-
switch overhead and can yield very high time predictabil-
ity, but it places extra burden on the programmer and may
not even be possible if the task spends much of its time in
a call to an external library.

Two authors of this paper (E. Battenberg and R.
Avižienis) have created alternative implementations of
non-uniform partitioned convolution. Preliminary results
suggest that, when running on a single CPU core and us-
ing long impulse responses, the preemptive version can
achieve between 1.5x-4x more concurrent instances with-
out dropouts than the time-distributed version. For ex-
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ample, with an impulse response of 524,288 samples (at
44.1 kHz), the preemptive version reached 82 drop-free
instances while the time-distributed version only 22. The
test platform was a Mac Pro with two 2.66-GHz 6-core
Intel Xeon and 12-GByte RAM running Linux.

A complementary approach is to give the plug-in guar-
anteed access to a partition of hardware resources (e.g., a
set of cores). When access is granted, the plug-in has full
control over the partitioned resources. In this case, the
plug-in author can use his preferred scheduling scheme,
either preemptive or not, to support long-running tasks.
Conceptually the plug-in is still part of the audio graph,
but it is now an independent server that receives requests
from the audio graph. Besides scheduling flexibility, this
approach provides performance isolation, which helps the
plug-in to deliver consistent performance.

It will become clear in Section 4 that Tessellation OS
supports all of the methods described above.

3.4. Supporting External Schedulers

Plug-in developers may try to exploit parallelism by using
existing parallel libraries. Usually these libraries are im-
plemented on top of parallel programming frameworks,
which use their own schedulers to parallelize computa-
tions. For example, Intel’s Math Kernel Library (MKL)
uses OpenMP [7] to spawn threads. If the main DSP
scheduler is unaware of these spawned parallel tasks, the
two schedulers will compete for resources. To guaran-
tee cooperative resource sharing and predictable perfor-
mance, the main DSP scheduler must be able to interface
with the external scheduler. Some of these issues are ad-
dressed in Section 4.3, which covers a framework for hi-
erarchical cooperative scheduling called Lithe.

4. OVERVIEW OF TESSELLATION OS

Tessellation OS [9, 19] is an experimental multi-core op-
erating system focused on enforcing resource guarantees
for client applications. Its development is driven by the
needs of real-time audio applications (intended for use in
live performances) and other next-generation client ap-
plications (e.g., a parallel web browser [14] and a meet-
ing diarist [11]) that can benefit from more computational
crunch than a single CPU core can deliver. Tessellation’s
primary goal is to provide adequate support for a simulta-
neous mix of real-time, interactive, and high-throughput
parallel applications. Other goals include providing scal-
able performance for parallel client applications and en-
abling the system to quickly adapt to changes in the appli-
cation workload and availability of resources.

Tessellation OS is built on two complementary de-
sign principles often used in real-time computing [31, 20]:
(1) Space-Time Partitioning and (2) Two-Level Schedul-
ing. Space-Time Partitioning provides performance iso-
lation and partitioning of resources among software com-
ponents. Tessellation divides the hardware into a set of
simultaneously-resident partitions as shown in Figure 3.

Application 
Runtime 

Application 

Runtime  

Parallel  
File Sys. 
Runtime 

Network 
Service 
Runtime 

Threads Threads Threads Threads 

Disk Network 
Card 

Tessellation OS (space-time partitioning) 

Operating System 
Service Partitions 

Application Partitions 

Multicore  Hardware 

Figure 3. Space-Time Partitioning in Tessellation: a
snapshot in time with four spatial partitions.

Figure 4. Decomposing an application into a set of com-
municating components and services running with QoS
guarantees within Cells. Tessellation provides Cells that
host device drivers and OS services.

These partitions are virtualized and exported to applica-
tions and OS services through an abstraction called a Cell,
which is a container for parallel software components with
guaranteed access to resources. An application running
within a Cell behaves as it would when executing on a
dedicated machine. Two-Level Scheduling, on the other
hand, separates global decisions about resource allocation
to Cells (first level) from application-specific scheduling
of resources within Cells (second level).

