
Return of the Runtimes: Rethinking the
Language Runtime System for the Cloud 3.0 Era

Martin Maas
University of California, Berkeley

maas@eecs.berkeley.edu

Krste Asanović
University of California, Berkeley

krste@eecs.berkeley.edu

John Kubiatowicz
University of California, Berkeley

kubitron@eecs.berkeley.edu

ABSTRACT
The public cloud is moving to a Platform-as-a-Service model where
services such as data management, machine learning or image
classification are provided by the cloud operator while applications
are written in high-level languages and leverage these services.

Managed languages such as Java, Python or Scala are widely
used in this setting. However, while these languages can increase
productivity, they are often associated with problems such as un-
predictable garbage collection pauses or warm-up overheads.

We argue that the reason for these problems is that current
language runtime systems were not initially designed for the cloud
setting. To address this, we propose seven tenets for designing future
language runtime systems for cloud data centers. We then outline
the design of a general substrate for building such runtime systems,
based on these seven tenets.

CCS CONCEPTS
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering → Runtime environments; Object
oriented languages; • Hardware→ Hardware accelerators;

KEYWORDS
Managed Language Runtime Systems, Data Centers, Cloud 3.0,
Platform-as-a-Service, Serverless Computing, Resource Disaggre-
gation, FPGAs, Garbage Collection, JIT Compilation

ACM Reference format:
Martin Maas, Krste Asanović, and John Kubiatowicz. 2017. Return of the
Runtimes: Rethinking the Language Runtime System for the Cloud 3.0 Era.
In Proceedings of HotOS ’17, Whistler, BC, Canada, May 08-10, 2017, 6 pages.
https://doi.org/10.1145/3102980.3103003

1 INTRODUCTION
The public cloud’s deployment model is shifting from machine VMs
in an Infrastructure-as-a-Service (IaaS) setting to a Platform-as-a-
Service (PaaS) model where the cloud operator provides services
such as databases, machine learning frameworks or speech en-
gines, and customers access these services through APIs. This is
sometimes called Cloud 3.0 [44], reflecting the shift from Software-
as-a-Service (SaaS) to IaaS to PaaS.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotOS ’17, May 08-10, 2017, Whistler, BC, Canada
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5068-6/17/05.
https://doi.org/10.1145/3102980.3103003

We are currently seeing this model adopted at companies such as
Amazon [48], Google [43] and Microsoft [4]. This trend decouples
the application from the underlying infrastructure and brings a
unique opportunity for cloud operators to replace any part of the
stack, including hardware, OS and language runtime system.

Emerging data center designs are already taking advantage of
this, through custom hardware [9, 40] and a shift to resource dis-
aggregation in server racks [16]. One example is TensorFlow [1]:
While users can buy TensorFlow resources from Google and pro-
gram against a high-level Python API, computation can run on
CPUs, GPUs or custom Tensor Processing Units [25] (TPUs).

In the Cloud 3.0 setting, application developers increasingly fo-
cus on high-level functionality such as application logic, processing
pipelines and statistical models, while performance-critical com-
ponents such as machine learning infrastructure or data stores are
managed by the cloud provider. This is reflected in the fact that
application workloads are now typically written in managed produc-
tivity languages such as Java, JavaScript, Python or Scala, while the
underlying services are run by the cloud operator and implemented
in any language (including C/C++, Go or Rust), on any platform, or
in hardware. This model abandons the traditional server abstrac-
tion, and serverless frameworks such as Amazon Lambda [49] can
even deploy functions written in high-level languages directly.

This shift changes the primary role of the OS and language run-
time system: they are now responsible for managing and composing
a fleet of services spread across software and accelerators. While
new OS concepts such as Multikernels [5] and data plane operating
systems [6, 42] may help support this setting, the language runtime
system has changed very little. At the same time, problems have
been reported in connection with using managed languages in the
cloud setting, ranging from overheads and unpredictability from
GC [32] to memory bloat [37] and long startup times [29].

Several projects have tried to work around these problems using
solutions such as region-based memory management [18], man-
aging memory off-heap [13], recycling JVMs [29], or coordinating
GC [32]. While these approaches fix the symptoms, they do not
address the fundamental problem: most language runtimes that are
used in the cloud were originally designed for different scenarios,
which is reflected in the trade-offs that they make.

In this paper, we argue that we should rethink how language
runtimes are designed for the Cloud 3.0 era.We do this by laying out
seven tenets of building language runtimes for the next generation
of cloud data centers. We then distill these tenets into a proposal
for a shared substrate to underpin these future runtimes.

