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Abstract

Optimizing Resource Allocations for Dynamic Interactive Applications

by

Sarah Lynn Bird

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Krste Asanović, Co-chair

Professor David Patterson, Co-chair

Modern computing systems are under intense pressure to provide guaranteed responsive-
ness to their workloads. Ideally, applications with strict performance requirements should be
given just enough resources to meet these requirements consistently, without unnecessarily
siphoning resources from other applications. However, executing multiple parallel, real-time
applications while satisfying response time requirements is a complex optimization problem
and traditionally operating systems have provided little support to provide QoS to applica-
tions. As a result, client, cloud, and embedded systems have all resorted to over-provisioning
and isolating applications to guarantee responsiveness. Instead, we present PACORA, a re-
source allocation framework designed to provide responsiveness guarantees to a simultaneous
mix of high-throughput parallel, interactive, and real-time applications in an e�cient, scal-
able manner. By measuring application behavior directly and using convex optimization
techniques, PACORA is able to understand the resource requirements of applications and
perform near-optimal resource allocation—2% from the best allocation in 1.4ms while only
requiring a few hundred bytes of storage per application.
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Chapter 1

Introduction

As growing on-chip hardware parallelism delivers increasing processing capabilities, users
expectations of their personal computing devices grows as well. Today’s users expect snappy
operation from high-quality multimedia and interactive applications that call for responsive
user interfaces and stringent real-time guarantees from the systems that host them. As result,
providing responsiveness is a growing need for all types of systems, ranging from webservers
and databases running on cloud systems, through interactive multimedia applications on
mobile clients, to emerging distributed embedded systems.

Perhaps the most important component of interactive system performance is the behavior
of the operating system (OS). Surprisingly, over the last 30 years the operating system
kernels on which most systems rely have been built on a minicomputer foundation, and
the major advances in performance, human-computer interfaces and graphics, as dramatic
as these have been, have left their architecture relatively untouched. The list of standard
OS concepts: interrupts, device drivers, priority thread scheduling, demand paging, and the
like would be familiar to OS kernel developers of the 1980’s. Developers have been able to
avoid rethinking the operating system kernel chiefly because the hardware platform it ran
on didn’t change in any fundamental way [139]. Only the presence of specialized real-time
operating systems provide a hint that modern, general-purpose OSes are not up to all of the
tasks a developer might demand of them. These traditional OS architectures were designed
to maximize utilization with little consideration for individual application quality-of-service
(QoS) and thus provide few mechanisms to describe application deadlines or guarantee their
responsiveness.

Often the only way to guarantee performance is to remove the possibility of interference
from other applications all together, and evidence of this behavior can be found in current
systems of all sizes. Cloud computing providers routinely utilize their clusters at only 10%
to 50% to keep the system responsive, despite the significant impact on infrastructure capi-
tal costs and the additional operational costs of consuming electricity [12, 58, 84]. In some
cases, cloud providers run only a single application on a cluster to avoid unexpected inter-
ference [84]. Some mobile systems have gone so far as to limit which applications can run in
the background [8] in order to preserve responsiveness and battery life, despite the obvious
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concerns for the overall user experience. In the embedded space, realtime developers often
use completely separate systems for each application to ensure QoS, despite the high cost of
this approach.

However, such significant over-provisioning can not continue indefinitely into the future:
users will continue to demand increasing performance and functionality for their applications.
Simply expanding the number of hardware resources isn’t a viable solution: battery life and
power bills can not be increased at the rate required to meet this demand [84, 145, 62].
Consequently, the industry has no choice but to improve the e�ciency at which these systems
operate [84, 11], if they hope to meet customers growing expectations.

1.1 Resource Allocation

Now the problem becomes how best to make e�cient use of computing resources while sat-
isfying QoS requirements for a dynamically changing and complex mix of simultaneously
running applications. Traditionally, this problem was reduced to scheduling threads on a
single processor. In most systems, there was only a single processor that ran at top speed
almost all the time. Memory was time-multiplexed too, to a much lesser extent, but other
resources were deemed so abundant as to require no explicit management at all (e.g., I/O,
network bandwidth. With modern hardware diversifying to include a variety of parallel and
possibly heterogenous architectures (e.g., multicore, GPUs) and systems running multiple
parallel, real-time applications at once, the situation becomes significantly more complex.
Concurrently running applications might interfere with each other through shared resources,
causing applications to experience unpredictable performance degradations if the system only
considers CPU resources. For example, if two compute-bound threads are simultaneously
scheduled on two di↵erent cores of a multicore processor, there may be no degradation versus
running each in isolation. However, if the two threads are memory-bandwidth constrained,
simultaneous scheduling could dramatically impair performance. Even more complex be-
haviors may occur if cores or hardware thread contexts share functional units, caches, or
TLBs. Some applications may not scale well enough to utilize a given resource while other
applications may fail to meet user-driven deadlines given too few resources. Even if only
one application is running, a new responsibility for the OS in the manycore era is to maxi-
mize performance and energy-e�ciency of that sole app by only allocating the appropriate
resources. For example, allocating too many cores may cause the application to slow down,
or consume additional power for no additional performance gain.

As a result, the problem begins to look more like a resource allocation optimization
where the system must figure out how to give just enough of a variety of system resources
(e.g., nodes, processor cores, cache slices, memory pages, various kinds of bandwidth) to
applications to meet their performance requirements consistently.

Many current systems address this problem by requiring applications to request a specific
number of resources [147, 59], and if resources are oversubscribed the system seeks to degrade
performance fairly [147, 51, 7, 6, 158, 71]. While simple to implement, this approach has a few
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drawbacks: it requires additional application developer e↵ort to understand the resources
required and developers often request many times more resources than they need to be
safe [84]; it is less robust to resource changes and requires the developer to update the
requirements as new hardware is released; and an application does not have the global view
of what else has to run in the system, so it can not request resources based on the relative
importance of its tasks compared to others in the system.

1.2 PACORA

In this thesis, we present PACORA: Performance-Aware Convex Optimization for Resource
Allocation, a resource-allocation framework that determines the appropriate resources for
applications running in a system without requiring the application developers to understand
resource usage. PACORA seeks to dynamically assign resources across multiple applica-
tions to guarantee responsiveness without over-provisioning and adapt allocations as the
application mix changes. It is a generic framework that we believe is applicable in many
resource-allocation scenarios, from cloud providers determining how many resources to give
each job to avoid violating Service-Level Agreements (SLAs), through databases allocating
resources to queries, to distributed embedded systems allocating bandwidth among devices
and sensors.

PACORA specifically focuses on the problem of how much of each resource type to
assign to each application, and unlike many other resource allocators, PACORA considers
all resource types when making decisions. Rather than allocating resources to maximize
a system’s aggregate performance or its hardware utilization as many resource allocation
systems do, PACORA mathematically optimizes a single objective function designed to
accurately reflect the value of the system to its customer(s) [153]. This point of view is often
cast in the literature as the problem of defining and maximizing utility [142]; PACORA
minimizes a negative utility - the penalty - instead. PACORA explicitly represents system
power as a competing “application”, so resources that can do little to reduce the penalty
of other applications are automatically powered down to reduce it’s penalty and improve
e�ciency.

PACORA takes an uncommon approach to resource allocation, relying heavily on application-
specific functions built through measurement and convex optimization. PACORA’s functions
explicitly represents application deadlines rather than simply the application’s relevant im-
portance, as with priority systems. Knowing the deadlines allows the system to make contin-
uous trade-o↵s among application responsiveness, system performance, and energy e�ciency,
and lets the system make optimizations that are di�cult in today’s systems, such as running
just fast enough to make the deadline.

Using runtime measurements, application-specific performance models are built and main-
tained to help determine the resources required to meet each application’s deadlines. PA-
CORA leverages partitioning mechanisms in the system to create isolation between ap-
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plications. Reasonable isolation virtualizes the performance of a machine1, which allows
PACORA to build high-fidelity performance models of application runtimes independent of
what is happening in the rest of the system.

PACORA uses convex optimization to perform real-time resource allocation inexpen-
sively, dynamically allocating resources to adjust to the changing state of the system. The
optimization problems involved are tiny by contemporary standards, and solutions are quite
fast. Moreover, the adaptive, closed-loop nature of the allocation process means that a so-
lution need not be optimal to be beneficial; PACORA is incessantly working to reduce total
penalty.

We choose to study PACORA implemented in a general-purpose operating system for
client systems, because we believe this scenario has some of the most di�cult resource al-
location challenges: a constantly changing application mix requiring low overhead and fast
response times, shared resources that create more interference among the applications, and
platforms that are too diverse to allow a priori performance prediction. PACORA’s models
require only a few hundred bytes of additional storage per application in our OS implemen-
tation, and with this negligible overhead, PACORA is able to dynamically allocate resources
to adjust to the changing state of the system and trade o↵ responsiveness and energy. PA-
CORA makes resource allocation decisions in 350 µs in the worst case and often faster than
50 µs. Static allocation decisions are near optimal—only 2% from the best possible alloca-
tion on average. By building application-specific functions online and formulating resource
allocation as an optimization problem, PACORA is able to accomplish multi-dimensional
resource allocation on a general set of resources, thereby handling heterogeneity and the
growing diversity of modern hardware while protecting application developers from needing
to understand resources.

1.3 Contributions

In this thesis, we have contributed the following:

1. A simple but e↵ective model to represent application performance for resource alloca-
tion

2. A function to represent the application deadlines and importance

3. A framework to perform multidimensional resource allocation in realtime

1.4 Collaborations

Much of the work in this thesis was part of collaborations with others. Here I attempt to
attribute these contributions to the proper individuals.

1Virtualized performance means that given a subsection of the machine (e.g., 2 cores and 3 cache slices),
the application will behave as if it was on a separate machine of that size
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Henry Cook and I shared an interest in hardware partitioning mechanisms and appli-
cation modeling. The initial RTF study in Chapter 3 was a joint e↵ort to explore these
interests. Miquel Moreto joined the collaboration for a study of the e↵ect of cache parti-
tioning on a variety of modern benchmarks [38]. Data collected from this study was reused
for the PACORA static allocation analysis in Chapter 4, and many of the results regarding
benchmark behavior are shown throughout the thesis.

Burton Smith added the idea of using convexity to Henry’s and my initial research and
has worked closely with me to develop, revise and extend the PACORA formulation for
many years. Stephen Boyd and Lin Xiao provided inspiration and advice regarding the use
of convex optimization and worked closely with us to create our ADMM formulation and
implementation.

The Tessellation and RAMP teams both provided platforms that were used to collect
data shown in this thesis [137, 35]. Gage Eads, in particular, worked closely with me to help
develop the dynamic video experiment in Chapter 6.
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Chapter 2

Related Work

Over the years, there has been much work in scheduling and resource management in batch
and high-performance computing systems, operating systems, real-time computing, hard-
ware, and more recently cluster and datacenter management. In this chapter, we present the
work most related to PACORA, particularly focusing on performance prediction, modeling,
and satisfying QoS requirements such as deadlines or Service-Level Objectives (SLOs).

2.1 Batch Scheduling and Cluster Management

Classic resource management systems were designed for batch scheduling [45, 47]. Like
PACORA, batch scheduling systems rely on a gang-scheduling model [46] and can allocate
multiple resource types. However, they tend to use queues and priorities to schedule jobs
while trying to keep all resources busy. Jobs are placed into a queue based on the priority
of the job according the system administrator. When resources become available, the job
in the highest priority queue is scheduled first. Resource allocations are always the user’s
responsibility to specify and pay for. Responsiveness can be improved by buying a higher
priority or more resources. Few batch systems incorporate deadlines; however, there are a
few exceptions such as scheduling for the Tera MTA [4].

Modern cluster resource management has a similar flavor. In systems such as Amazon
EC2 [5], Eucalyptus [108], and Condor [118], users must specify their resource requirements.
Other systems such as Hadoop [7, 6, 158] and Quincy [71] use a fairness policy to assign re-
sources. In Yarn [147], the Resource Manager also uses fairness to assign resources. However,
Application Managers track resource needs of applications and sends them to the Resource
Manager, so the application developer does not need to specify them. Mesos [59] uses two-
level scheduling to manage resources in a cluster. Mesos decides how many resources to o↵er
to its applications; they decide which resources to accept and how to schedule them. Mesos
does not provide a particular resource allocation policy, but is a framework that can support
multiple policies. Dominant Resource Fairness [51], a generalization of max-min fairness to
multiple resources types, has been implemented in Mesos. PACORA could be implemented
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as another resource allocation policy in Mesos.

2.2 Co-scheduling Applications

Much recent work has focused on the problem of choosing which applications or VMs to
schedule together to minimize interference. Interference, which can significantly slow down
applications, typically is the result of applications interacting in caches or other shared
resources. Unlike PACORA, which solves the problem of how many resources to give an
application, co-scheduling techniques focus on placing applications on particular resources.
The majority of these techniques concentrate on quantifying or predicting the interference
between co-scheduled applications.

Some of these approaches could be combined with PACORA in di↵erent ways. For exam-
ple, PACORA could determine the total allocation and then one of these approaches could
be used to place the applications, or PACORA could be used to partition resources on a
single node after one of these techniques selected which applications to co-schedule there. Al-
ternatively, PACORA could potentially replace these techniques by looking for combinations
of applications with low penalty to co-schedule together. While not tested specifically, there
is no reason to believe that approach wouldn’t work in systems with resource partitioning.
However, many of the co-scheduling techniques focus on interference from shared resources
that are not partitioned. PACORA assumes that its response-time functions (RTFs) are
independent of the other applications on the machine, and shared resources could easily
violate this assumptions. In systems with significant interference from shared resources, the
co-scheduling techniques that quantify or predict interference would work better.

Disjoint Resource Utilization

One line of work investigated techniques on single nodes to co-schedule applications with
disjoint resource requirements to minimize interference, for example, executing a compute-
bound and memory-bound application concurrently [136, 27, 125, 160, 166].

Shen et al. showed that using hardware measurement information for resource-aware
scheduling resulted in a 15-70% reduction in request latency over default Linux for RUBiS,
TPC-C, and TPC-H [125]. Zhang et al. [160] used a similar technique and found that most
applications receiving a 7–8% boost in performance over traditional scheduling and a 58%
reduction in unfairness.

Calandrino et al. [27] uses working set sizes to make co-scheduling decisions and enhance
soft real-time behavior. Merkel and Bellosa [100] try to co-schedule applications with disjoint
energy usage. Their technique uses performance counters to predict the energy consumptions
of tasks and then tries to schedule to maximum performance within the thermal limits of
the system. Merkel and Bellosa [101] later propose Task Activity Vectors that describe how
much each application uses the various functional units; these vectors are used to balance
usage across multiple cores and unbalance usage among hardware threads within each core.
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The intended e↵ect is to distribute chip temperature more evenly, but the idea may be more
broadly applicable, e.g., for heterogeneous systems.