4.1. Tessellation Programming Model

Tessellation OS supports a model of computation in which
applications are divided into performance-isolated Cells
that communicate through efficient and secure channels
(see Figure 4). Once resources have been assigned to
Cells, user-level schedulers within Cells may utilize the
resources as they wish – without interference from other
Cells. It is the separation of resource distribution from us-
age that we believe makes this two-level approach more
scalable and better able to meet the demands of parallel
client applications than other approaches.

Inter-cell channels provide performance and security
isolation between Cells. Channels (once constructed) also
provide fast asynchronous communication at user-level,
which is an important requirement here.

In addition, partitioned resources assigned to Cells
can vary with the needs of the applications and OS (i.e.,
Cells can “shrink” and “grow”). Tessellation attempts to
strike a balance between maximizing resource utilization
to achieve performance goals and selectively idling re-
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sources to provide quality-of-service (QoS) guarantees.
Decision-making logic is packaged into a Policy Ser-
vice that distributes resources to Cells by taking into ac-
count system-wide goals, resource constraints, and perfor-
mance targets combined with current performance mea-
surements. The Policy Service is also responsible for ad-
mitting new Cells into the system. For details on Tessel-
lation’s Policy Service refer to [9].

4.2. Achieving Performance Isolation

Performance isolation between Cells allows applications
to achieve predictable and repeatable behavior, which in
turn simplifies performance optimization. Space-Time
Partitioning is accomplished through a combination of
software and hardware mechanisms. Managed resources
include hardware thread contexts, memory pages, and
guaranteed fractional services from other Cells, as well
as guaranteed portions of shared cache, memory band-
width, and fractions of the energy budget, when the re-
quired hardware mechanisms are available (e.g., [25, 17]).

Cells may be time-multiplexed, as implied by the
“time” component of the term Space-Time Partitioning.
Hardware thread contexts and other resources are, how-
ever, gang-scheduled [23] such that Cells are unaware of
this multiplexing; in other words, unexpected virtualiza-
tion of physical resources does not occur. Tessellation im-
plements a variety of time-multiplexing policies for Cells,
some of them offering high degrees of time predictabil-
ity. Examples include the no-multiplexing policy (Cell
given dedicated access to cores), time-triggering policy
(Cell active during predetermined time windows), event-
triggering policy (Cell activated upon event arrivals, but
never exceeds its assigned fraction of processor time), and
best-effort policy (Cell with no time guarantees). Tessel-
lation incorporates admission control (as part of the Policy
Service) and a precedence rule for Cell activation to detect
activation conflicts and prevent Cells from compromising
the timing behavior of other Cells.

4.3. Lithe: Framework for User-level Scheduling

A Cell-level runtime operates at user-level and manages
all resources within the Cell. Central to Tessellation’s
approach are user-level scheduling frameworks, such as
Lithe [24], that enable construction of application-specific
schedulers. Lithe enables support for a variety of parallel
programming models in a uniform and composable way
(see Figure 5).

Via Lithe, applications can effectively utilize one or
more parallel libraries without worrying about oversub-
scription (a situation that occurs when libraries create
more threads than there are physical cores in the system).
In a standard system, the OS lacks detailed knowledge
about how the threads within an application interact; con-
sequently, scheduling decisions often result in decreased
application performance. Lithe provides the necessary
primitives and interfaces for composing such parallel li-
braries efficiently.

Figure 5. Hierarchical composition of parallel libraries
via Lithe within a Tessellation’s Cell.

Lithe replaces the virtualized thread abstraction (e.g.,
pthreads) with an unvirtualized hardware thread prim-
itive, or hart, to represent a processing element. Appli-
cations are given complete control over the management
of the harts they have been allocated and are responsi-
ble for distributing them among the parallel libraries they
invoke. Libraries must be modified to be “Lithe-aware”
by replacing calls to traditional threading libraries (e.g.,
pthread create) with the corresponding Lithe function
calls. Lithe-based applications employ hierarchical coop-
erative (non-preemptive) user-level schedulers to manage
the assignment of harts to processing tasks. Applications
are therefore built by composing libraries hierarchically
as shown in Figure 5.