2 DATA CENTERS IN THE CLOUD 3.0 ERA
While there are competing views on how future data centers will be
designed and programmed, several common trends have emerged:

https://doi.org/10.1145/3102980.3103003
https://doi.org/10.1145/3102980.3103003


2.1 Resource Disaggregation
Facebook [26], HPE [15], Huawei [10], Intel [23] and UC Berke-
ley [3] have proposed rack-scale system designs where resources
are disaggregated. Instead of deploying individual servers with a
certain amount of compute, memory and storage, all resources
in a rack (i.e., storage, memory, accelerators and compute SoCs
with a small amount of stacked high-bandwidth memory) are man-
aged in separate pools and connected through a high-bandwidth,
low-latency backplane such as PCIe or Infiniband (Figure 1a).

Compared to a traditional deployment, this reduces the number
of different system configurations: Instead of managing several
types of nodes with varying combinations of resources to fit the
requirements of different workloads, a disaggregated system can
allocate exactly the right resource mix to each application. Disag-
gregation also makes it possible to scale resources independently
and does not require keeping idle nodes powered on to retain access
to their memory or storage.

2.2 Hardware Accelerators
Recent work has shown that hardware accelerators can substan-
tially improve certain cloud workloads, and major companies in-
cluding Amazon [47], Baidu [40], Google [1] and Microsoft [9] are
currently adopting them in production. These accelerators come
in two flavors: custom ASICs with limited programmability (such
as Google’s TPU [25] or ICT’s DianNao-line of chips [11]) or fully
programmable FPGAs (such as Microsoft’s Catapult [9]).

The deployment model also differs: while accelerators can be
managed as peripherals (similar to GPUs) or pooled as a disag-
gregated resource, Microsoft recently proposed connecting FPGAs
directly to the network (Figure 1b), which allows the FPGA to
handle network requests and dispatch work to the CPU [9].

2.3 Serverless Deployment Model
Data center applications are often designed as micro-services that
communicate with each other through service-level APIs. The ser-
vices can be stateful or stateless and are often backed by infras-
tructure provided by the cloud operator, such as data stores or
distributed computation frameworks.

Traditionally, these services were deployed as long-running
server instances running within virtual machines or containers.
However, there has been a recent shift towards a serverless deploy-
ment model, where customers implement their services as high-
level functions and the cloud operator provides an orchestration
framework that transparently scales and schedules these services
as they see fit (e.g., Google AppEngine [20] or AWS Lambda [49]).
Container-based orchestration frameworks such as Kubernetes [8]
and library operating systems such as Mirage [33] have made it
easier to deploy these services in a lightweight manner.

We believe that these trends will elevate the role of the language
runtime system. It now becomes the component that connects
applications to the services they are using, is responsible for reliably
executing a large number of potentially latency-sensitive services
on disaggregated hardware, and is mapping service-level APIs to a
range of custom hardware accelerators.

(a)	Resource	Disaggregation (b)	FPGA	Accelerators

Backplane	(PCIe/Infiniband)

CPU
DRAM

DRAM

DRAM

Flash

Flash

Flash

Flash

DRAM

DRAM
CPU

DRAM

NIC

FPGA

DRAM

CPU CPU

DRAM DRAM

…

Figure 1: Cloud 3.0 Data Center Architectures

3 RETHINKING THE LANGUAGE RUNTIME
We now discuss how these changes affect language runtime systems
in data centers and how they should be designed in the future.
We phrase our views as seven guiding principles, or tenets. Each
tenet represents an area where we believe that many widely-used
runtime systems make the wrong trade-offs and should instead
adopt different techniques – some of which exist already and some
of which should be the subject of future research.

Tenet #1: Stop the JITing
Many managed language runtime systems (including the HotSpot
JVM and Microsoft’s CLR) use a multi-tier compilation system
where bytecode is initially interpreted and “hot” regions are at
runtime compiled by a Just-In-Time (JIT) compiler. Typically, these
systems collect performance profiles as the code executes and con-
tinously recompile bytecode using these profiles. This enables dy-
namic optimizations such as trace-based inlining.

JIT compilation was the right choice when managed runtimes
primarily ran short-lived applications that needed to be portable
and only ran once (such as Java applets). However, cloud workloads
are different: the target platform is typically known at compile
time and the same application often runs many times (potentially
on different machines). In this scenario, a JIT compiler primarily
introduces performance unpredictability and wastes resources by
re-JITing code multiple times (some data center applications spend
up to 33% of time in JIT warm-up [29]).