Interference Experiments

Another body of work has relied running online experiments with di↵erent combinations of
applications and then selecting the highest performing combination. Tang et al. [140] use an
adaptive approach to map threads-to-cores. The approach uses an exploration period where
it tries di↵erent thread-to-core mappings and then selects the highest performing one. Mars
et al. [97] present run experiments in advance to characterize the pressure each application
generates in the memory subsystem and the sensitivity to memory pressure. They use
this information to select applications that will run well together. Zheng et al. [162] use
a sandboxed environment to run experiments for collocating applications and then use the
results to generalize to the larger datacenter.

Predicting Interference

Another line of work explores past measurements or performance models to predict the
expected interference between applications. Cuanta [54] focuses on predicting the slowdown
from cache e↵ects by creating a performance lookup table per application, but requires access
to physical memory addresses. In [152], West et al. use hardware performance counters to
estimate cache occupancy. The estimated occupancy is then fed into an analytical model
to predict cache misses for co-scheduled applications. Verma et al. [148] assumes that the
cache occupancy is provided by the applications and then uses heuristics to co-schedule
applications to minimize cache interference.

Koh et al. [81] predict performance degradation of co-scheduled applications using the
resource utilization statics of the applications. For each application they build a resource
usage vector which includes cache, processor, disk, and network utilization information. In
a technique similar to program similarity analysis [63], they compare the resource vector of
a new application with historical information from other applications. The predicted per-
formance degradation is based on a weighted sum of the observed performance degradation
of applications with the most similar resource vectors. Stewart et al. [131] predict resource
usage based on the transaction mix and combine that information with expected queuing
delays to co-schedule applications.

Paragon uses profiling data combined with collaborative filtering techniques to determine
on which server to place an application based on the server configuration and co-scheduled
applications [40]. Dejavu [146] categorizes applications into workload classes, and then uses
the workload class to determine an appropriate allocation and co-scheduling for applica-
tion. Dejavu caches preferred co-schedules and uses an interference index to evaluate new
placements.
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2.3 Model-Based Scheduling and Allocation
Frameworks for SLOs and Soft Real-Time
Requirements

In both the cloud computing and realtime communities, there is a growing interest in use
application-specific performance “models” to try to schedule to meet deadlines or SLOs.

Autonomic Computing and Utility Functions

Much of this research has been in autonomic computing [103, 141, 143, 82]. Typically, the
performance models are utility functions derived from o↵-line measurements of raw resources
utilization. These functions are either interpolations from tables or analytic functions based
on queueing theory [103]. The utility functions typically map the number of servers each
execution environment receives to its performance relative to its requirements. A central
arbiter maximizes total utility. The utility functions are not necessarily concave, so the
arbiter must use reinforcement learning [141] or combinatorial search [103] to make alloca-
tions. Each application has a manager that schedules the resources given to it by the arbiter.
Walsh et al.[142] note the importance of basing utility functions on the metrics in which QoS
is expressed rather than on the raw quantities of resources. There are other philosophical
similarities to PACORA, but since the objective functions are discrete and non-convex their
optimization is di�cult. A survey of autonomic systems research appears in [66].

Rajkumar et al.[117] propose a system Q-RAM that maximizes the weighted sum of
utility functions, each of which is a function of the resource allocation to the associated
application. Unlike PACORA, there is no distinction between performance and utility, and
the utility functions are assumed as input rather than being discovered by the system. The
functions are sometimes concave, and in these cases the optimal allocation is easily found by
a form of gradient ascent. When the utility functions are not concave, a suboptimal greedy
algorithm is proposed.

Chase et al. [29] monitor the performance of applications as a function of their resources
in cloud environments and use a greedy algorithm to allocate resources to maximize resource
utility. Urgaonkar et al. [144] create a closed queuing network model and use a Mean Value
Analysis (MVA) algorithm to allocate resources for multi-tiered applications. Watson et
al. [151] also develop queuing-based performance models for enterprise applications, but use
a virtualized environment to generate the models.

Feedback-driven Controllers

Several systems use a feedback-driven reactive approach to resource allocation where a con-
trol loop or reinforcement learning adjusts allocations continuously.

Rightscale [120] for Amazon’s EC2 [5] monitors the load of applications and automatically
creates additional VM instances when the load crosses a certain threshold, using an additive-
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increase controller to determine the number of instances to create. Zhu et al. [164] use three
levels of controllers to meet SLOs in datacenters. Their node controller allocates resources
on-chip. The pod controller migrates VM’s between nodes, and the pod set controller adjusts
the resource allocations for a pod.

AcOS [13] and Metronome [127] feature hardware-thread based maintenance of “heart
rate” targets using adaptive reinforcement learning. AcOS also senses thermal conditions
and can exploit Dynamic Voltage and Frequency Scaling (DVFS). Bodik et al. [23] builds
online performance models like PACORA. Initially, their technique begins with an explo-
ration policy that avoids nearly all SLO violations while building the model; later, it shifts
to allocating with a controller based on the model built with exploration policy. The models
are statistical, and bootstrapping is used to estimate performance variance. Major changes
in the application model are detected and cause model exploration to resume. The models
are not convex or concave in general, and all SLOs must be met with high probability.

Jockey [48] has some similarities to PACORA: it is intended to handle parallel compu-
tation, its utility functions are concave, and it adapts dynamically to application behavior.
Its performance models are obtained by calibrating either event-based simulation or a ver-
sion of Amdahl’s Law to computations. Jockey does not optimize total utility but simply
increases processors until utility flattens for each application, i.e., each deadline is met. A
fairly sophisticated control loop prevents oscillatory behavior.

Mars et al. [155] build on the o✏ine performance models and co-scheduling algorithm in
Bubble-Up [97] to create an adaptive system called Bubble-Flux. After Bubble-Up deter-
mines applications placement. Bubble-Flux uses a controller which continuously monitors
the QoS of applications and slows down background computation as needed. Q-Clouds [104]
creates models online using hardware performance counters to represent the interference in
cache, memory, and prefetchers from co-scheduled applications. A controller then adjusts
the resource allocations so that applications perform as if they were scheduled alone.

Specifications and O✏ine Workload Models

Other systems base decisions on user-provided resource specifications and a real-time schedul-
ing algorithm. In the Redline system [156], compact resource requirement specifications writ-
ten by hand to guarantee response times. Isolation of resources is strong, as in PACORA.
Scheduling is Earliest-Deadline-First. Admission control is lenient but oversubscription sit-
uations are remedied by de-admitting some of the non-interactive applications.

Gmach et al. [52] use traces of workloads to generate synthetic workloads and predict
future resource needs. They use their system to aid capacity planning in datacenters. Soror
et al. [129] use information about the expected workload of a database to create workload-
specific VM configurations. Their framework requires the database management system to
represent the workload as a set of SQL statements.
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Resource Management Frameworks

Some frameworks can support multiple scheduling and resource allocation policies. Guo et
al.[55] present such a framework. They point out that much prior work is insu�cient for
true QoS; merely partitioning hardware is not enough because there must also be a way to
specify performance targets and an admission control policy for jobs. Unlike PACORA, they
argue that targets should be expressed in terms of capacity requirements rather than rates
or times.

Nesbit et al.[106] introduces Virtual Private Machines (VPM), a framework for resource
allocation and management in multicore systems. A VPM comprises a set of virtual hardware
resources, both spatial (physical allocations) and temporal (scheduled time-slices). They
break down the framework components into policies and mechanisms which may be imple-
mented in hardware or software. VPM modeling maps high-level application objectives via
translation, which uses models to assign acceptable VPMs to applications while adhering to
system-level policies. A scheduler decides if the system can accommodate all applications.
The VPM approach and terminology are similar to PACORA’s at a high level, but no design
or implementation of the modeling, translation, or scheduling components is presented [106].

There are several optimization frameworks for datacenters. Kingfisher [124] uses an
integer linear program approach to minimize the resource cost for a cloud tenant based
anticipated workload changes. They assume a perfect workload predictor. Their optimization
uses the workload predictions and then considers the possibilities for scaling up or out and
considers the time to transition to new configurations. In [42], Doyle et al. create models to
predict the response time of web services by using their storage I/O rate, storage response
time, memory usage, and CPU latency. They use a hill-climbing approach to assign resources
to applications with the greatest marginal improve to a system-level metric. Like PACORA
they can provide di↵erentiated QoS. However, since their formulation is non-convex, they
cannot guarantee that they are moving towards an optimal allocation.

In Whare-map [96], applications are profiled while they run in the datacenter. Whare-
map uses than information to create an opportunity factor that indicts how well a particular
application can run on a given node type. It then uses a stochastic hill climbing approach
to determine a good mapping of jobs to nodes.

2.4 Hardware Resource Partitioning and QoS

PACORA relies on resource partitioning and Quality-of-Service mechanisms when available
to enforce its resource allocation decisions. Resource partitioning and QoS research is active
for on-chip, cluster, and networking resources [132, 133, 116, 157, 77, 64, 55, 56, 87, 105,
31, 28, 67, 43, 161, 99, 159]. However, the vast majority of research focuses on allocating
a single resource type with a fixed policy, typically fairness. Some have researched network
bandwidth fairness [22, 78, 93], while others [15, 14, 163] have concentrated on processor
fairness.
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Hardware partitioning research, which has largely focused on caches, provides mech-
anisms based on policies baked into the hardware, not the flexible allocations PACORA
requires [132, 133, 116, 28, 31, 43, 67, 99, 159, 161]. Early work focused on providing
adaptive, fair policies that ensure equal performance degradation [77, 157], not guarantees
of responsiveness. Other work has focused on maximizing system performance or utiliza-
tion [132, 133, 116] . Qureshi and Patt [116] create cache utility functions that represent an
application’s miss-rate as a function of it’s cache allocation. They use a greedy allocation
technique to partition the cache to minimize the total cache misses across all applications.

More recent proposals have incorporated more sophisticated policy management [56, 55,
64, 73]. Iyer et al. [72] suggests a priority-based cache QoS framework, CQoS, for shared cache
way-partitioning. The priorities might be specified per core, per application, per memory
type, or even per memory reference. However, simultaneous achievement of performance
targets as in PACORA is not addressed. Bitirgen et al. [20] use artificial neural networks
to predict an applications performance as a function of the cache and memory bandwidth
allocations and the CPU power states. They then use a heuristic to search for an allocation
that has a high weighted speedup.

2.5 Summary

Resource management and scheduling has been a common area of research for many com-
munities over the years including high-performance computing systems, operating systems,
real-time computing, computer architecture, and distributed systems. However, much of the
past work has focused on maximizing system utilization or providing fairness to applica-
tions. PACORA instead focuses allocating on resources to guarantee di↵erentiated QoS to
applications to they can make their deadlines. Recently, resource allocation and schedul-
ing systems, particularly for cloud and web services, have begun to work on performance
prediction, modeling, and satisfying deadlines or SLOs like PACORA. Few of these ap-
proaches perform multidimensional resource allocation as in PACORA, but instead focus on
co-scheduling applications. The most similar line of work typically relies on controllers to
adjust resource allocations dynamically when deadlines are being missed. PACORA is the
only framework that determines multidimensional resources allocations based convex models
and then finds the globally optimal resource allocation using optimization.
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Chapter 3

PACORA Framework

In this chapter, we describe the architecture of the PACORA framework. We present the
mathematical formulation and prove its convexity. We also describe the two application
specific-functions in detail and present experiments that helped guide the selection of the
response-time function.

3.1 PACORA Architecture

PACORA is a framework designed to determine the proper amount of each resource type to
give each application.

For our purposes, an application is an entity to which the system allocates resources:
these can be a complete application (e.g., a video player), a component of an application
(e.g., a music synthesizer), a background OS process (e.g., indexing), a job in warehouse-scale
computing, or a distributed application in a distributed embedded system.

Resources are anything that the system can “partition” using hardware or software.
Resources can typically be thought of as one of three types: compute, communication, and
capacity1. In our operating system experiments, we use cores (compute), network bandwidth
(communication), and cache ways and memory pages (capacity). Other operating scenarios
would have resources that perform similar functions at a di↵erent scale. For warehouse-scale
computing, resources are more likely to be di↵erent types of nodes, network bandwidth, and
storage. For distributed embedded systems, resources would include compute devices, link
bandwidths, and memories.

Resource Allocation as Optimization

PACORA formulates resource allocation as an optimization problem designed to determine
the ideal resource allocation across all active applications by trying to minimize the total

1PACORA does not treat any resource types di↵erently so classification is not strictly necessary. It is
only described here to demonstrate the range of resources that could be controlled by PACORA.
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Figure 3.1: Visual representation of PACORA’s optimization formulation. The runtime func-
tions represented are the speech recognition, stencil kernel, and graph traversal applications
from the evaluation Chapter 4.
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penalty of the system. This approach is analogous to minimizing dissatisfaction with the user
experience due to missed deadlines in a client system and minimizing the contract penalties
paid for violated Service-Level Agreements (SLAs) in a cloud system. Figure 3.1 presents
the formulation visually.

The optimization selects the allocations for all resources and resource types at once. This
approach enables the system to make tradeo↵s between resource types. For example, the
system could choose to allocate more memory bandwidth in lieu of on-chip cache, or one large
core instead of several small cores. Given that all of the resources allocated to an application
contribute to the response time, independently allocating each resource type would make it
di�cult to provide predictable response times for applications without over-provisioning.

PACORA employs two types of application-specific functions in its optimization: a
response-time function (RTF) and a penalty function. The response-time function repre-
sents the performance of the application with di↵erent resources and is built with runtime
measurements. The penalty function represents the user-level goals for the application (i.e.,
the deadline and how important it is to meet) and is set by the system, developer, or ad-
ministrator.

A succinct mathematical characterization of this resource optimization scheme is the
following:

Minimize
X

p2P
⇡p(⌧p(ap,1 . . . ap,n)) (3.1)

Subject to
X

p2P
ap,r  Ar, r = 1, . . . n (3.2)

and ap,r � 0 (3.3)

Here ⇡p is the penalty function for application p, ⌧p is its response time function, ap,r is the
allocation of resource r to application p, and Ar is the total amount of resource r available.

PACORA is designed to be convex by construction to take advantage of e�cient convex
optimization methods for solving the optimization problem [24].

Assumptions

In Section 3.1, we have presented the mathematical framework behind PACORA. However,
in order to deploy PACORA in a real system, we also need to make three assumptions about
the design of the system. Here we describe these assumptions in detail.