Lithe can be inserted underneath the runtimes of
legacy parallel libraries to provide composability with-
out needing to change existing application code. For
example, Intel’s Threading Building Blocks (TBB) [30],
GNU’s OpenMP [7] and the FFTW [12] libraries have
been ported to Lithe. Lithe can also serve as the basis for
building new parallel abstractions and libraries that auto-
matically and efficiently interoperate with one another.

5. A MUSICAL APPLICATION ON
TESSELLATION OS

The Tessellation programming model, described in Sec-
tion 4.1, is a component-based model with composable
and predictable performance. Applications can be split
into performance-incompatible and mutually distrusting
Cells with controlled inter-Cell communication. OS ser-
vices, hosted in separate Cells, are independent servers
that provide QoS guarantees. Computer musicians can
take advantage of this structure to make their applications
yield high-confidence, predictable performance.

Figure 6 depicts the general structure of a live-
performance music application that we are currently de-
veloping on Tessellation OS. The application interacts
with analog audio inputs and outputs and MIDI con-
trollers via an Ethernet audio I/O device [2]. The de-
vice has 10 input and 10 output channels and operates at
44.1kHz. It transmits a packet with a 1280-byte payload
(32 samples × 4 bytes/samples × 10 input channels) every
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Figure 6. A computer music application deployed on Tessellation OS.

725 µs. The host computer must respond with an equally
sized packet of audio output data prior to the reception of
the next input data packet to ensure glitch-free operation.

Tessellation’s Network Service provides the applica-
tion a guaranteed communication path to the Ethernet au-
dio device. The Network Service guarantees a minimum
communication bandwidth to our application (for both in-
coming and outgoing messages).

As shown in Figure 6, our proposed music application
comprises three Cells:

• Cell A hosts the audio processing and synthesis en-
gine (or audio engine) and most of the audio objects
and plug-ins defined in the audio DSP graph.

• Cell B hosts a highly-tuned parallel plug-in imple-
menting a computationally intensive DSP process.

• Cell C contains the GUI application components.
We describe these components in more detail below.

The audio engine in Cell A is central to our application
because it controls the execution of the audio graph. It re-
ceives input audio data and MIDI control messages from
the audio device through the Network Service and returns
audio output data. To enable parallel execution of the au-
dio graph, Cell A allocates multiple CPU cores and the
user-level runtime within the Cell implements an event-
driven deadline-based dynamic scheduler. This scheduler
is preemptive and can accommodate long-running tasks
without placing extra burden on plug-in programmers (at
the expense of some overhead, see Section 3.3). To
achieve very low latency, Cell A is not time-multiplexed.

Cell B holds another part of the audio graph, deployed
in a separate Cell to avoid interference from the execution
of other graph elements. Such highly-optimized parallel
plug-ins are likely to require hierarchical composition of
parallel libraries. The runtime system in Cell B is thus
implemented on top of Lithe. Similar to Cell A, Cell B is
assigned multiple processing elements and is not subject
to time-multiplexing.

Finally, the GUI components in Cell C allow the
user to compose and manipulate audio graphs (e.g., en-
able and disable specific modules in the graph). Updates

to the audio graph are sent to Cell A through a chan-
nel. The GUI components interact with the GUI Service,
which controls user input and output devices such as dis-
play, keyboard, and mouse. This service guarantees high-
confidence response times to user events. Cell C uses
an event-triggering policy and its runtime implements an
earliest-deadline-first scheduler.

5.1. Implementation Status

At this time, we have an early version of the multi-Cell
music application, described above, running on Tessella-
tion OS. It includes an audio engine within an independent
Cell (i.e., Cell A in Figure 6). The application runs basic
audio graphs, defined as Pd patches, and interfaces with
the Ethernet audio I/O device, as described above.