The main argument for using a JIT in modern runtime systems
is dynamic optimization, which is crucial to achieving high per-
formance in dynamic languages such as JavaScript or (to a lesser
extent) Java. However, dynamic optimization is not predicated on
using a JIT compiler. Instead, the language runtime should provide
a code cache that is pre-populated at installation time and survives
executions. As the system runs, profiles are taken and the code is
continuously recompiled out-of-band, allowing the same dynamic
optimizations that a JIT provides, without the warm-up.

The compilation process remains largely the same (except that
the JIT now has to produce relocatable code). This approach has
been used by Android’s ART Runtime [45], the CLR [35] and an
implementation for the HotSpot JVM will be available in JDK 9 [38].
In the data center setting, the code cache could even be made
available across different nodes in the cluster, to avoid redundant
compilation work and allow the optimizer to take advantage of a
larger set of performance profiles.



Tenet #2: Provide a Unified Data Model
Modern cloud applications run complex pipelines that can com-
prise multiple frameworks operating on the same data [19]. These
frameworks are often written in different languages, and crossing
process boundaries between them is expensive and can cause over-
heads. While support for sharing a single runtime system between
multiple applications exists [24, 34], this approach only works if all
components are written in the same language family.

Recent work proposed an alternative approach by providing a
runtime-level IR and data model that allows frameworks written in
different languages to target the same runtime system, which can
then co-optimize across the entire application [41]. The reported
speed-ups have been significant – up to 30× in some cases.

While this work looked at big data frameworks, we believe that
the idea generalizes. Although languages represent objects in differ-
ent ways, libraries such as Apache Arrow [2] enable sharing of data
across languages, and frameworks such as MMTk [7] can support
multiple object layouts and policies in the same managed environ-
ment. At the same time, frameworks like Truffle [51] allow different
languages to target the same language runtime and compiler. Taken
together, these tools may enable running and co-optimizing services
operating on the same data.

Future runtime systems should adopt these ideas and enable
frameworks written in different languages to operate on the same
data, as well as enabling the compiler to optimize across them.

Tenet #3: Enable Efficient Composition
Service composition is a defining feature of cloud workloads, but
managed runtimes often pay a substantial penalty when communi-
cating across the runtime boundary. There are two different cases:
calling into native code and calling into services running in other
runtimes (either on the same machine or across the network).

Calling into native code requires copying and tracking objects
across language boundaries (primarily for GC). It also interferes
with safepoints and prevents dynamic optimizations. However,
while the resulting overheads can be problematic for fine-grained
communication, they are usually not a problem if a sufficient amount
of work is performed per call (e.g., when calling into numpy). In
contrast, communicating between different runtime systems addi-
tionally requires copying and serializing/deserializing arguments,
which is expensive and can account for a substantial fraction of CPU
cycles in communication-heavy frameworks such as Spark [39].

In a traditional client setting, this is not a problem, but in cloud
data centers, connecting services that run in different runtime sys-
tems is very common, and one of the key responsibilities of the
language runtime. Language runtime systems should therefore be
designed with fast inter-process communication in mind, similar to
processes in a traditional OS (or Application Domains [34] in .NET,
a mechanism for data sharing between managed applications).

One way to achieve this could be by using an object layout that
can be shared between multiple processes through traditional OS
communication mechanisms (e.g., shared pages) and over the net-
work (e.g., through RDMA). This could be implemented by designat-
ing parts of the address space for communication (similar to Apache
Arrow), using location-independent pointers in these regions and
applying a restrictive GC policy within them (to avoid expensive

book-keeping). Cloud operators could then co-locate frequently
communicating services that belong to the same application, such
that they can use this fast communication mechanism.

Tenet #4: Go Light On the Objects
A common complaint about managed languages is that they are
heavyweight, create memory bloat and spend a long time perform-
ing GC. The typical approach to these problems has been to improve
or replace the GC, but we believe that this is addressing the prob-
lems from the wrong perspective. Many of these problems are the
result of having too many objects, often due to unsuitable abstrac-
tions. Specifically, languages such as Java and Scala allocate a very
large number of objects, by boxing basic types such as integers.
This causes memory overhead from object meta-data and results in
a large number of objects to trace during GC.