1) Hierarchical Scheduling

PACORA is designed for systems where resource allocation is separate from scheduling.
This split enables the use of application-specific scheduling policies, which have the potential
to be easier to design and more e�cient than general-purpose schedulers that have to do
everything. The resource allocation system is then able to focus on the problem of how much
of each resource type to assign to each application.
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In client machines, PACORA makes coarse-grain resource-allocation decisions (e.g., cores
and memory pages) at the OS level, while the micro-management of these resources is left to
user-level runtimes, such as Intel Threaded Building Blocks [36] or Lithe [111], and to user-
level memory managers. However, a user-level runtime is not strictly necessary: in Linux,
for example, we have used PACORA to set thread a�nity or size resource containers.

If the machine is operating in a cloud computing environment, PACORA could be used
in a hypervisor to allocate resources among guest OSes. For warehouse-scale computers, PA-
CORA could be used to allocate resources (e.g., nodes and storage) to jobs, while scheduling
is left to other entities such as the MapReduce framework[39] or the node OS.

PACORA could be used in a system designed to consolidate realtime systems. Resources
can be allocated to various realtime user-level schedulers such as Earliest-Deadline-First or
Rate-Monotonic schedulers, and PACORA will guarantee quality-of-service to the schedulers,
eliminating the need in the case of many applications for a realtime OS designed around a
single real-time scheduler.

2) Allocation Enforcement

PACORA relies on resource allocation mechanisms to assign resources and enforce alloca-
tions. For PACORA to be able to use a resource, the system must be able to allocate the
resource (e.g., a core) or a fraction of it (e.g., a percentage of network bandwidth) to an
application and enforce this allocation. Enforcement can be in hardware or software. For
example, cache partitioning could be implemented in hardware easily by changing the re-
placement algorithm to limit in which ways an application can write data (as is done in our
Sandy Bridge prototype used in the experiments in Chapter 4) or the operating system could
use page coloring emulate cache partitioning.

We have found that hardware mechanisms are readily available in most systems for some
resources (e.g., cores and memory pages) and others can easily be managed in with software
(e.g., network bandwidth). During the course of this work we have also observed QoS
mechanisms being added to commercial systems (e.g., cache partitioning) [38]. As more
QoS mechanisms become available on future systems, other resources could be easily added
to PACORA.

3) Performance Isolation and Shared Resources

PACORA assumes some amount of performance isolation between applications. In order for
the RTFs to accurately reflect the expected response times of the applications, it is important
that the response time does not change much as a function of the other applications currently
running on the machine. However, the performance isolation need not be perfect: all of our
evaluation was run on current x86 hardware with some shared resources, and PACORA was
still e↵ective. Chapter 7 discusses handling shared resources in more detail.
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3.2 Convex Optimization

If the penalty functions, response-time functions, and resource constraints were arbitrary,
little could be done to optimize the total penalty beyond searching at random for the best
allocation. However, we designed PACORA’s optimization, RTFs, and penalty functions to
be convex by construction, which enables us to use convex optimization [24] methods when
optimizing. By framing our resource allocation problem as a convex optimization problem,
we get two significant benefits: for each problem an optimal solution exists without multiple
local extrema, and fast optimization methods with practical incremental solutions become
feasible. In this section, we prove the convexity of PACORA’s optimization formulation.
The RTF and penalty function convexity are discussed in Sections 3.3 and 3.4 respectively.
PACORA also formulates RTF creation as a convex optimization problem, as explained in
Section 5.4.

Resource Allocation Optimization Convexity

A constrained optimization problem is convex if both the objective function to be minimized
and the constraint functions that define its feasible solutions are convex functions. A function
f is convex if its domain is a convex set and f(✓x+ (1� ✓)y)  ✓f(x) + (1� ✓)f(y) for all x
and y in its domain and for ✓ between 0 and 1. A set is convex if for any two points x and y in
the set, the point ✓x+(1�✓)y is also in the set for all ✓ between 0 and 1. If f is di↵erentiable,
it is convex if its domain is an open convex set and f(y) � f(x)+rfT

· (y� x) where rf is
the gradient of f . Put another way, f is convex if its first-order Taylor approximations are
always global underestimates of its true value.

A convex optimization problem is one that can be expressed in this form:

Minimize f0(x1, . . . xm)

Subject to fi(x1, . . . fm)  0, i = 1, . . . k

where 8i fi : <
m
! < is convex.

PACORA’s resource allocation problem can be transformed into a convex optimization
problem in the m = |P | · n variables ap,r as long as the penalty functions ⇡p are convex
non-decreasing and the response-time functions ⌧p are convex. We designed our functions to
meet these constraints, and proofs of their convexity are shown below.

The resource constraints are a�ne and therefore convex; they can be rewritten as
X

p2P
(ap,r � Ar)  0� ap,r  0 (3.4)

�ap,r  0 (3.5)

The convex formulation makes the optimization scale linearly in the number of resource
types and the number of applications. For client operating systems with around 100 applica-
tions running and 10 resource dimensions, the total number of variables in the optimization



CHAPTER 3. PACORA FRAMEWORK 18

problem is 1000—a very small convex optimization problem that can be solved in microsec-
onds on current systems. Cloud systems could have many more than 100 applications run-
ning, but the problem size scales linearly, and the potential benefits of a good allocation
should scale rapidly with the size of the system.

3.3 Response-Time Function Design

In this section, we discuss the design considerations and requirements for PACORA’s RTF,
evaluate potential RTFs with di↵erent complexities, and describe the chosen design in more
detail. Chapter 4 evaluates the performance of the chosen RTF. Chapter 7 discusses alter-
native and enhanced RTF models.

Purpose

In order for a resource allocation framework to make informed decisions about application
performance, there must be a way for it to understand the performance impact of an ap-
plication’s resource allocation in the system. One can imagine several high-level approaches
to provide this information to the framework. One option would be for the the system to
try a variety of allocations and select the best one. However, there are a few disadvantages
to this method: first, the system may need to try many points to find an e�cient resource
allocation for multidimensional allocation problems; second, the result for a single applica-
tion may not compose well with multiple applications; and third, it doesn’t give the system
much understanding of the value of individual resources making resource tradeo↵s di�cult.

Another option would be something similar to hill climbing, where the system incremen-
tally adds or removes resources and measures the change in performance. However, there are
several challenges for an incremental approach as well. Since the system relies on measuring
the incremental gradients, it could get stuck in local minima or remain on a performance
plateau for a particular resource without discovering the threshold that gives significant per-
formance improvement (e.g., the point where the application fits in cache). It could also
be di�cult to explore more than one resource dimension at a time. Additionally it could
take quite a long time to reach an e�cient resource allocation, particularly for a system with
multiple applications running, and could violate the application’s quality-of-service while
exploring resource allocations.

While obviously these techniques can be improved upon, we felt the fundamental prob-
lems of composablity and potentially high overhead to find an e�cient multidimensional
allocation would be very di�cult to overcome. For PACORA, we instead chose to take a
modeling approach to represent an application’s performance given its resource assignments.
We explicitly create RTFs from measured values that capture information about the per-
formance impact of a particular resource to an application on the current hardware at a
particular time. We chose to use models because they can be easily used in an optimization
that considers multiple resources and applications at the same time.
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Design Considerations

When considering what was necessary for a performance model to be used in a real system,
we came up with the following requirements to guarantee that the model would be low cost
to produce and use and work with real applications:

• Low cost to produce and maintain;

• Low storage overhead;

• Works with any number of resource dimensions;

• Tolerant of noisy measurements;

• Convex by construction; and

• Easily computed gradients.

One approach to creating explicit resource-performance models would have been to model
response times by recording past values and interpolating among them. Tthis idea has serious
shortcomings for resource allocation problems, however:

• The multidimensional response time tables would be large and thus more expensive to
measure and store;

• Interpolation in many dimensions is computationally expensive thereby increasing the
overhead of the resource allocation optimization;

• The measurements will be noisy and require smoothing;

• Convexity in the resources may be violated and as a result significantly increasing
the cost of the resource allocation optimization by eliminating the opportunity to use
e�cient convex optimization techniques; and

• Gradient estimation will be slow and di�cult.

Instead of interpolating, PACORA maintains a parameterized analytic response time
model with the partial derivatives evaluated from the model a priori. Application respon-
siveness is highly nonlinear for an increasing variety of applications like streaming media or
gaming, thus requiring many data points to represent the response times without a model.
Using models, each application can be described in a small number of parameters. Models
can be built from just a few data points and can naturally smooth out noisy data. The
gradients, needed by PACORA to solve the optimization problem e�ciently, are easy to
calculate.

However, to realize the potential advantages of modeling, we first needed to demonstrate
that simple models could adequately represent the response time of an application for re-
source allocation purposes. To determine if simple models would work, and to select an
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appropriate model for PACORA’s RTF functions, we used three steps. First, we performed
a simple study using microbenchmarks in a real system to determine the complexity required
for the model (Section 3.3). Once we had determined the general form of the model from
the experiments, we then designed a model that seemed logical using our domain knowledge
of computer hardware, applications, and performance (Section 3.3). Finally, we performed
experiments using real benchmarks and kernels on a real system to validate that our model
fit the measured values. Chapter 4 presents these final experiments and results.

Model Format Evaluation

To test the potential of di↵erent model formats, we first performed a study comparing the
accuracy of RTFs created from linear models, quadratic models, and genetically-programed
response surfaces for eight synthetic benchmarks and five phases of a real speech recognition
kernel. The RTFs studied use three resources dimensions: cores, o↵-chip memory bandwidth,
and cache banks. In this section, we describe these experiments and their results.

Applications

We created a set of synthetic microbenchmarks specifically designed to evaluate our modeling
techniques by representing the space of possible resource behaviors in three dimensions.

Name Processor Cache O↵chip BW Description
p–c–b– oblivious oblivious oblivious Pointer chases through a long list (single threaded)
p–c–b+ oblivious oblivious benefits Streaming copy with no reuse (single threaded)
p–c+b– oblivious benefits oblivious Copies data repeatedly from a large block (single threaded)
p–c+b+ oblivious benefits benefits Copies data from large blocks, with reuse (single threaded)
p+c–b– benefits oblivious oblivious Pointer chases through long lists (multithreaded)
p+c–b+ benefits oblivious benefits Streaming copies with no reuse (multithreaded)
p+c+b– benefits benefits oblivious Copies data repeatedly from large blocks (multithreaded)
p+c+b+ benefits benefits benefits Copies data from large blocks, with reuse (multithreaded)

Table 3.1: Synthetic microbenchmark descriptions. Each benchmark captures a di↵erent
combination of responses to resource allocations. “Benefits” means that application perfor-
mance improves as more of that resource is allocated to it (though sometimes only up to
a point). “Oblivious” means that the application performance barely improves or does not
improve at all as more of that resource is allocated to it.

Phase Name Description Behavior
1 Cluster Compute probability, step 1 Accumulate, up to 6 MB data read, 800KB written
2 Gaussian Compute probability, step 2 Calculate, up to 800KB read, 40KB written
3 Update Non-epsilon arc transitions 40KB read, small blocks, dependent on graph connectivity
4 Pruning Pruning states Small blocks, dependent on graph connectivity
5 Epsilon Epsilon arc transitions Small blocks, dependent on graph connectivity

Table 3.2: Description of phase behavior in large-vocabulary continuous-speech-recognition
(LVSCR) application.
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Table 3.1 describes these benchmarks. In general, each benchmark represents a generic
category of behavior that we might expect to see in phases of real applications. We classified
the benchmarks based on whether they benefit from additional processor, cache or bandwidth
resources, or whether they derive no benefit from running on a large allocation of a given
resource. We also limited the size of the benchmarks along these resource dimensions so that
they encounter performance plateaus on our simulated machine. For example, a benchmark’s
performance might benefit from additional cores up to four cores but not from more than
four cores. Parallel benchmarks were parallelized with pthreads [90]. The benchmarks each
run an average of 1.9 billion cycles per execution.

We also evaluated a real multithreaded application with multiple phases of behavior,
specifically a Hidden-Markov-Model (HMM)-based inference algorithm that is part of a
large-vocabulary continuous-speech-recognition (LVCSR) application [32, 65]. LVCSR ap-
plications analyze a set of audio waveforms and attempt to distinguish and interpret the
human utterances contained within them. The recognition network we used here models a
vocabulary of over 60,000 words and consists of millions of states and arcs. The inference
process is divided into a series of five phases, and the algorithm iterates through the se-
quence of phases repeatedly with one iteration for each input frame. This application case
study demonstrates the varying ability of our models to capture real application behavior.
Table 3.2 lists the characteristics of each phase of the application. Each phase runs for an
average of 24 billion cycles per execution.

Resources

To properly test the potential RTF functions, we implement hardware partitioning mecha-
nisms for three of most important shared on–chip resources: cores (compute), interconnect
bandwidth to DRAM (communication), and L2 cache capacity (capacity). We specifically
chose one of each of the resource types described in Section 3.1.

Core Pinning To partition cores, our implementation uses the thread a�nity feature built
into the Linux 2.6 kernel. We restrict the threads belonging to an application to run on the
cores assigned to that application. We assume a homogeneous collection of cores, and that
only last level caches are shared among applications, which means that there is nothing to
di↵erentiate a core from any other when they are allocated.

Globally Synchronized Frames To partition o↵-chip bandwidth, we use the Globally
Synchronized Frames (GSF) approach presented in Lee et al. [87]. We chose this approach
because it does not require complex hardware modifications, provides strict QoS guarantees
for minimum bandwidth and the maximum delay of the network, and provides proportional
sharing of excess bandwidth. GSF controls the number of packets that a core can inject into
the network per frame, and each core is guaranteed to get the number of packets allocated
to it each frame. GSF enables cores to inject packets into future frames if their current
allocation is already exceeded. This feature allows excess bandwidth to be shared among
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cores proportional to their packet allocation. To simplify prediction by making performance
more deterministic, our current implementation does not make any future frames available
during training, meaning that applications get exactly their allocation each frame.

Cache Partitioning We implemented bank-based cache partitioning as opposed to way-
based partitioning to preserve cache associativity in our machine. We assumed banks are
sized at 1 MB, and we assume no additional overhead to lookup the correct bank. Our
experiments do not reallocate banks during execution, so we also do not add a reallocation
overhead.

Modeling Techniques

We use multivariate regression techniques to create explicit statistical models for predicting
the performance of an application given a resource allocation of a particular size. We create
one regression model per application phase.