Our current Tessellation prototype runs on both Intel
x86 platforms and RAMP Gold [34], which is a FPGA-
based simulator that models up to 64 in-order 1-GHz
SPARC V8 cores. The inter-Cell channels provide asyn-
chronous and lock-free communication at user-level, via a
basic version of the Non-Blocking Buffer (NBB) [16, 15]
(enabling lock-free communication between a single pro-
ducer and a single consumer). Our prototype imple-
ments several Cell multiplexing styles, including the no-
multiplexing, time-triggering, and best-effort policies; an
implementation of the event-triggering policy is under-
way. Lithe has been ported to Tessellation, providing a
framework to construct user-level schedulers. An alter-
native preemptive scheduling framework is also available.
Finally, a basic implementation of the Network Service
exists and the GUI Service is in development.

5.2. Experimental Results on Inter-Cell Channels

Fast communication via inter-Cell channels is essential to
music applications. A basic requirement is established
by the transmission rate of our Ethernet audio I/O device,
which is a packet with a 1280-byte payload every 725 µs.

We report the results of two experiments, illustrated
in Figure 7. In these experiments we measured the round-
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Figure 7. Basic experimental setup.

Message size (bytes) 512 1024 1280 2048 4096 4480
Maximum (µs) 0.85 1.08 1.49 1.62 2.29 3.26
Minimum (µs) 0.67 0.86 0.96 1.27 2.02 2.18
Average (µs) 0.73 0.95 1.08 1.40 2.10 2.42
(CPU cycles) (1956) (2542) (2884) (3719) (5599) (6452)

Table 1. Round-trip times in Experiment A (see Figure 7).

trip times of messages being communicated between two
Cells, one hosting the Network Service and the other our
application prototype. In each run we collected 100,000
measurements. The system used in our experiments was
equipped with a 2.66-GHz Intel Core i7 (quad-core) pro-
cessor with hyper-threading enabled and 3-GByte RAM.

In Experiment A, we measured the round-trip times of
messages with different sizes. The loopback was placed
at the door of the application Cell (i.e., no audio graph
was involved). Table 1 shows the results. from 100,000
measurements. For messages of sizes above 4 KBytes the
maximum observed round-trip time was less than 3.5µs,
which means that our channel implementation meets the
application’s requirement (! 725µs). However, in terms
of CPU cycles the results are relatively high because the
current channel implementation is very basic and unop-
timized. Besides optimizing our current channel imple-
mentation, we are investigating message-passing hard-
ware mechanisms that render very fast and efficient, se-
cure inter-Cell channels.

In Experiment B, the audio engine executed a
loopback audio graph and each message contained
1,280 Bytes. The average round-trip time was 21.08µs
(56,179 CPU cycles), suggesting that our timing require-
ment can still be met.

5.3. Experimental Results on Performance Isolation

We conducted a basic experiment to evaluate the quality
of performance isolation between Cells in Tessellation. In
this experiment we measured the response time of our mu-
sic application with and without the presence of another
application running in a different Cell. We used the same
test platform as in Section 5.2.

As shown in Figure 7, the Network Service and the
music application were deployed in Cells A and B, respec-
tively. The music application ran a Pd patch containing
eight building blocks regularly found in computer music:
a sine-wave generator, a step sequencer, and six classic
audio effects. In the audio graph, the eight blocks were
parallel to one another, and each of them was applied to
the same incoming audio signal and connected to a dif-
ferent physical output. In addition, a third Cell, Cell C
(not shown in the figure), hosted a synthetic application.
This application continuously ran independent instances

Application Set Music App Alone Music App & Synthetic App
Maximum (µs) 119 121
Minimum (µs) 107 107
Average (µs) 110 110

Table 2. Response times of the music application with
and without a synthetic application in another Cell.

of a sorting algorithm on each hardware thread allocated
to Cell C.