This is avoidable through language design. For example, provid-
ing value types [14] as part of the language can reduce the number
of objects substantially (C# already supports value types, and Java
support for them is expected in future versions [14]). In addition,
the runtime system can provide lightweight abstractions and spe-
cializations for common data structures in the runtime library (such
as linked lists), further reducing the number of objects.

In the absence of such language features, strategies such as
region-based memory management [18] or decoupling control and
data path [36, 37] have been successfully used to reduce the number
of objects without changing the language itself.

To allow the runtime system to support these strategies, the
system should divide memory into regions with different policies
that can be used to reduce the number of objects. By safely pro-
viding applications and frameworks with a selection of options for
managing different parts of memory, many of the cases that require
a large amount of objects could likely be avoided.

Tenet #5: Manage Disaggregated Resources
One new challenge of the Cloud 3.0 data center is how to handle re-
source disaggregation (Section 2.1). With resources disaggregated
at the rack or data-center level, application-level knowledge is
required to decide how to move data between different pools of
memory, including high-bandwidth memory on chip and remote
memory elsewhere in the rack. While these decisions could be di-
rectly exposed to the application, the programmer may not have the
information to make the best decision, and the resulting code may
not be portable. Instead, previous work has explored page-based
migration mechanisms [16], but those work at a coarse granularity
and cannot take application-level knowledge into account.

Improving over this approach is challenging in native languages,
as moving data at a finer granularity than a page requires rewriting
pointers. However, managed runtime systems are perfectly suited
to handle disaggregated memory for the application, as managed
runtimes already have a mechanism to relocate objects and redi-
rect pointers as necessary. This could enable them to transparently
migrate different parts of the heap. Managed runtimes also have
mechanisms to measure performance profiles (such as access fre-
quencies), which makes it possible for them to dynamically decide
where to place data. As such, they may be able to do a better job
than the programmer, and do so transparently.



public class App {
@FPGA(replication=perHandler) KeyValueMem cache =

new KeyValueMem(4); // Small cache on FPGA

@FPGA
Rsp requestHandler(Req req) {
Rsp rsp = cache.contains(req.key)
? cache.get(req.key)
: slowPath(req); // If not in cache, go to CPU

return rsp;
}

Rsp slowPath(Req req) {
// Perform work on the CPU

} NIC

FPGA

DRAM

CPU CPU

DRAM DRAM

FP
GA

	(r
ep

lic
at
ed

)
CP

U
Figure 2: Programming FPGAs with high-level code

Tenet #6: Embrace Hardware Accelerators
Another challenge faced in future Cloud 3.0 data centers is how
to program hardware accelerators (Section 2.2). Current language
runtime systems struggle with this, as they were designed at a time
when accelerators were not a common occurrence. Hence, most
language runtimes neither have abstractions to expose accelerators
to the application, nor to communicate with them efficiently.

Future runtime systems need to address this problem. One par-
ticularly interesting class of accelerators are FPGAs such as those
available in Microsoft’s Catapult system [9]. Currently, these accel-
erators work in tandem with the application but are programmed
manually in a hardware-description language. This makes it chal-
lenging for software developers to program them effectively, and
makes interfacing with the software error-prone.

Future runtime systems provide an opportunity to target CPUs,
FPGAs and other accelerators simultaneously, allowing develop-
ers to program application and accelerator in the same environ-
ment. This could reduce the degree of hardware knowledge that
is required, and simplify the interfacing of hardware and software
components. By using dynamic optimization, such a system could
even automatically schedule work across hardware accelerators and
CPUs, based on dynamic performance profiles. There have been
several examples of programming FPGAs in high-level languages.
The closest is Dandelion [12, 46], which maps .NET LINQ queries
to FPGAs. Another project, Lime [21], enabled programming of FP-
GAs using a Java dialect. More recently, DHDL [27] automatically
generated FPGA accelerators from high-level code.

Incorporating such mechanisms into the runtime system would,
for example, allow a developer to specify fast-path request handlers
that run on an FPGA and automatically pass execution to the CPU if
the request cannot be handled on the FPGA (Figure 2). The runtime
system can then synthesize a dynamic number of instances of this
event handler, enabling the FPGA to process a large number of
requests in parallel (reminiscent of LINQits [12]).

An equivalent approach could be used to target the increasing
amount of software-defined hardware in data centers. For example,
applications for SDN-enabled switches could be synthesized from
high-level applications and deployed by the runtime system.