Linear least-squares regression techniques produce simple models that can be expressed
concisely and are therefore more portable. Linear regression techniques can outperform
nonlinear ones when training sets are small, the data has a low signal to noise ratio, or
sparse sampling is used[57]. These criteria apply in our case. These models are attractive
due to their simplicity, but their restricted expressiveness may reduce their accuracy of the
underlying system.

Linear models may be realized in varying forms (i.e. it is the combination of terms that is
linear, rather than the degree of each term). The simplest models are linear additive models,
which take the form:

y(x) = a0 +
NX

i=1

aixi (3.6)

Multivariate linear additive models contain one term for each variable (i.e. an allocation,
xi) and an intercept term (a0). The regression tunes the coe�cient associated with each
term (ai) to fit the sample data as accurately as possible. Note that the linear additive
model has no way to represent any possible interaction between the variables, implying that
all variables are independent—which is expressly not true in our scheduling scenario. For
example, a smaller cache size will result in increased cache misses and an increased demand
for memory bandwidth, meaning that the e↵ect of a change in bandwidth allocation is not
independent from a change in cache size in terms of its e↵ect on performance. However,
their interactions may be small enough in practice to ignore in the model.

More complex multivariate linear regression models often include terms for variable in-
teraction and polynomial terms of degree two or more. Such models are commonly termed
response surface models, and have the general form:

y(x) = a0 +
NX

i=1

aixi +
NX

i=1

NX

j=i

aijxixj + ... (3.7)
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These polynomial models capture more complex dependencies between the input vari-
ables. However, we as modelers must still explicitly express the nature of the relationship
between input and output in the form we give the polynomial equation. We choose to test
a quadratic model, in addition to the basic linear model, in order to explore the potential
benefit of including interaction terms.

Selecting the best possible equation form for the data automatically requires the use of
nonlinear regression techniques such as local regression, cubic splines, neural networks, or
genetic programming [3, 23, 150]. The disadvantage of these techniques is that the models
are di�cult to use for many optimization methods and can be quite expensive to build.
However, we include a genetic programming approach to explore how accurately we can
model applications despite that fact that they are likely to be too costly and slow to use in
a real system.

Genetic programming is a technique, based on evolutionary biology, used to optimize
a population of computer programs according to their ability to perform a computational
task. In our case, the ‘program’ is an analytic equation whose evaluation embodies a re-
sponse surface model, and the ‘task’ is to match sample data points obtained from full–scale
simulations [3]. The output, termed a genetically-programmed response surface (GPRS), is
a set of nonlinear models that create explicit equations describing the relationship between
design variables and performance, and we incorporate them into our framework as an exam-
ple of a nonlinear modeling alternative. A GPRS is generated automatically, meaning that
the modeler does not have to specify the form of the response surface equation in advance.
Instead, genetic programming [83] is used to create an equation and tune the coe�cients.
For more information on GPRS creation, see [3] or [37].

We also explored a statistical machine learning technique, Kernel Canonical Correlation
Analysis (KCCA) [10], to predict the response time in the style of [50]. However, the results
are not presented here as we found that we generally had too few sample points for the
models to function.

Experimental Testbed

We use Virtutech Simics [149] to simulate a multicore system with a two-level on-chip mem-
ory hierarchy to collect the data used to create our performance models and to test the
e↵ectiveness of our resource scheduling framework. Simics is a full system simulator capa-
ble of running a commodity OS and completing simulations consisting of billions of cycles.
We modify the Simics cache and memory timing modules to reflect the capabilities of our
hardware partitioning mechanisms. Our target machine has 10 cores, private 64KB L1D
and 32KB L1 I caches for each core and a shared L2 (16 MB, 16-way set associative). All
caches have 128 B lines. All banks in the L2 cache have uniform access time of 7 cycles.
Our target machine runs Fedora Core 5 Linux (kernel 2.6.15). We constrain the simulated
system to a maximum allocation of 10 cores, 16 MB of L2 cache, and 4 cache lines/cycle of
o↵-chip bandwidth, and a minimum allocation of 1 core, 16 KB of L2 cache, and 5 cache
lines/thousand cycles of o↵-chip bandwidth.
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Name Linear Quadratic GPRS
p–c–b– 0.06% (0.04) 0.04% (0.04) 0.02% (0.02)
p–c–b+ 234.07% (287.44) 139.21% (167.10) 0.23% (0.40)
p–c+b– 12.67% (5.30) 8.26% (5.30) 0.02% (0.02)
p–c+b+ 12.04% (5.09) 7.83% (4.69) 0.06% (0.06)
p+c–b– 0.07% (0.05) 0.05% (0.06) 0.05% (0.03)
p+c–b+ 271.05% (377.53) 164.23% (226.23) 0.51% (1.08)
p+c+b– 13.08% (6.91) 8.79% (7.32) 0.06% (0.07)
p+c+b+ 12.07% (4.86) 8.05% (5.49) 0.08% (0.06)

Table 3.3: Means (standard deviations) of percentage error in runtime cycles for each of the
predictive models for each of the synthetic microbenchmarks. Lowest are in bold.

Evaluation of Model Accuracy

To test the accuracy of the di↵erent model types, we chose a sample of 55 points from the
space of 19200 possible allocations (or 0.3%) using an Audze-Eglais Uniform Latin Hypercube
design of experiments [16], and trained the models in MATLAB [98] using this sample set.
Audze-Eglais selects sample points that are as evenly distributed as possible through the
space of possible allocations. We used the benchmark runtime in cycles to represent the
response time for the benchmarks. We then evaluated the accuracy of the model relative to
measured performance on a training set which contains all points disjoint from the sample
set.

Table 3.3 reports the mean and standard deviation of percentage error for the synthetic
benchmarks of each of the models in predicting runtime cycles of each allocation versus the
actual measured performance of that allocation. We can see that two of the benchmarks,
p+c–b– and p–c–b–, seem to be very easy to predict and all three model types have less
than 0.1% mean error. Four of the remaining benchmarks, p–c+b–, p–c+b+, p+c+b–,
and p+c+b+, are more di�cult to predict for the linear and the quadratic model. The
linear model has an error around 12% with a significant standard deviation, 5%, for each
benchmark. The quadratic model performs a bit better and has an average error around
8% for each of these benchmarks but still has a very large standard deviation. The GPRS
model, however, performs extremely well on these benchmarks and again has an average error
of less than 0.1%. The final two benchmarks, p–c–b+ and p+c–b+, which are streaming
benchmarks, prove quite challenging for the linear and quadratic model resulting in an
average error of 250% and 150% respectively. The GPRS model, however, has very little
trouble with these benchmarks and produces an error around 0.5%.

Figure 3.2 visually represents what is happening in each of the these cases. The figure
plots the predictions from each model versus measured data for all the benchmarks. The
x-axis is resource configurations ordered by runtime and the y-axis is the runtime. Looking
at the plots we can see that all models perform well on the benchmarks that have a very
predictable structure and no performance plateau. However, benchmarks which encounter a
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Figure 3.2: Comparison of model accuracy for the eight microbenchmarks when predicting runtime
in cycles. Each point represents a prediction for a machine configuration, and points are ordered
along the x-axis based on decreasing measured run time. Y-axis plots predicted or measured
runtime in cycles; note the di↵ering ranges. In most cases, the nonlinear GPRS–based model is so
accurate that it precisely captures all sample points.

cli↵ and then saturate (such as the working set fitting in cache) prove di�cult for the linear
and quadratic models and the larger the cli↵, the larger the error.

Clearly, from the synthetic benchmark results, the GPRS models are extremely accurate,
and the other models have the potential to have problems. However, the GPRS–based
models used here took up to six hours each to build and are also be very expensive to use in
an optimization. The linear and quadratic models can be trained extremely rapidly and are
very e�cient to use in the optimization problem, but this e�ciency clearly comes with a cost
in terms of accuracy. However, there a few things to consider when evaluating these results.
First, these are synthetic benchmarks and may not be representative of real applications.
Second, the true metric of whether or not a model is accurate “enough” depends on the
quality of the resource allocations decisions produced from using it.

Looking at the results for our real speech application (Table 3.4), we can see that the
phases of the LVSRC application were actually easier to predict for the linear and quadratic
model than most of the synthetic benchmarks, and the GPRS actually performs worse than
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Name Linear Quadratic GPRS
cluster 4.27% (3.66) 6.90% (5.67) 15.52% (10.36)
gaussian 1.83% (0.72) 4.16% (2.49) 2.33% (3.19)
update 4.98% (3.04) 7.94% (7.12) 5.89% (5.09)
pruning 2.27% (1.08) 10.70% (10.29) 3.07% (2.91)
epsilon 3.88% (4.01) 4.66% (4.27) 2.69% (1.09)

Table 3.4: Means (standard deviations) of percentage error in runtime cycles for each of the
predictive models for each of the phases of the LVSRC application. Lowest are in bold.

on the synthetic benchmarks. These results make the linear and quadratic models seem like
potentially reasonable choices. Cook et al. [38] found in their study of 44 real benchmarks
that they did not actually exhibit performance cli↵s like the ones the models struggled on
in our synthetic benchmarks. These results further improve our confidence in the potential
of the linear and quadratic models for modeling real applications.

However, our simulator is too slow to test the quality of resource allocations the models
produce, so we perform an additional study using an FPGA system to test the allocation
quality. These results are presented in Chapter 4. For this discussion, it is worth mentioning
that we found that the linear and quadratic models outperform the GPRS models because
they work well with the optimizer and that the quadratic model often produced near optimal
allocations. As a result, we chose to move forward with a quadratic model. The following
section describes how we designed PACORA’s RTF using a quadratic model. We then
perform accuracy tests with a wide range of benchmarks on the new model. Chapter 4
presents these results.

Response-Time Functions

In this section, we discuss the final design for PACORA’s RTFs.
While the initial studies only looked at total runtime as the metric of performance for

an application, we decided that the RTF actually should represent the expected response
time of an application as a function of the resources allocated to the application. Response
time is an application-specific measure of the performance representing the time to run the
critical function of the application. For example, the response time of an application might
be:

• The time from a mouse click to its result;
• The time to produce a frame;
• The time from a service request to its response;
• The time from job launch to job completion; or
• The time to execute a specified amount of work.

As explained in Section 3.2, PACORA needs to model response times with functions
that are convex by construction in order to take advantage of the e�cient solution methods
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available in convex optimization. All applications have a function of the same form, but
the application-specific weights are set using the performance history of the application.
Equation 3.8 below shows the RTF we selected for PACORA, and Figure 3.3 shows two
example RTFs we have created from applications we studied.

⌧(w, a) = ⌧0 +
X

i2n,j2n

wi,j
p

ai ⇤ aj
(3.8)

Here ⌧ is the response time, i and j are resource types, n is the total number of resource
types, ai and aj are the allocations of resource types i and j, and wi,j is the application-
specific weight for the term representing resources i and j.
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Figure 3.3: Response-Time Functions for a breadth-first search algorithm and
streamcluster from the PARSEC benchmark suite [17]. We show two resource dimen-
sions: cores and cache ways. Chapter 4 presents the experiments where these models were
generated.

In this equation, the response time is modeled as a weighted sum of component terms,
roughly one per resource, where a term wi/ai is the amount of work wi � 0 divided by ai, the
allocation of the ith resource [128]. We felt that this naturally represented approximately
how resources behave. For example, one term might model instructions executed divided by
total processor MIPS, so the application-specific w PACORA is learning is the number of
instructions. As we increase the allocation of MIPS, then we’ll see the contribution to total
runtime from this term decrease since the additional processing power reduces the time to
execute the instructions. Other terms follow the same pattern but for di↵erent resources
such as model network accesses divided by bandwidth, and so forth.
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The examples described above all contain only a single resource type. However, our
intuition was that there may be relationships between resource types and asynchrony and
latency tolerance may make response time components overlap partly or fully. For example,
one can easily imagine that the amount of cache an application has a↵ects its required
memory bandwidth. Thus, we added additional terms to represent the interactions between
resources. To our surprise, in most of our experiments, we have found that the interaction
terms are nearly always negligible and can be eliminated to save space and computation.
This omission allows the dimensionality of the function, and thus the storage space required,
to increase roughly linearly with the number of resource types. However, it is possible that
some systems may still require them.

It is obviously important to guarantee the positivity of the resource allocations. This
guarantee can be enforced as the allocations are selected during penalty optimization, or the
response time model can be made to return1 if any allocation is less than or equal to zero.
This latter idea preserves the convexity of the model and extends its domain to all of <n

and consequently we used this approach in our implementation.
Our chosen model design satisfies the design requirements listed above. The model is low

cost to produce: we can use convex optimization to produce it as described in Chapter 5. The
models (without the interaction terms) scale linearly with the number of resource dimensions
and only require a small number of history values to produce a good model so they are
compact to store. They can capture information about all of the resource types and are
tolerant of noise (See Chapters 4 and 7 for variability results and discussion). Such models
are automatically convex in the allocations because 1/a is convex for positive a and because
a positively-weighted sum of convex functions is convex. Lastly, the gradient r⌧ , which
is needed by the penalty optimization algorithm, is simple to compute since ⌧ is analytic,
generic, and symbolically di↵erentiable. However, we leave it to Chapter 4 to demonstrate
the e�cacy of our model in a real system.

RTF Convexity

We now show that response time functions ⌧ are convex in the resources ai given any of the
possibilities we have considered.

A function is defined to be log-convex if its logarithm is convex. A log-convex function
is itself convex because exponentiation preserves convexity, and the product of log-convex
functions is convex because the log of the product is the sum of the logs, each of which is
convex by hypothesis. Now 1/a is log-convex for a > 0 because � log a is convex on that
domain. In a similar way, log(1/

p

ai · aj) = �(log ai + log aj)/2 and log a�1/d = �(log a)/d
are convex, implying log(1/

p

ai · aj) and log a�1/d are also. Finally, log(1/ log a) is convex
because its second derivative is positive for a > 1:

d

2

da

2
log(1/ log a) =

d

2

da

2
(� log log a)
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Figure 3.4: Measured runtimes for the dedup benchmark in PARSEC varying cores from 1-8
and allocating 1, 2, and 12 cache ways. Ways 3-11 are not shown, but look nearly identical
to 2 and 12. Chapter 4 presents the experiments where this data was generated.
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�1

a log a

!