The hardware was statically partitioned and the Cells
were given dedicated access to specific hardware threads
in the system. Cell A and Cell B were assigned one and
three hardware threads, respectively. When activated, Cell
C was allocated an entire CPU core with its two hardware
threads. Paging was not available to the applications.

The application’s response time was measured from
the instant at which the Network Service sends an input
message to Cell B to the instant at which the Network
Service receives the output message from Cell B. We ran
the music application with and without the synthetic ap-
plication for 5 minutes and considered the measurements
after the first three audio graph executions (warm-up pe-
riod). As shown in Table 2, there is no significant dif-
ference in the response-time values from both scenarios.
Hence, with the established hardware partitioning, Tes-
sellation was able to provide sufficient performance isola-
tion to our music application (essentially the performance-
isolation level offered by the hardware architecture).

While existing operating systems provide some per-
formance isolation via specialized high-priority threads,
Tessellation provides general and flexible performance
isolation to applications.

6. RELATED WORK

Facilities for exploiting parallelism have been added to
computer music environments. The pd∼ object [29] al-
lows one to embed a number of Pd patches, each run-
ning on separate threads, into a master patch that handles
audio I/O. The Max/MSP poly∼ object [10] generates
copies of a patch that are executed by a user-specified
number of threads. Faust [22] uses OpenMP or work
stealing to automatically parallelize the execution of gen-
erated audio components. Moreover, techniques for ex-
ploiting fine- and coarse-grain parallelism in Open Sound
World (OSW), an environment similar to Pd, have been
presented in [8].

Tessellation and other recent many-core operating sys-
tems projects, such as Corey [5], fos [35], and Bar-
relfish [28], share some structural aspects, e.g., distributed
OS services. Corey and fos mainly focus on improving
OS scalability and, in contrast to Tessellation, do not at-
tempt to provide real-time guarantees. Barrelfish has re-
cently started considering real-time workloads as well, but
to our knowledge it has not been used in real-time music
applications.

Resource containers, like Linux Containers [18] and
OpenVZ [21], offer improved performance isolation
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within general-purpose operating systems. We believe,
however, Tessellation’s features can offer better time pre-
dictability and support for parallel workloads. A compar-
ative study of Tessellation and resource containers is part
of our future research.

7. FINAL REMARKS

The move to parallelism gives us the opportunity to rein-
vent the way real-time music and audio software is devel-
oped and deployed. Our approach is to let the needs of our
applications drive the research effort. Responsive, fault-
free, real-time performance is essential to musical appli-
cations. Further, composition of programs from compo-
nents like plug-ins is a productive approach to software
development. Thus, our efforts to assure timely behav-
ior in Tessellation OS have yielded a flexible and adaptive
approach to structuring parallel musical applications.

As our effort continues, exploitation of performance
will play a key role. After all, the move to parallelism is
about performance, and most computer musicians appear
to have an insatiable appetite for computation.
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biatowicz, “Tessellation: Space-time partitioning in a manycore
client OS,” in Proc. of the 1st USENIX Workshop on Hot Topics in
Parallelism (HotPar’09), March 2009.

[20] L. Luo and M.-Y. Zhu, “Partitioning based operating system: a
formal model,” ACM SIGOPS Operating Systems Review, vol. 37,
no. 3, pp. 23–35, 2003.

[21] OpenVZ. [Online]. Available: http://wiki.openvz.org
[22] Y. Orlarey, D. Fober, and S. Letz, “Parallelization of audio applica-

tions with Faust,” in Proc. of the 6th Sound and Music Computing
Conference, Porto, PT, 2009, pp. 99–112.

[23] J. Ousterhout, “Scheduling techniques for concurrent systems,” in
Proceedings of the 3rd International Conference on Distributed
Computing Systems, 1982, pp. 22–30.

[24] H. Pan, B. Hindman, and K. Asanović, “Composing parallel soft-
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