Tenet #7: Use Concurrent Garbage Collectors
One of the most prominent problems of managed runtime sys-
tems have traditionally been the pauses introduced by garbage
collection. Cloud workloads suffer from unpredictable GC pauses
in different ways [18, 32], and unpredictability is often worse than
lower throughout (particularly for services with a high fan-out, as

stragglers introduced by GC can propagate). Different workarounds
have been proposed [18, 31, 36, 37], but the only way to consistently
avoid the problem of unpredictable GC pauses is to completely elim-
inate them by employing a pause-free collector such as C4 [50].

Runtime systems should therefore universally employ such col-
lectors. While this lowers the overall application throughput, this
effect can be alleviated by reducing GC pressure (see Tenet #4). We
also believe that future hardware support may be able to perform
concurrent GC with much lower overheads than software [30].

4 A NEW LANGUAGE RUNTIME SYSTEM
Based on these seven tenets, we propose a shared substrate to
underpin language runtime systems for future cloud data centers.
Our vision is a generic managed runtime framework that can be
targeted by different language frontends (e.g., for Java, C#, Python
or JavaScript) and supports backends for different CPU instruction
sets, FPGAs, GPUs and other accelerators.

We believe that such a shared substrate is necessary to achieve
efficient composition of services in the cloud. A common founda-
tion allows services to communicate efficiently without incurring
serialization/deserialization overheads and translating between dif-
ferent formats. Furthermore, as projects such as LLVM [28] and
Truffle/Graal [51] have shown, building different languages around
a single framework can lead to high performance and maintainabil-
ity, since work can be leveraged by all these different languages.

Such a runtime systemwill need to build on existing technologies
to find adoption. Specifically, it will have to support existing lan-
guages, applications and platforms out of the box. A clear candidate
for the compiler portion of this work is LLVM [28]. It is a widely
supported compiler framework, and already provides a toolkit for
building managed runtime systems based on it [17]. LLVM is also
being adopted in the context of a commercial JVM, underpinning
Azul’s Falcon compiler [22]. Finally, LLVM already supports a wide
range of backends and has strong tool support.

Figure 3 shows a high-level overview of our proposed substrate.
The system contains the components that all language runtimes
have in common (compiler, garbage collector, etc.) and accepts
frontends for different languages. When code needs to be compiled,
it is handed to the frontend of the corresponding language, which
will transform it into LLVM IR (as well as stack maps, meta-data
for deoptimization, etc.) to pass to the compiler. We now outline
how this design incorporates our seven tenets:

#1 Shared Ahead-of-time Compilation: Prior to running an ap-
plication for the first time, the framework compiles its bytecode and
stores the result in a code cache that is accessible by all runtimes
of the user (potentially across machines). Execution profiles are
continuously collected and the compiler uses them for dynamic
optimization and updating the code cache. The cache can contain
multiple copies of each method, and is indexed by profile.

#2Object LayoutAdapters: To support interactions betweenmul-
tiple languages, we propose a mechanism where frontends register
Object Layout Adapterswith the system, which are callbacks that tell
the runtime how to interpret the fields of an object. This allows the
runtime to optimize across code from different languages, by letting
them operate on the same data (similar to Apache Arrow [2]).



Memory	Manager

Communication	Region	
(Shared	Page) Region-based	

Policy GC	Policy

Java	Frontend

Object	Layout	Adapters:
� (A)	iterateRefs(),	getField(),…
� (B) iterateRefs(),	getField(),…

External	Code
Cache	(Shared
across	cluster)

LLVM	(AOT)

Relocation
Logic	&	
Profiling

Local	Memory Remote	MemoryDisaggregated	Memory

Mutator Threads

Java	Class	FilesPython	Frontend LLVM	IR,	Stack	Maps,	etc.

Object	Model

Compiler

Profiler

Accelerators

FPGA GPU
CPU

FPGA Custom	ASIC

Mutator ThreadsMutator Threads

Object	Model	A

Object	Model	B

Figure 3: High-level overview of our proposed managed-language platform

#3CommunicationRegions:Zero-copy communication between
different applications is enabled by allocating special pages on the
heap that are not subject to GC and are considered volatile. These
pages can be accessed from multiple language runtime systems by
mapping them into their heap. Pointers within these pages cannot
point to a non-communication page and are relative to the page’s
base address. Since the runtime systems understand each others’
object formats, this avoids serialization or copying overheads.

#4 Heterogeneous Memory Management Policies: The heap
is divided into different parts, each managed by its own policy
(e.g., GC or region-based). Application developers can then choose
the policy that is most appropriate for a specific type of data. For
example, per-iteration data in frameworks such as Apache Spark
or Naiad lends itself to region-based memory management [18].