=
1 + log a

(a log a)2
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Non-Convexity

Forcing RTFs to be convex assumes that the actual response times are close to convex. We
believe this to be a plausible requirement as applications usually follow the “Law of Dimin-
ishing Returns” for resource allocations, and in our implementation and evaluation, we found
our convexity assumption to be reasonably true. In cases where the assumption was not com-
pletely valid, PACORA was still able to produce near optimal allocations (See Chapter 4).
The reason that non-convex response time versus resource behavior did not result in bad
resource allocations was that for the most part the non-convex behavior we measured was
usually particular resource allocations producing much worse results than their surrounding
allocations and these points were ignored as outliers in the model and rarely selected by
the optimization. For example, we have seen non-convex performance in applications when
dealing with hyperthreads or memory pages. For two of our applications, five hyperthreads
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Figure 3.5: Average frame time for an n-bodies application running on Windows 7 while
varying the memory pages and cores.

resulted in significantly worse performance than either four or six. Figure 3.4 show this be-
havior with PARSEC’s dedup benchmark. When studying some other applications, we found
that particular numbers of memory pages, (e.g., 2K), resulted in much better performance
than the adjacent page allocations as shown in Figure 3.5. Chapter 7 discusses these outliers
and additional challenges to response time modeling along with additional techniques that
could be employed to handle them.

Another potential kind of convexity violation might not be so easily ignored is where
“plateaus” can sometimes occur as in Figure 3.6. Such plateaus can be caused by adaptations
within the application such as adjusting the algorithm or output quality (For example, a video
player may choose to increase resolution having received an increase in network bandwidth
and thus the system may not measure an improvement in frame rate) or certain resources
that only provide performance improvements in increments rather than smoothly. In these
applications, the response time is really the minimum of several convex functions depending
on allocation, and the point-wise minimum that the application implements fails to preserve
convexity. The e↵ect of the plateaus will be a non-convex penalty as Figure 3.7 shows and
multiple extrema in the optimization problem will be a likely result.

There are several ways to avoid this problem. One is based on the observation that
such response time functions will at least be quasiconvex. Another idea is to use additional
constraints to explore convex sub-domains of ⌧ . (These approaches are described in more
detail in Chapter 7.) Either approach adds significant computational cost, and we found
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that our simple convex models still resulted in high-quality resource allocations. Thus we
chose not to implement either.

3.4 Penalty Functions
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Figure 3.8: A penalty function with a re-
sponse time constraint.

Response Time �

P
en

al
ty

�

d

s

Figure 3.9: A penalty function with no re-
sponse time constraint.

In addition to understanding how an application’s performance responds to resources
(represented with the application RTF), in resource allocation it is also necessary to know
the relative importance of the applications: one application may use a resource type more
e�ciently, but another, less e�cient, application may be more important to the user. To
embody user-level preferences about the application, we added a second application-specific
function called the penalty function in PACORA.
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Although similar to priorities, penalty functions are functions of the response time rather
than simple scalar values, so they can explicitly represent deadlines. Knowing deadlines lets
PACORA make optimizations that are di�cult in today’s systems, such as running just fast
enough to make the deadline. Like priorities, the penalty functions are typically set by the
system on behalf of the user. However, one could imagine in future systems potentially
learning them through user interactions.

PACORA’s penalty functions ⇡ are non-decreasing piecewise-linear functions of the re-
sponse time ⌧ of the form ⇡(⌧) = max(0, (⌧ � d)s) where d represents the deadline of the
application and s (slope) defines the rate the penalty increases as response time exceeds
d. For applications without response-time constraints the deadline can be set to 0. Two
representative graphs of this type appear in Figures 3.8 and 3.9.

An application penalty function can be represented using only d and s, which makes them
extremely lightweight to store, and the storage size per application is constant regardless of
the number of resource types.

Penalty Function Convexity

In this section, we discuss the convexity of PACORA’s penalty functions. A few facts about
convex functions will be useful in what follows. First, a concave function is one whose
negative is convex. Maximization of a concave function is equivalent to minimization of its
convex negative. An a�ne function, one whose graph is a straight line in two dimensions or
a hyperplane in n dimensions, is both convex and concave. A non-negative weighted sum
or point-wise maximum (minimum) of convex (concave) functions is convex (concave), as is
either kind of function composed with an a�ne function. The composition of a convex non-
decreasing (concave non-increasing) scalar function with a convex function remains convex
(concave).

Each penalty function ⇡ is the point-wise maximum of two a�ne functions and is therefore
convex. Moreover, since each penalty function is scalar and nondecreasing, its composition
with a convex response time function will also be convex.

3.5 Managing Power and Energy

The optimization in Equations 3.1 to 3.3 does not include a cost for allocating resources, and
thus all the resulting allocations would divide all the resources among the applications. While
that may have been reasonable in former computing paradigms (e.g., desktop computers), in
current systems it is essential to operate e�ciently in order to extend battery life or reduce
power consumption. As a result, for PACORA to be practical in today’s system, it is also
necessary to consider the power required to run the resource in the allocation decision.

To represent the cost of operating a resource, we create an artificial application called
application 0. Application 0 is designated the idle application and receives allocations of all
resources that are left idle, i.e., not allocated to other applications. If the system has the
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Figure 3.11: Example application 0
penalty function using the deadline as a
power cap.

appropriate power management mechanisms, these idle resources can be powered o↵ or put
in a low power model to save power.

Additionally, application 0’s resources allocations act as slack variables in our optimiza-
tion problem, turning the resource bounds into equalities:

X

p2P
ap,r � Ar = 0, r = 1, . . . n. (3.9)

The “response time” for application 0, ⌧0, is artificially defined to be the total system
power consumption. Application 0’s RTF represents how the system power improves when
particular resources are left idle (i.e., allocated to application 0), which is similar to other
RTFs since they represent how the response time of an application improves when allocated
particular resource types. Figure 3.10 shows an example application 0 RTF.

The penalty function ⇡0 establishes a system tradeo↵ between power and performance
that will determine which resources are allocated to applications to improve performance and
which are left idle. The penalty function ⇡0 can be used to keep total system power below
the parameter d0 to the extent that the penalties of other applications cannot overcome its
penalty slope s0. Both s0 and d0 can be adjusted to reflect the current battery charge in
mobile devices. For example, as the battery depletes, d0 could be decreased or s0 increased
to force other applications to slow or cease execution.

The power response function is a�ne and monotone non-increasing in its arguments a0,r,
which satisfies our convexity requirements for RTFs, thus making it safe for us perform
this application 0 trick in our optimization. Additionally, creating slack variables turns the
resources constraint inequalities into equalities, which makes the optimization easier to solve.

We chose to use the application 0 abstraction to represent power and energy over the
more traditional approach of directly adding an allocation cost to the optimization because
we found it to be more expressive of real life scenarios. Using the RTF machinery, we are
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able to represent the power of the resources running as a function rather than simply a
value, which enables us to express things like the fact that using more of a resource increases
the power consumption per resource, thanks to thermal interactions. The penalty functions
deadline allows us to represent scenarios like “I need my battery to last until I plug it in
when I get home tonight.” In this case, the power needs to be capped so that the battery
does not drain too fast, but there is little advantage to saving more power below the cap.
As shown in Figure 3.11, with PACORA’s deadline and slope arguments this scenario can
easily be captured; as long as the power consumption is less than the deadline then there is
no penalty to the system, but greater than the deadline, the slope is quite steep.

3.6 Summary

In this chapter, we present the mathematical formulation of PACORA and prove it’s convex-
ity. We show some initial modeling experiments that we used to guide PACORA’s design.
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Chapter 4

RTF Exploration and Feasibility
Study

In this chapter, we present two early studies we performed to test the potential of a model-
based framework for resource allocation. Building on the results for the experiments pre-
sented in Chapter 3, the first study in this chapter further evaluates several di↵erent model
formats using our MATLAB [98] framework. However, rather than collecting data using a
simulator we instead use RAMP Gold [9, 138, 137], a multiprocessor emulator. The emulator
performance enables us to evaluate the quality of the resource allocation decisions produced
by the framework using real benchmarks in addition to the synthetic microbenchmarks. The
second study uses the MATLAB framework to evaluate PACORA using data collected from
several benchmark suites on a current hardware platform with a modern operating system.

4.1 RTF Exploration and System Potential using an
FPGA-based System Simulator

In Chapter 3, we looked at the accuracy of modeling eight synthetic microbenchmarks using
linear, quadratic, KCAA and GPRS models. We found that the more complex models were
indeed more accurate, but more expensive to build. However, since the ultimate measure of
performance for our resource allocation system is the quality of the allocation decisions and
not the accuracy of the models, we felt it was important to evaluate the resource allocations
produced by each model type before selecting one. The following experiments are intended
to study quality of resource allocation decisions using real benchmarks in addition to the
synthetic microbenchmarks.

Platform

For our experiments, we choose to use an FPGA-based multiprocessor emulator RAMP
Gold [9, 138, 137] because it allows us to conduct resource allocation experiments at a realistic
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Attribute Setting

CPUs 64 single-issue in-order cores @ 1GHz
L1 Instruction Cache Private, 32KB, 4-way set-associative, 128-byte lines

L1 Data Cache Private, 32KB, 4-way set-associative, 128-byte lines
L2 Unified Cache Shared, 8 MB, 16-way set-associative, 128-byte lines, inclusive, 4 banks, 10 ns latency
O↵-Chip DRAM 2 GB, 4⇥3.2 GB/sec channels, 70 ns latency

Table 4.1: Target machine parameters simulated by RAMP Gold.

scale—something that was not possible with the simulator used in Chapter 3. Using RAMP
Gold, we are able to emulate an operating system running real benchmarks to completion
on a 64-core machine.

RAMP Gold is a cycle-accurate level-7 FAME simulator [137]. We run RAMP Gold
on five Xilinx XUP FPGA boards. Each board is programmed to simulate one instance
of our target architecture, and we use the multiple boards to provide higher throughput of
independent emulation runs. We selected a 64-core machine to increase the space of possible
allocations in order to stress our framework. Table 4.1 lists the target machine parameters.
We implemented the hardware performance measurement system described in [19] to collect
data.

Operating System

We use an in-house prototype operating system, The Research Operating System (ROS) [79,
92, 33], in our experiments. ROS is a simple OS designed to assign resources to applica-
tions1. We selected ROS because its basic two-level scheduling design matched well with the
system assumptions made by our resource allocation framework and because it was easy to
modify to support additional partitioning mechanisms. We ported ROS to boot on RAMP
Gold and modified its functionality to support our scheduling framework (including paging
management and threading libraries).

Partitioning Mechanisms

In our experiments, we wanted to explore each of the three resource types (i.e., computation,
capacity, and bandwidth) mentioned in Chapter 3. As a result we chose to determine alloca-
tions for the cores and their private caches, the shared last-level cache, and shared memory
bandwidth. For each resource, we provide a mechanism to prevent applications from ex-
ceeding their allocated share. The OS assigns cores and their associated private resources
to a specific application. For the shared last-level cache, we modify the OS page-coloring
algorithm so that applications are never given a page from a di↵erent application’s color
allocation.

1ROS is the starting design and implementation for both Tessellation OS [35] and Akaros [1].
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Name Type Parallelism Working Set Bandwidth Demand

Blackscholes financial PDE solver coarse data parallel 2.0 MB minimal
Bodytrack vision medium data parallel 8.0 MB grows with cores
Fluidanimate animation fine data parallel 64.0 MB grows with cores
Streamcluster data mining medium data parallel 16.0 MB high
Swaptions financial simulation coarse data parallel 0.5 MB grows with cores
x264 media encoder pipeline 16.0 MB grows with cores

Tiny synthetic one thread does all work 1 KB minimal
Greedy synthetic data parallel 16.0 MB high

Table 4.2: Benchmark description. PARSEC benchmarks use simlarge input set sizes,
except for x264 and fluidanimate, which use simmedium due to limited physical memory
capacity. PARSEC characterizations are from [17].

To partition o↵-chip memory bandwidth, we use Globally-Synchronized Frames (GSF)[87].
GSF provides strict Quality-of-Service guarantees for minimum bandwidth and the maxi-
mum delay of a point-to-point network—in our case the memory network—by controlling
the number of packets that each core can inject per frame. We use a modified version of
the original GSF design, which tracks allocations per application instead of per core, does
not reclaim frames early, and does not allow applications use any excess bandwidth. These
changes make GSF more suited to our study since we want to strictly bound the maxi-
mum bandwidth per application. To implementing GSF, we modified the target machine’s
memory controller in RAMP Gold to synchronize the frames and track application packet
injections.

Description of Workloads

In our experiments, we use the PARSEC 2.0 benchmark suite [17], as well as two of the
synthetic microbenchmarks from Chapter 3. We selected the PARSEC suite because the
applications are highly scaleable and thus well suited to varying the core allocations in our
experiments. Due to library and OS dependencies, we were only able to able to port six
of the PARSEC benchmarks to the RAMP Gold/ROS platform, so we use those six in our
experiments. We use the simlarge input set sizes, except for x264 and fluidanimate,
which use simmedium due to the limited physical memory capacity on the Xilinix FPGAs.
Table 4.2 summarizes the benchmarks.

Resource Allocation Experiments

To test the quality of decisions produced by each model type, we first ran each of the
benchmarks alone on the machine several times, each time varying the number of cores,
and cache and bandwidth allocations to create a training sample set. We use a design of
experiments (DoE) technique known as the Audze-Eglais Uniform Latin Hypercube [16] to
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select the points included in the sample set using 20% of the possible allocations. Audze-
Eglais selects sample points which are as evenly distributed as possible through the space of
possible allocations.

We use the training samples to create linear additive models, quadratic response surface
models, and non-linear models based on Kernel Canonical Correlation Analysis (KCCA) [10]
and Genetically-Programed Resource Surface (GPRS). We use MATLAB’s [98] multivariate
regression techniques to create the quadratic and linear models. The KCCA and GPRS
models are created using custom C code.

Using the performance models from the applications running alone, our MATLAB frame-
work makes resource allocations for four pairs of benchmarks. We use MATLAB’s implemen-
tation of the medium-scale active-set algorithm, which is a sequential quadratic programming
based solver to maximize an object function that represents the quality of the resource allo-
cation.

For these experiments, we evaluate two objective functions. Our first objective function
is minimizing the maximum cycles, i.e., makespan. We selected makespan both because it
is a classic scheduling criterion [135] and because it makes sense for mobile systems were the
goal is to complete everything as quickly as possible and then go back into a low power sleep.
Second, we chose a simple proxy for total energy consumed, the total number of cycles run
(the sum of the cycles on each core) + 10⇥ the total number of o↵-chip accesses since energy
e�ciency is becoming increasingly important for all systems. Our chosen optimizer depends
on the convexity of the function to guarantee optimality and only some of our objective
functions are convex. As a result, the optimization algorithm may choose local minima
allocations even with perfect models. However, we felt optimizers to handle non-convex
functions optimally would be prohibitively expensive for resource allocation in operating
systems, so we chose not to explore more complex optimizers.

To test the quality of decisions produced by our MATLAB framework, we simulated all
possible schedules of allocations for the four pairs of benchmarks running simultaneously, for
a combined total of 68.5 trillion target core-cycles 2.

We compare the quality of our allocations with a few baselines: the optimal allocation,
naively giving each application half of the machine, or time-multiplexing each application
across the entire machine. The time-multiplexing scheme runs the first application to com-
pletion and then runs the second application to completion. We believe this is an overly opti-
mistic representation of time-multiplexing; more fined-grained time-multiplexing could lead
to longer runtimes due to cache interference e↵ects and other context swap overheads. Fig-
ure 4.1 shows the quality of our resource allocation decisions for the two objective functions
as compared with the baselines. We show the results for blackscholes vs. streamcluster
as a representative example. We do not show results for the GPRS as we found that they
were extremely non-convex and as a result often produced very poor results when paired
with our optimizer.

2A Core-cycle is 1 clock cycle of execution on 1 core; simulating a 64-core CMP for 1,000,000 cycles
would be 64,000,000 core-cycles.
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Figure 4.1: The performance of model-based allocation decisions for two objective functions
(makespan/max cycles and energy/core cycles) compared with baselines. The results are
normalized to the optimal resource allocation. The results shown are for blackscholes vs.
streamcluster.

We found that the performance of the resource allocation framework depends a lot on
the objective function. Our energy function is convex and thus the optimizer is able to
find allocations near the true optimal allocation, whereas makespan is not convex and thus
the selected allocations are often not even better than just dividing the resource in half.
Additionally, since the PARSEC benchmarks scale so well, time-multiplexing the applications
is near optimal for makespan. However, for applications that do not scale e�ciently to 64-
cores, time-multiplexing is unlikely to be the optimal choice.

In Figure 4.2, we separate out the results for the energy objective by benchmark pair.
We do not show the GPRS or KCAA results because the optimizer struggled with their non-
convexity and as a result often produced poor allocations. The simple linear and quadratic
models perform much better with only a small set of sample points and have significantly
lower overhead, which makes them more likely candidates for an actual implementation.

In these results, the performance of the linear and quadratic models are nearly identical.
Both models perform significantly better than our naive baselines. They beat naively dividing
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Figure 4.2: Comparison of the e↵ectiveness of di↵erent scheduling techniques normalized to
our quadratic model-based approach. The metric (sum of cycles on all cores + 10⇥ sum of
o↵-chip accesses) is a proxy for energy, so lower numbers are better.

the machine by 65% and time multiplexing by 100% on average. Furthermore, the chosen
allocations are within a few percent of optimal every time. We also include the worst-case
results to show that the penalty for poor decision making can be quite large, with an energy
cost 3.25⇥ greater than our allocation on average. As we scale up the problem size to include
more resources and more applications, we only expect this gap to widen.

As a result of this study, we felt there was real potential available for model-based re-
source allocation. However, clearly the convexity of both the models and objective functions
matter tremendously for consistently producing good resource allocations without using a
heavy-weight optimizer. These results helped push us towards the convex-by-construction
formulation for PACORA presented in Chapter 3. While the linear and quadratic models
have nearly identical performance on the benchmarks tested, we chose to go with a quadratic
model for PACORA because we felt it would be more robust to noise and outliers.

Figure 4.3 shows an additional study we performed to help guide our future experiments.
Here we compared the allocation results for the makespan objective based on data from the
PARSEC large and small benchmark sizes and the synthetic microbenchmarks. With the
smaller benchmark sizes, we found that the relative di↵erence in performance of the various
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Figure 4.3: The e↵ect of benchmark size on the di�culty of the resource allocation problem.
The average chosen resource allocation from all pairs of benchmarks, worst case allocation
and naive baseline case are normalized to the optimal allocation for each dataset. The
objective is makespan.

allocation approaches becomes too small to reach any conclusions. In fact the di↵erence
between the worse and optimal allocations becomes so small it would be hard to justify
smarter resource allocation techniques because the cost of a bad decision is very low. As a
result, in future studies we only test PACORA on a real hardware running full applications
and large-sized benchmarks to make sure our results are realistic.

4.2 PACORA Feasibility in a Real System

After formulating PACORA, we created a MATLAB implementation to test the e↵ectiveness
of PACORA’s model-based convex optimization for allocating resources. We used it to
experiment with the accuracy of di↵erent types of models and test the quality of the resource
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allocation decisions. Data is collected online by running application benchmarks on a recent
x86 processor running Linux-2.6.36. The measured data is processed using Python and
then fed into MATLAB [98] to build the RTFs. MATLAB uses the RTFs to make resource
allocation decisions. We compare performance of the chosen resource allocations with the
actual measured performance of all possible resource allocations to test quality of the resource
allocation decisions. We use CVX [68] in MATLAB to perform the convex optimization
for building RTFs and making resource allocation decisions. We chose this static approach
because it let us test many applications—44 in total—and many resource allocations rapidly.

Platform

To collect data, we use a prototype version of Intel’s Sandy Bridge x86 processor that
is similar to the commercially available client chip, but with additional hardware support
for way-based LLC partitioning. The Sandy Bridge client chip has four quad-issue out-
of-order superscalar cores, each of which supports two hyperthreads using simultaneous
multithreading [69]. Each core has private 32KB instruction and data caches, as well as a
256KB private non-inclusive L2 cache. The LLC is a 12-way set-associative 6MB inclusive
L3 cache, shared among all cores using a ring-based interconnect. All three cache levels are
write-back.

The cache-partitioning mechanism is way-based and works by modifying the cache-
replacement algorithm. To allocate cache ways, we assign a subset of the 12 ways to a
set of hyperthreads, thereby allowing only those hyperthreads to replace data in those ways.
Although all hyperthreads can hit on data stored in any way, a hyperthread can only replace
data in its assigned ways. Data is not flushed when the way allocation changes.

We use a customized BIOS that enables the cache partitioning mechanism, and run
unmodified Linux-2.6.36 for all of our experiments. To allocate cores, we use the Linux
taskset command to pin applications to sets of hyperthreads. The standard Linux scheduler
performs the scheduling for applications within these containers of hyperthreads. For our
experiments we consider each hyperthread to be an independent core. To minimize inter-
application interference, we first assign both hyperthreads available in one core before moving
on to the next core. For example, a four-core allocation from PACORA represents four
hyperthreads on two real cores on the machine.

Performance and Energy Measurement

To measure application performance, we use the libpfm library [44, 114], built on top of the
perf events infrastructure in Linux, to access available performance counters [70].

To measure on-chip energy, we use the energy counters available on Sandy Bridge to
measure the consumption of the entire socket and also the total combined energy of cores,
their private caches, and the LLC. The counters measure power at a 1/216 second granularity.
We access these counters using the Running Average Power Limit (RAPL) interfaces [70].



CHAPTER 4. RTF EXPLORATION AND FEASIBILITY STUDY 43

Description of Workloads

Our workload contains a range of applications from three di↵erent popular benchmark suites:
SPEC CPU 2006 [130], DaCapo [21], and PARSEC [17]. We selected this set of applications
to represent a wide variety of possible resource behaviors in order to properly stress PA-
CORA’s RTFs. We include some additional in-house research applications to broaden the
scope of the study, and some microbenchmarks to exercise certain features.

The SPEC CPU2006 benchmark suite [130] is a CPU-intensive, single-threaded bench-
mark suite, designed to stress a system’s processor, memory subsystem, and compiler. Using
the similarity analysis performed by Phansalkar et al. [115], we subset the suite, selecting 4
integer benchmarks ( astar, libquantum, mcf, omnetpp) and 4 floating-point benchmarks
(cactusADM, calculix, lbm, povray). Based on the characterization study by Jaleel [74],
we also pick 4 extra floating-point benchmarks that stress the LLC: GemsFDTD, leslie3d,
soplex and sphinx3. When multiple input sets are available, we pick the single ref input
indicated by [115].

We include the DaCapo Java benchmark suite as a representative of managed-language
workloads. We use the latest 2009 release, which consists of a set of open-source, real-
world applications with non-trivial memory loads, and includes both client and server-side
applications.

The PARSEC benchmark suite is intended to be representative of parallel real-world
applications [17]. PARSEC programs use various parallelization approaches, including data-
and task-parallelization. We use native input sets and the pthreads version for all bench-
marks, with the exception of freqmine, which is only available in OpenMP.

We add four additional parallel applications to help ensure we cover the space of
interest: Browser animation is a multithreaded kernel representing a browser layout ani-
mation; G500 csr code is a breadth-first search algorithm; Paradecoder is a parallel speech-
recognition application that takes audio waveforms of human speech and infers the most
likely word sequence intended by the speaker; Stencilprobe simulates heat transfer in a
fluid using a parallel stencil kernel over a regular grid [75].

We also add two microbenchmarks that stress the memory system and cause increased
interference between applications: stream uncached is a memory and on-chip bandwidth
hog that continuously brings data from memory without caching it, while ccbench explores
arrays of di↵erent sizes to determine the structure of the cache hierarchy.

RTF Experiments

Using a performance characterization of the applications, we select a subset of the bench-
marks that are representative of di↵erent possible responses to resource allocations in order
to reduce our study to a feasible size. Similar to [115], we use machine learning to select
representative benchmarks. We use a hierarchical clustering algorithm [115] provided by the
Python library scipy-cluster with the single-linkage method. The feature vector contains
parameters to represent core scaling, cache scaling, prefetcher sensitivity and bandwidth
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Figure 4.4: Dendrogram representing the results of clustering 44 PARSEC, DaCapo and
SPEC benchmarks based on core scaling, cache scaling, prefetcher sensitivity and bandwidth
sensitivity.

sensitivity. The clustering algorithm uses Euclidean distance between vectors to determine
clusters.

The clustering, which is shown in Figure 4.4, results in six clusters representing the
following (applications at the cluster center are listed in parenthesis):

• no scalability, high cache utility, (429.mcf)
• no scalability, low cache utility, (459.gemsFDTD)
• high scalability, low cache utility, (ferret)
• limited scalability, high cache utility, (fop)
• limited scalability, low cache utility, (dedup)
• limited scalability, low bandwidth sensitivity, (batik)
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Figure 4.5: 1-norm of relative error from RTF predicted response time compared to actual
response time. The actual response time is the median over three trials. 10 and 20 repre-
sent RTFs built with 10 and 20 training points respectively. App represents the variability
(average standard deviation) in performance of the application between the three trials.

To test the e↵ectiveness of our RTFs in capturing real application behavior, we measure
each of our 44 benchmarks running alone on the machine for all possible resource alloca-
tions of cache ways and cores. Cores can be allocated from 1–8 and cache ways from 1–12
resulting in 96 possible allocations for each application. We use a genetic algorithm design
of experiments [16] to select 10 and 20 of the collected allocations to build the RTFs. We
also experimented with building RTFs with more data points but found that they provided
little improvement over 20. We then use the model to predict the performance of every
resource allocation and compare it with the actual measured performance (median value of
three trials) of that resource allocation. We built three di↵erent models from three trials
and tested each of them against median measured value.

Figure 4.5 shows the 1-norm of the relative error of the predicted response times per
resource allocation for an RTF built with 10 training points and one built with 20. The
average error per point is 16% for an RTF built with 10 training points and 9% for an
RTF built with 20 training points. We also calculated the percentage variability (average
standard deviation) for each resource allocation in the application between the 3 trials (shown
as “App” in Figure 4.5). The average variability is 9%, so we can see that PACORA’s RTFs
are not much more inaccurate than the natural variation in response time in the application.
It is not for possible an RTF to be more accurate than the application variability, and we
can also see that applications with higher variability result in RTFs with larger relative
errors, (e.g., stencilprobe, tradebeans). Chapter 7 discusses application variability in
more detail.
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Figure 4.6: Resource allocation decisions for each pair of the cluster representative applica-
tions compared equally dividing the machine and a shared resources Linux baseline. Quality
is measured is allocation performance divided by performance of the best possible allocation.

Resource Allocation Experiments

Using the RTFs built for the applications, we let PACORA make static resource allocations
for all possible pairs of the cluster representative applications. We then ran an exhaustive
study of all possible resource allocations for each pair on our Sandy Bridge-Linux platform,
measure the performance, and compare it with the best performing, i.e., optimal, resource
allocation. We also compare this result to equally dividing the resources between the two
applications and to sharing all of the resources using the standard Linux scheduler. We only
experiment with pairs of applications in order to make the exhaustive study computationally
feasible; Chapter 6 presents results using more applications.

Figure 4.6 shows these results for our 10 point RTFs. As we might expect, simple naive
heuristics do not perform well, and dividing the machine in half is around 20% slower than
either PACORA or shared resources with standard Linux. PACORA’s resource allocations
are 2% from the optimal static allocation on average. Using shared resources with the
standard Linux scheduler performs similarly but with a higher standard deviation. These
results show that PACORA is able to provide performance comparable to Linux scheduling
on shared resources with more predictable performance on average. While it may seem a bit
counterintuitive to propose using a more complex system to get the same performance, this
is actually a good result. Resource partitioning provides desirable benefits for applications
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such as increased predictability and reducing interference3; however, it is often viewed as
having a high cost. The belief is that sharing resources can result in higher utilization, as
the applications can dynamically take advantage of available resources. In these results,
we’re seeing that PACORA can provide increased predictability with very little overhead.
Increased predictability should allow increased utilization of machines compared to the cur-
rent practice of using resource overprovisioning to guarantee QoS to sensitive applications.
Additionally, as the shown in Chapter 6, PACORA’s resource allocation decisions do not
need to be static, but can be made dynamically to adjust to the changing needs of the
applications, which should provide additional performance improvements.

E↵ect of Model Accuracy on Decision Quality

There are two main sources of challenges for PACORA’s design: performance non-convexity
and performance variability. The main concern with performance non-convexity and vari-
ability is their e↵ects on the accuracy of the response-time functions. However, an important
result we have found while evaluating PACORA is that model accuracy has less impact on
the quality of resource-allocation decisions than we anticipated. When experimenting with
possible models for the RTFs, we found that while some models were always a little too
inaccurate and did degrade the performance of the resource-allocation decisions, often bet-
ter models provided insignificant improvement in resource-allocation decisions. Figure 4.7
shows the e↵ect of model accuracy on the quality of the resource-allocation decisions made
using the RTF model in Equation 3.8. Although there is a slight correlation between model
accuracy and decision quality, many decisions with inaccurate models still result in near
optimal allocations. This e↵ect enables PACORA’s model-based design to be feasible in a
noisy system with real applications.