#5 DisaggregatedMemoryManagement:Accesses to heap data
are constantly profiled and commonly used data is relocated to local
memory (see Tenet #5). This can reuse many of the same mecha-
nisms as the garbage collector, and allows to manage disaggregated
memory at a much finer granularity than page-based schemes.

#6 Hardware Accelerator & FPGA Targets: Specialized hard-
ware should be supported through backends for the LLVM compiler
that can target FPGAs and other accelerators. This could integrate
ideas from frameworks such as DHDL or Dandelion.

#7 Fully Concurrent GC: Parts of the heap under GC policy
should be managed by a fully concurrent collector, potentially sup-
ported by hardware acceleration [30].

5 DISCUSSION
Realizing our proposed substrate requires considering several ques-
tions and trade-offs. We briefly discuss some of them here.

5.1 Development Approach
Building a new runtime system from scratch is a large undertak-
ing, and previous examples (such as HotSpot, the CLR, HHVM or
JikesRVM) suggest that it can take tens to hundreds of developer
years before a runtime system is competitive in terms of perfor-
mance. It is therefore important to build on existing technology
as much as possible. We believe that a combination of MMTk [7]

and LLVM [28] could be a good foundation (it has been shown that
a well-performing runtime system can be built around these two
components within the scope of an academic project [17]).

5.2 Programming Model
Several of our proposed features – particularly support for hardware
accelerators and heterogeneous memory management – require
application changes in order to take advantage of the system. An
important question is therefore how this would be integrated into
existing languages. There are three fundamental options: (1) chang-
ing the language itself, (2) reusing existing language constructs but
changing the compiler, or (3) a fully library-based approach.

We believe the latter to be the most promising approach, as it
is the only option that can be easily generalized to a wide range
of different languages. In this case, the runtime system would run
conventional applications but provide a special library with annota-
tions or API calls to support features such as region-based memory
management or targeting hardware accelerators.

5.3 Real-world Adoption
A key question for any new framework is how to achieve adoption.
We believe that the trend towards serverless computing and the
Cloud 3.0 may facilitates this. One path to adoption could be to inte-
grate our managed-language substrate into serverless frameworks
(such as Fission for Kubernetes). These frameworks could then take
advantage of the runtime transparently to the application.

6 CONCLUSION
As the public cloud is moving to Platform-as-a-Service, managed
language runtimes are becoming ever more central to the software
stack. We believe that future language runtimes in the cloud will
need to target accelerators, manage disaggregated memory and
compose large numbers of (potentially serverless) services effi-
ciently. Current language runtimes are not ideally suited for this
task, and future runtimes should be built on a common substrate
specifically designed for the workloads of the Cloud 3.0 era.

Acknowledgements: Research was partially funded by DOE grant
#DE-AC02-05CH11231, the STARnet Center for Future Architecture
Research (C-FAR), and ASPIRE Lab sponsors and affiliates Intel,
Google, HPE, Huawei, and NVIDIA.



REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-Scale Machine Learn-
ing. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’16).

[2] Apache Arrow. 2017. Powering Columnar In-Memory Analytics. (2017). https:
//arrow.apache.org/

[3] Krste Asanovic and D Patterson. 2014. Firebox: A hardware building block for
2020 warehouse-scale computers. In USENIX FAST, Vol. 13.

[4] Microsoft Azure. 2017. Machine Learning. (2017). https://azure.microsoft.com/
en-us/services/machine-learning/

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems.
In 22nd Symposium on Operating Systems Principles (SOSP ’09).

[6] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for
High Throughput and Low Latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’14).

[7] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004. Oil and
Water? High Performance Garbage Collection in Java with MMTk. In 26th Inter-
national Conference on Software Engineering (ICSE ’04).

[8] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes. Commun. ACM 59, 5 (April 2016), 50–57.

[9] AdrianMCaulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
et al. 2016. A Cloud-Scale Acceleration Architecture. In 49th Annual IEEE/ACM
International Symposium on Microarchitecture.

[10] Huawei Press Center. 2017. Huawei proposed DC 3.0 architecture of future data
center to meet the requirement of real-time data processing in big data era. (2017).
http://pr.huawei.com/en/news/hw-423134-3.0.htm

[11] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2016.
DianNao Family: Energy-efficient Hardware Accelerators for Machine Learning.
Commun. ACM 59, 11 (Oct. 2016), 105–112.