4.3 Summary

In this chapter, we presented two sets of experiments to evaluate model-based frameworks.
Our first experiments used an FPGA-based emulator to evaluate the e↵ect of di↵erent model
types on the resource allocations produced. Our second set of experiments use current
hardware and a modern OS to evaluate our PACORA framework in terms of model accuracy
and allocation quality for 44 benchmarks. In both cases, we found that our allocation
system was able to produce near optimal allocations and beat the baselines given a convex
formulation.

3In [38], using the same partitioning mechanisms and applications, Cook et al. were able to reduce the
worse cast inference from 36% to 7%.
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Figure 4.7: E↵ect of Model Accuracy on Decision Quality. The x axis represents the com-
bined relative error of all RTFs used in the decision.



49

Chapter 5

PACORA Implementation in a
Manycore OS

In this chapter, we present our implementation of PACORA in the Tessellation OS, a many-
core research operating system [33, 92, 35, 34, 76]. We give an overview of Tessellation
and why we chose it for our implementation. We then discuss the details for building
response-time functions (RTFs) online in the operating system. Finally, we present our im-
plementation of the resource allocator using an Alternating Direction Method of Multipliers
(ADMM) optimization method.

5.1 Motivation

We believe PACORA is applicable to many resource-allocation scenarios from cloud comput-
ing to distributed embedded systems. For our initial prototype, we chose to study PACORA
implemented in a general-purpose operating system for client systems, because we believe
this scenario has some of the most di�cult resource allocation challenges: a constantly chang-
ing application mix requiring low overhead and fast response times, shared resources that
create more interference among the applications, and platforms that are too diverse to allow
a priori performance prediction.

To evaluate PACORA’s ability to make real-time decisions in a real operating system,
we implemented it in an in-house research operating system, Tessellation. We chose to
implement PACORA in Tessellation rather than a more conventional operating system such
as Linux for three reasons:

1. Tessellation separates resource allocation from scheduling, so is closer to the OS archi-
tecture assumed by PACORA.

2. Tessellation allows resource revocation, enabling PACORA to dynamically reallocate
resources.

3. Tessellation implements additional resource partitioning mechanisms letting PACORA
manage more resource types.



CHAPTER 5. PACORA IMPLEMENTATION IN A MANYCORE OS 50

Further, Investigating new resources management schemas by modifying a full-fledged
production OS such as Linux is complex and requires more implementation e↵ort than
developing for Tessellation’s resource-centric OS1. We use the Tessellation port to test our
implementations of the algorithms, measure the overhead and reaction times, and illustrate
PACORA’s ability to work in a real system.

5.2 Tessellation Overview

This section briefly describes the key components of Tessellation OS [92, 33, 35, 34, 76].
The Tessellation kernel is a thin, hypervisor-like layer that provides support for dynamic
resource management. It implements resource containers called cells along with interfaces
for user-level scheduling, resource adaptation, and cell composition. Tessellation currently
runs on x86 hardware platforms (e.g., with Intel’s Sandy Bridge processors).

Cells

In Tessellation, resources are distributed to QoS domains called cells, which are explicitly
parallel, light-weight, performance-isolated containers with guaranteed, user-level access to
resources. The software running within each cell has full user-level control of the cell’s
resources.

As depicted in Figure 5.1, applications in Tessellation are created by composing cells via
channels, which provide fast, user-level asynchronous message-passing between cells. Appli-
cations can then be split into performance-incompatible and mutually distrusting cells with
controlled communication—thereby making them secure and easier to schedule e�ciently.

Tessellation OS implements cells on x86 platforms by partitioning resources using space-
time partitioning [122, 94], a multiplexing technique that divides the hardware into a se-
quence of simultaneously-resident spatial partitions. Cores and other resources are gang-
scheduled [110, 49], so cells provide to their hosted applications an environment that is very
similar to a dedicated machine.

Resources and Services

Partitionable resources include cores, memory pages, and guaranteed fractional services from
other cells (e.g., a throughput reservation of 150 Mbps from the network service). They may
also include cache slices, portions of memory bandwidth, and fractions of the energy budget,
when hardware support is available [2, 88, 112, 123].

1For example, the Earliest Deadline First (EDF) scheduler in Tessellation is only 800 lines of user-space
code, contained in four files. By contrast, support for EDF in Linux requires kernel modifications and
substantially more code: the best-known EDF kernel patch for Linux, SCHED DEADLINE, has over 3500
modified lines in over 50 files.
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Figure 5.1: Applications in Tessellation are created as sets of interacting components hosted
in di↵erent cells that communicate over channels. Standard OS services (e.g., the file service)
are also hosted in cells and accessed via channels.

Tessellation also creates service cells to encapsulate user-level device drivers and control
devices. Each service can thus arbitrate access to its enclosed devices to o↵er service guar-
antees to other cells. Tessellation treats the services o↵ered by the service cells as additional
resources to be allocated to applications.

Tessellation currently has two such service cells implemented: the Network Service, which
provides access to network adapters and guarantees that the data flows are provisioned with
the agreed levels of throughput; and the GUI Service, which provides a windowing system
with response-time guarantees for visual applications.

Resource Management and Scheduling

Tessellation uses Two-level scheduling [89, 109] to separate global decisions about allocation
of resources to cells (first level) from application-specific usage of resources within cells
(second level). Resource allocation occurs at a coarse time scale to allow time for cell
scheduling decisions to become e↵ective.

Scheduling

Scheduling within cells functions purely at the user-level, as close to the bare metal as possi-
ble, improving e�ciency and eliminating unpredictable OS interference. Tessellation provides
a framework for preemptive scheduling, called Pulse, enables customization and support for
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Figure 5.2: The Tessellation kernel implements cells through spatial-partitioning. The Re-
source Broker redistributes resources after consulting application-specific heartbeats and
system-wide resource reports.

a wide variety of application-specific runtimes and schedulers without kernel-level modifi-
cations. The user-level runtime within each cell can be tuned for a specific application or
application domain with a custom scheduling algorithm. Using Pulse, Tessellation provides
pre-canned implementations for TBB [119] and a number of scheduling algorithms, including
Global Round-Robin (GRR), Earliest Deadline First (EDF), and Speed Balancing [61].

Pulse provides support for revoking resource from schedulers. If a core is removed, Pulse’s
auxiliary scheduler runs the cell’s outstanding scheduler contexts in a globally cooperative,
Round-Robin manner; i.e., a scheduler context runs until it either completes and transitions
into an application context, or yields into Pulse, allowing other contexts to run. Additionally,
the Pulse API provides callbacks to notify schedulers when the number of available cores
changes, enabling resource-aware scheduling.
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Adaptive Resource Allocation

Global resource allocation in Tessellation is performed by the Resource Broker, as Figure 5.2
shows. The Broker assigns resources to cells and communicates its allocation decisions to the
kernel and services for enforcement. It reallocates resources, for example, when a cell starts
or finishes or when a cell significantly changes performance. The Broker can periodically
adjust allocations; the reallocation frequency provides a tradeo↵ between adaptability (to
changes in state) and stability (of user-level scheduling).

Rather than implementing a single policy, the Broker is a resource-allocation framework
that supports rapid development and testing of new allocation policies. We’ve implemented
PACORA as a resource-allocation policy inside the Resource Broker.

5.3 PACORA in Tessellation

In this section, we provide details of PACORA’s implementation in Tessellation’s Resource
Broker. Figure 5.3 shows the design. The Resource Broker runs in its own cell and com-
municates with applications and services through channels. PACORA leverages the existing
Resource Broker interfaces to communicate with the cells, services, and kernel. The RTF
Creation and Dynamic Penalty Optimization modules contain PACORA’s model creation
and resource allocation functions. Sections 5.4 and 5.5 describe these modules respectively.

Cell Creation

When a cell is started, it opens its own channel with the Resource Broker and sends a cell
creation message to register. The registration message contains the deadline and slope for
PACORA’s penalty function and optionally, a starting RTF model. The message format is
shown below. PACORA uses the message type field to determine how to unpack each of
the message formats.

typede f s t r u c t p e r f f u n c t i o n {

char message type ;
u i n t 64 t runt ime ta rge t ;
f l o a t p ena l t y s l op e ;
f l o a t mode l constants [MODEL SIZE ] ;

} p e r f f u n c t ;

Ideally, penalty functions would be inferred by the system or provided by a more trusted
source than the applications themselves. The simplest approach to implement this function-
ality in current operating systems would be to use an application’s priority as the penalty
slope and its interaction class [107] for the deadline. However, for our prototype the di-
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Figure 5.3: Overview of PACORA implementation in Tessellation. PACORA leverages the
existing Resource Broker interfaces to communicate with the cells, services, and kernel.
The RTF Creation and Dynamic Penalty Optimization modules contain PACORA’s model
creation and resource-allocation functions.

rect approach was straightforward to implement, and we believe does not detract from the
validity of the resource-allocation experiments2.

The Resource Broker also provides an interface for cells to update their penalty function
or RTF while they are running, which we currently use to change RTF functions when
an application changes phase or to update the penalty function of application 0 when the
computer changes operating mode (i.e., from battery to power source). The message formats
for updating RTFs or Penalty Functions are shown below.

2For cloud systems, this approach is, in fact, common practice: applications typically provide their
resource requirements to the system.
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typede f s t r u c t pena l ty update {

char message type ;
f l o a t p ena l t y s l op e ;

} pena l ty update t ;

typede f s t r u c t dead l ine update {

char message type ;
u i n t 64 t runt ime ta rge t ;

} dead l i n e upda t e t ;

typede f s t r u c t model update{

char message type ;
f l o a t mode l constants [MODEL SIZE ] ;

} model update t ;

Performance and Power Measurement

Applications report their own measured response times to PACORA by periodically sending
performance report messages, called heartbeats [60]. Messages may contain the value for a
single heartbeat or heartbeats may be batched together. The batch size is configurable, but
is bounded by a maximum size, MAX VALUES IN PERF REPORT, set by the system. The code
below shows the heartbeat message format.

typede f s t r u c t p e r f r e p o r t {

char message type ;
u i n t 64 t da ta va lue s [MAX VALUES IN PERF REPORT ] ;
i n t 3 2 t num values ;

} p e r f r e p o r t t ;

PACORA uses this information to build RTFs o✏ine or online. Section 5.4 describes this
process. As with the cell creation interface, it would be better for the system to directly
measure application heartbeats rather than needing to trust the application’s measurements.
However, measuring application-specific heartbeats in a general-purpose way is a challenging
problem, and we chose not to address it in this work. We instead focus exploring the value
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of resource allocation using application-specific measurements first. Chapter 8 discusses
heartbeat measurement further.

Tessellation provides a system call (show below) for PACORA to directly measure the
system energy using the energy counters available on current x86 systems. PACORA uses
this information to build application 0’s RTF.

i n t s y s r e ad ene r gy coun t e r ( i n t 3 2 t coun t e r i d ) ;

Resource Allocation

PACORA periodically optimizes the system penalty and produces resource allocations. Sec-
tion 5.5 describes the details of this process . Allocation decisions are communicated to the
kernel and services for enforcement. Updates are sent to via the kernel the sys update cells

system call, which adjusts the Space-Time Resource Graph. The function prototype for the
system call is shown below.

i n t s y s u pd a t e c e l l s ( c e l l s p e c t ⇤ upda t ed c e l l s p e c s ,
i n t 3 2 t num of updated ce l l spec s ,
s t a r t c e l l p a r am s t ⇤ new ce l l params ,
i n t 3 2 t ⇤ new ce l \ tau id s ,
i n t 3 2 t num of new ce l l s ) ;

The Resource Broker has a channel with each service to communicate allocations. To
update an allocation, PACORA sends a QoS Specification message to the service. The
function prototype to send the message is shown below. The data field is service specific.

i n t chang e a l l o c a t i on ( i n t s e r v i c e i d , i n t c e l l i d , void ⇤data ,
s i z e t len , channe l g a t e t ⇤ s e r v i c e c h ) ;

The Resource Broker design provides an adjustable reallocation frequency; the realloca-
tion frequency provides a tradeo↵ between adaptability (to changes in state) and stability
(of user-level scheduling).

If PACORA is using o✏ine models then it only makes sense to reallocate resources when
a cell starts or finishes or when a cell updates its penalty function or RTF, since those are
only points at which the inputs to the optimization change. The exception to this is if
optimization is terminated early for latency reasons, then each successive reallocation would
move the allocations closer to optimal3.

Online modeling reallocation could, in theory, be performed more frequently since the
RTF functions can change as a cell runs. However, the models will only change significantly
as a result of an application phase change or application input change and so, in practice, it
is similar to the o✏ine modeling case4.

3We found early termination to be unnecessary since the complete optimization runs so quickly. Chapter 6
shows these results.

4In the cloud, RTFs for applications such as web services may also change as a result of the incoming
request load and thus require more frequent reallocation.
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In our experiments (See Chapter 6), we run PACORA continuously so that we can
observe more resource-allocation decisions. However, the allocations rarely change outside
of the cases described above (i.e., cell start/stop or phase/penalty change), so in practice it
performs the same (in terms of resulting allocations) as if it were run periodically but with
a higher overhead since it continuously occupies a hardware thread—instead only for each
optimization.

Application Requirements

Our Tessellation implementation of PACORA requires a few minor modifications to ap-
plications5. First, during the application initialization phase where the cell registers with
Tessellation, a cell creation call must be added to open a channel with the Resource Broker
and send the application’s penalty function. Second, the application must be modified to
measure its response time and send these results to PACORA using the heartbeat interface.
For our applications, this simply required adding two timer calls and one message send.
Finally, if the system is using o✏ine modeling and the application has multiple phases with
di↵erent RTFs, then an update RTF message must be sent when the application changes
phase.

These modifications are mostly a product of our prototype implementation decisions
more than PACORA’s fundamental design, and we hope that more advanced future imple-
mentations would eliminate the need to modify applications. Chapter 8 discusses heartbeats
further.

5.4 RTF Creation

There are many ways to collect the response-time data for applications. The user-level
runtime scheduler is one possible source, or the operating system could measure progress
using performance counters. In our implementation, applications report their own measured
values; however, this solution was chosen simply as a way to test the validity of the concept.
In a production operating system, it may not be a good idea because applications could lie
about their performance. In a single-operator datacenter environment, this might be less of
a concern.

There are also many di↵erent possible moments to create response-time functions. RTFs
could be created in advance and distributed with the application. This approach could make
lots of sense for app stores since most of them cater to just a few platforms. RTFs could
also be crowd-sourced and built in the cloud, which has the advantage of making it easy to
collect a diverse set of training points. However, all of these approaches lack adaptability.
As a result, we have chosen to implement two solutions that collect data directly from the
user’s machine. The first approach is to adapt to the system by collecting all of the training
points at application install time and building the model then. The most highly adaptive

5In addition to the modifications already required for an application to run on Tessellation
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approach collects data continuously as the application runs, uses the data to modify the
model training set, and rebuilds the model. A hybrid approach may be the most e↵ective:
applications can begin with a generic or crowdsourced model and personalize it over time.
The remainder of this section describes our model creation application in detail.