[12] Eric S. Chung, John D. Davis, and Jaewon Lee. 2013. LINQits: Big Data on Little
Clients. In 40th International Symposium on Computer Architecture (ISCA ’13).

[13] Databricks. 2015. Project Tungsten: Bringing Spark Closer to Bare Metal.
(2015). https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-
closer-to-bare-metal.html

[14] Jesper de Jong. 2015. Project Valhalla – Value Types. (2015). http://
www.jesperdj.com/2015/10/04/project-valhalla-value-types/

[15] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. 2015.
Beyond Processor-centric Operating Systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS XV).

[16] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network Requirements
for Resource Disaggregation. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16).

[17] Nicolas Geoffray, Gaël Thomas, Julia Lawall, Gilles Muller, and Bertil Folliot.
VMKit: A Substrate forManaged Runtime Environments. In 6th ACM International
Conference on Virtual Execution Environments (VEE ’10).

[18] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Viswani, Dimitrios Vytiniotis,
Ganesan Ramalingan, Manuel Costa, Derek Murray, Steven Hand, and Michael
Isard. 2015. Broom: sweeping out Garbage Collection from Big Data systems. In
15th Workshop on Hot Topics in Operating Systems (HotOS XV).

[19] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P. Grosvenor, Allen
Clement, and Steven Hand. 2015. Musketeer: All for One, One for All in Data
Processing Systems. In EuroSys ’15.

[20] Google. 2017. Google App Engine: Platform as a Service. (2017). https:
//developers.google.com/appengine

[21] Shan Shan Huang, Amir Hormati, David F. Bacon, and Rodric Rabbah. 2008.
Liquid Metal: Object-Oriented Programming Across the Hardware/Software
Boundary. In ECOOP ’08.

[22] InfoQ. 2017. Azul Systems Launches Falcon, a New Just-in-Time Compiler for
Java, Based on LLVM. (2017). https://www.infoq.com/news/2017/05/azul-falcon

[23] Intel. 2017. Intel® Rack Scale Design. (2017). http://www.intel.com/content/
www/us/en/architecture-and-technology/rack-scale-design-overview.html

[24] Mick Jordan, Laurent Daynès, Grzegorz Czajkowski, Marcin Jarzab, and Ciarán
Bryce. 2004. Scaling J2EE Application Servers with the Multi-tasking Virtual
Machine. Technical Report. Sun Microsystems, Inc., Mountain View, CA, USA.

[25] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, et al. 2017,
arXiv:1704.04760. In-Datacenter Performance Analysis of a Tensor Processing
Unit. (2017, arXiv:1704.04760).

[26] Data Center Knowledge. 2013. Meet the Future of Data Center Rack Technologies.
(Feb. 2013). http://www.datacenterknowledge.com/archives/2013/02/20/meet-
the-future-of-data-center-rack-technologies/

[27] David Koeplinger, Christina Delimitrou, Raghu Prabhakar, Christos Kozyrakis,
Yaqi Zhang, and Kunle Olukotun. 2016. Automatic Generation of Efficient Ac-
celerators for Reconfigurable Hardware. In 43rd International Symposium on
Computer Architecture (ISCA ’16).

[28] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimization (CGO ’04).

[29] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski, and Ding
Yuan. 2016. Don’t Get Caught in the Cold, Warm-up Your JVM: Understand and
Eliminate JVM Warm-up Overhead in Data-Parallel Systems. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’16).

[30] MartinMaas, Krste Asanovic, and John Kubiatowicz. Grail Quest: A New Proposal
for Hardware-assisted Garbage Collection. In 6th Workshop on Architectures and
Systems for Big Data (ASBD ’16).

[31] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. 2016. Taurus:
A Holistic Language Runtime System for Coordinating Distributed Managed-
Language Applications. In 21st International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’16).

[32] Martin Maas, Tim Harris, Krste Asanovic, and John Kubiatowicz. Trash Day:
Coordinating Garbage Collection in Distributed Systems . In 5th Workshop on
Hot Topics in Operating Systems (HotOS XV).

[33] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
2013. Unikernels: Library Operating Systems for the Cloud. In 18th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13).

[34] Microsoft Developer Network. 2017. Application Domains. (2017). https://
msdn.microsoft.com/en-us/library/2bh4z9hs(v=vs.110).aspx

[35] Microsoft Developer Network. 2017. Ngen.exe (Native Image Generator). (2017).
https://msdn.microsoft.com/en-us/library/6t9t5wcf(v=vs.110).aspx

[36] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat
Alamian, and Onur Mutlu. 2016. Yak: A High-Performance Big-Data-Friendly
Garbage Collector. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16).

[37] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing Xu.
2015. FACADE: A Compiler and Runtime for (Almost) Object-Bounded Big
Data Applications. In 20th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’15).

[38] OpenJDK. 2017. JEP 295: Ahead-of-Time Compilation. (2017). http://
openjdk.java.net/jeps/295

[39] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks. In
12th Symposium on Networked Systems Design and Implementation (NSDI ’15).

[40] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, Song Jiang, undefined,
undefined, undefined, and undefined. 2014. SDA: Software-defined accelerator
for large-scale DNN systems. 2014 IEEE Hot Chips 26 Symposium (2014).

[41] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford
InfoLab. Weld: A Common Runtime for High Performance Data Analytics. In
8th biennial Conference on Innovative Data Systems Research (CIDR ’17).

[42] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The Operating
System is the Control Plane. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’14).

[43] Google Cloud Platform. 2017. Cloud Dataflow - Batch & Stream Data Processing.
(2017). https://cloud.google.com/dataflow/

[44] Tom’s IT Pro. 2016. Cloud 3.0 And ’Building Scale’ At Interop. (May 2016). http:
//www.tomsitpro.com/articles/interop-cloud-3-building-scale, 1-3277.html

[45] Android Open Source Project. 2017. Implementing ART Just-In-Time (JIT) Com-
piler. (2017). https://source.android.com/devices/tech/dalvik/jit-compiler.html

[46] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis
Fetterly. 2013. Dandelion: A Compiler and Runtime for Heterogeneous Systems.
In 24th ACM Symposium on Operating Systems Principles (SOSP ’13).

[47] Amazon Web Services. 2017. Amazon EC2 F1 Instances. (2017). http:
//aws.amazon.com/ec2/instance-types/f1/

[48] Amazon Web Services. 2017. Amazon Machine Learning - Predictive Analytics
with AWS. (2017). http://aws.amazon.com/machine-learning/

[49] Amazon Web Services. 2017. AWS Lambda - Serverless Compute. (2017). http:
//aws.amazon.com/lambda/

[50] Gil Tene, Balaji Iyengar, and Michael Wolf. 2011. C4: The Continuously Concur-
rent Compacting Collector. In ISMM ’11.

[51] ChristianWimmer and ThomasWürthinger. 2012. Truffle: A Self-optimizing Run-
time System. In 3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity (SPLASH ’12).

https://arrow.apache.org/
https://arrow.apache.org/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
http://pr.huawei.com/en/news/hw-423134-3.0.htm
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
http://www.jesperdj.com/2015/10/04/project-valhalla-value-types/
http://www.jesperdj.com/2015/10/04/project-valhalla-value-types/
https://developers.google.com/appengine
https://developers.google.com/appengine
https://www.infoq.com/news/2017/05/azul-falcon
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
http://www.datacenterknowledge.com/archives/2013/02/20/meet-the-future-of-data-center-rack-technologies/
http://www.datacenterknowledge.com/archives/2013/02/20/meet-the-future-of-data-center-rack-technologies/
https://msdn.microsoft.com/en-us/library/2bh4z9hs(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/2bh4z9hs(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/6t9t5wcf(v=vs.110).aspx
http://openjdk.java.net/jeps/295
http://openjdk.java.net/jeps/295
https://cloud.google.com/dataflow/
http://www.tomsitpro.com/articles/interop-cloud-3-building-scale,1-3277.html
http://www.tomsitpro.com/articles/interop-cloud-3-building-scale,1-3277.html
https://source.android.com/devices/tech/dalvik/jit-compiler.html
http://aws.amazon.com/ec2/instance-types/f1/
http://aws.amazon.com/ec2/instance-types/f1/
http://aws.amazon.com/machine-learning/
http://aws.amazon.com/lambda/
http://aws.amazon.com/lambda/

	Abstract
	1 Introduction
	2 Data Centers in the Cloud 3.0 Era
	2.1 Resource Disaggregation
	2.2 Hardware Accelerators
	2.3 Serverless Deployment Model

	3 Rethinking the Language Runtime
	4 A New Language Runtime System
	5 Discussion
	5.1 Development Approach
	5.2 Programming Model
	5.3 Real-world Adoption

	6 Conclusion
	References