Install Time Data Collection

To create RTF models either at install time or online, we use a convex least-squares approach
described below. At install time, we use a genetic algorithm, Audze-Eglasis Design of Exper-
iments [16], to select the resource allocation vectors to use for training. The application is
run with each resource vector for a configurable number of heartbeats to record the response
time. We average the response times collected for an allocation and use that result as the
response time for the model6. These vectors and their response times are fed into the convex
least-squares algorithm. O✏ine models are built entirely from this install time data. Online
modeling uses the response times measured as the application runs in the models, but it
could also start with a model built at install time.

Least-Squares Minimization

After enough measurements, the model parameters w of an application’s RTF ⌧ (Equation 3.8
in Chapter 3) can be discovered by solving an over-determined linear system t = Dw, where
t is a column vector of actual response times measured for the application and D is a matrix
whose ith row Di,⇤ contains the corresponding resource vector. Estimating w is relatively
straightforward: we’ve implemented a least-squares solution using QR factorization [53] of
D to determine the w that minimizes the residual error of kDw� tk

2
2 = kRw�Q

T
tk

2
2. The

solution proceeds as follows:

t = Dw � "

= QRw � "

Q

T
t = Rw �Q

T
"

The individual elementary orthogonal transformations, e.g., Givens rotations, that trian-
gularize R by progressively zeroing out D’s sub-diagonal elements are simultaneously applied
to t. The elements of the resulting vector QT

t that correspond to zero rows in R comprise
�Q

T
". Since Rw exactly equals the upper part of QT

t, the upper part of QT
" is zero. The

residual error for the ti can be found by premultiplying Q

T
" by Q.

This formulation assumes a model norm p = 1. If a di↵erent model norm p is desired,
such as p = 2, we could first square each measurement in t and each reciprocal bandwidth
term in D and then follow the foregoing procedure. The elements of the result w will be
squares as well, and the 2-norm of the di↵erence in the squared quantities will be minimized7.

6The Tessellation OS and our applications both have very little variability so average works fine for our
purposes; however, Chapter 7 discusses why average may not be the right choice in other situations.

7This is not the same as minimizing the 4-norm; what is being minimized is 1/2kdiag(DwwTDT
�ttT )k22.
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Incremental Least-Squares

As resource allocation continues, more measurements will become available to augment t

and D. Moreover, older data may poorly represent the current behavior of the application.
One option to adapt the RTF models to this incoming data would be to periodically rebuild
the model once a su�cient amount of new data has accumulated. However, if the model is
rebuilt too frequently, it can be quite expensive. If it is rebuilt rarely, then the models, and
consequently the resource allocations, will be slow to respond to changes in applications. As
an alternative, we’ve implemented an incremental approach described below to replace old
data and e�ciently update RTFs with each new data value.

To perform incremental least squares, we need a factorization Q̃R̃ of a new matrix D̃

derived from D by dropping a row and adding a row. Corresponding elements of t are
dropped and added to form t̃.

The matrices Q̃ and R̃ can be generated by applying Givens rotations as described in
Section 12 of [53] to downdate or update the factorization much more cheaply than recom-
puting it ab initio. The method requires retention and maintenance of QT but not of D.
Every update in PACORA is preceded by a downdate that makes room for it. Downdated
rows are not always the oldest (bottom) ones, but an update always adds a new top row.
For several reasons, the number of rows m in R will be at least twice the number of columns
n. Rows selected for downdating will always be in the lower m� n rows of R, guaranteeing
that the most recent n updates are always part of the model.

To guarantee convexity of the RTF, the solution w to t ⇡ QRw must have no negative
components. Intuitively, when a resource is associated with more than a single wj or when the
measured response time increases with allocation then negative wj may occur. Non-negative
Least-Squares problems (NNLS) are common linear algebra, and there are several well-known
techniques [30]. However since PACORA’s online model maintenance calls for incremental
downdates and updates to rows of QT , QT

t and R, the NNLS problem is handled with a
scheme based on the active-set method [86] that also downdates and updates the columns of
R incrementally, roughly in the spirit of Algorithm 3 in [95]. However, PACORA’s algorithm
cannot ignore downdated columns of R because subsequent row updates and downdates must
have due e↵ect on these columns to allow their later reintroduction via column updates as
necessary. This problem is solved by leaving the downdated columns in place, skipping over
them in maintaining and using the QR factorization.

The memory used in maintaining a model with n weights is modest, 24n2 + 21n + O(1)
bytes. For n = 8 this is under 2 KB, fitting nicely in L1 cache. Our NNLS implementation
takes 4 µs per update-downdate pair in Tessellation. The sections below describe our row
and column update/downdate, rank preservation, and outlier minimization algorithms in
more detail.
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Row Update and Downdate

A row downdate8 operation applies a sequence of Givens rotations to the rows of QT . The
rotations are calculated to set every Q

T
i,dd, i 6= dd to zero. In the end, only the diagonal

element QT
dd,dd of column dd will be nonzero. Since QT remains orthogonal, the non-diagonal

elements of row dd will also have been zeroed automatically and the diagonal element will
have absolute value 1. These same rotations are concurrently applied to the elements of QT

t

and to the rows of R (= Q

T
D) to reflect the e↵ect that these transformations have on Q

T .
It is crucial to select pairs of rows and an order of rotations that preserves the upper

triangular structure of R while zeroing all but the diagonal entry of the chosen column dd

of QT . Since dd is always below the diagonal of R it initially will contain only zeros. It
is therefore su�cient to rotate every non-dd row with row dd, proceeding from bottom to
top. The first m � n � 1 rotations will keep row Rdd,⇤ entirely zero, and the remaining n

rotations will introduce nonzeros in Rdd,⇤ from right to left. The e↵ect on R will be to replace
zero elements by nonzero elements only within row dd. At this point, except for a possible
di↵erence in overall sign, Rdd,⇤ = Ddd,⇤.

Now the rows from 0 down through dd of the modified matrices QT
t and R and both the

rows and columns of the modified Q

T are circularly shifted by one position, moving row dd

to the top (and column dd of QT to the left edge). The following is the result:

"
±1 0
0 Q̃

T

# "
tdd

t̃

#

=

"
±Ddd,⇤

R̃

#

w �

"
±1 0
0 Q̃

T

# "
"dd

"̃

#

The top row has thus been decoupled from the rest of the factorization and may either be
deleted or updated with new data.

The update application more or less reverses these steps, adding a new top row to R and
t and a row and column to Q

T . Then R is made upper triangular once more by a sequence
of Givens rotations that zero its sub-diagonal elements (formerly the diagonal elements of
R̃) one at a time. These rotations are applied not just to R but also to Q

T
t and of course

to Q

T itself.

Rank Preservation

If care is not taken in downdating R, its rows may become so linearly dependent, perhaps
from repetitive resource allocations, that determining a unique w is impossible. The rank
of R depends on both the resource optimization trajectory and the choices made in the row
downdate-update algorithm. PACORA exploits the latter idea and simply avoids downdating
any row that will make R rank-deficient.

Deciding in advance whether downdating a row of R will reduce its rank is equivalent
to predicting whether one of the Givens rotations, when applied to R, will zero or nearly
zero a diagonal entry of R. This property is particularly easy to determine because dd, the

8Here we use downdate to meaning removing a row.
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row to be downdated, is initially all zeros in R, i.e. in the lower part of the matrix. In this
situation, a diagonal entry of R, Ri,i say, will be compromised if and only if the cosine of the
Givens rotation that involves rows dd and i is nearly zero. The result will be an interchange
of the zero in Rdd,i with the nonzero diagonal element Ri,i. Rdd,i is zero before the rotation
because R was originally upper triangular and prior rotations only involved row subscripts
greater than i.

PACORA keeps track of the sequence of values in Q

T
dd,dd without actually changing Q

T

so that if the downdate at location dd is eventually aborted there is nothing to undo. It is
also possible to remember the sines and cosines of the sequence of rotations, so they don’t
have to be recomputed if success ensues. A rank-preserving row to downdate will always be
available as long as R is su�ciently “tall”. Having at least twice as many rows as columns
is enough since the number of available rows to downdate matches or exceeds the maximum
possible rank of R.

Column Update and Downdate

The active-set NNLS method is based on the idea that since the only constraints are variable
positivity, then for all components either the variable or its gradient will be zero at a solution
point; see [24], page 142. The active set, denoted by Z, comprises the column subscripts j
for which the variable wj is zero and the gradient vj is positive. If a column j not currently
in Z happens to acquire a negative wj after a back-solve, wj is zeroed, j is moved into Z and
column j is downdated in R, thereby making the gradient positive. Conversely, if a column
already in Z happens to acquire a negative gradient vj it is removed from Z and updated in
R, allowing it to further reduce the value of the objective function.

After initial acquisition of data and QR factorization, each step of PACORA’s NNLS
algorithm combines incremental row and column downdates and updates as follows:
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Algorithm 5.4.1: IncrementalNNLS(t0, d0)

local R,Q

T
, Q

T
t, w, v, idx, d, u, done

R,Q

T
, Q

T
t DndtRow(R,Q

T
, Q

T
t, idx)

R,Q

T
, Q

T
t UpdtRow(t0, d0, R,Q

T
, Q

T
t, idx)

w  BackSolve(R,Q

T
t, idx)

v  Gradient(R,Q

T
t, idx)

repeat
done true
d argmin(w)
if wd < 0
then8

>>><

>>>:

done false
R,Q

T
, Q

T
t, idx DndtCol(R,Q

T
, Q

T
t, idx, d)

w  BackSolve(R,Q

T
t, idx)

v  Gradient(R,Q

T
t, idx)

u argmin(v)
if vu < 0
then8

>>><

>>>:

done false
R,Q

T
, Q

T
t, idx UpdtCol(R,Q

T
, Q

T
t, idx, u)

w  BackSolve(R,Q

T
t, idx)

v  Gradient(R,Q

T
t, idx)

until done
return (w, v)

The set Z and its complement P are implemented as an index idx containing a vector of
the column subscripts comprising P in increasing order followed by the column subscripts of
Z in increasing order; idx also contains an o↵set defining the beginning of Z in the vector.
For example, if columns 1, 3, and 4 are in Z and columns 0, 2, and 5 are in P then the
resulting vector is [0 2 5 1 3 4] and the o↵set is 3. Since the o↵set is just the size of the set
P it is naturally called p.

Regardless of status, columns are left in place in R The columns of R belonging to P
are denoted by R

p and those in Z by R

z. The updating or downdating of a column only
involves modifying the index idx to redefine P and Z and then applying Givens rotations to
the rows of R to restore R

p to upper triangular form.
When a column indexed by d in R

p is downdated because wd < 0, that column is moved
from P to Z in idx. To restore R

p to upper triangular form, Givens rotations are applied
to R at rows Rd,⇤ and Rk,⇤ where d < k < p. The row subscripts k are used in decreasing
order from p � 1 down to d + 1, and each rotation zeros the subdiagonal element in R

p of
the column indexed by k. As usual, these rotations are also applied to Q

T and Q

T
t. The
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result in R

z is a “spike” of nonzeros in the column that was moved; it can eventually extend
to the bottom of R as row updates occur.

Column movements from Z to P are based on the gradient v of the objective function,
namely

v = 1/2rkDw � tk

2
2

= D

T (Dw � t)

= R

T
Q

T (QRw � t)

= R

T (Rw �Q

T
t)

= R

T (�QT
").

If for some column in Z the inner product of the corresponding spiked row in R

T and �QT
"

is negative, the column subscript must be moved to P. Updating R

p reverses the downdating
steps by zeroing the spike via a sequence of Givens rotations on R between adjacent pairs
of rows, starting at the bottom and ending at m,m + 1 where m is the position of the new
column in idx. These rotations conveniently extend the columns to the right of m in R

p by
one, thus restoring R

p to upper triangular form. Once again, the rotations are also applied
to Q

T and Q

T
t.

A new gradient computation and new back-solve for w are clearly necessary after either
downdates or updates to columns of R.

Outliers and Phase Changes

Some response time measurements may be “noisy” or even erroneous. A weakness of least-
squares modeling is the high importance it gives to outlying values. On the other hand,
when an application changes phase it is important to adapt quickly, and what looks like
an outlier when it first appears may be a harbinger of change. What is needed is a way to
discard either old or outlying data with a judicious balance between age and anomaly.

The downdating algorithm accomplishes this balance by weighting the errors in " =
Q(QT

t � Rw) between the predicted response times ⌧ and the measured ones t by a factor
that increases exponentially with the age g(i) of the error "i. Age can be modeled coarsely
by the number of time quanta of some size since the measurement; PACORA simply lets
g(i) = i. The weighting factor for the ith row is then ⌘

g(i) where ⌘ is a constant somewhat
greater than 1. The candidate row to downdate is the row with the largest weighted error,
i.e., dd = argmaxi |"i| · ⌘g(i) and that does not reduce the rank of R.

5.5 Dynamic Penalty Optimization

We chose to implement PACORA’s resource allocation optimization using an Alternating Di-
rection Method of Multipliers (ADMM) algorithm [25]. We selected ADMM for two reasons.
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First, it works well with PACORA’s RTF and penalty functions9. Second, it provides a nat-
ural way to distribute the algorithm. Using ADMM global optimization problem only needs
to know the resource quantities and costs. The RTF and penally functions can be stored
locally, and their gradients computation can be performed locally. While this feature may be
less important in current client operating systems, it is very natural for the cloud. Running
in a distributed fashion, the algorithm looks like a resource market expressed as an exchange
problem. The applications send their resource requirements each round. The global leader
processes the requirements and returns the resource costs. The applications adjust their
resource requirements based on the new cost. The cycle continues until there is an agreed
upon resource cost and thus a resource allocation. The advantage of this formulation is that
very little information needs to be communicated. In addition to the performance benefits,
the division can also be seen as potentially benefiting security or privacy since application’s
RTF models need never leave the local machine.

The remainder of this section describes our ADMM formulation in more detail.

ADMM Overview

We follow the notation in §7.3 of Boyd et al. [25]. We have n resources and N applications.
We let ai 2 Rn

+ denote the vector of resources that application i consumes. The (vector
of) total resource consumption is then a1 + · · · + aN ; for future use we let z denote the
average resource usage per application, i.e., , the total divided by N . Application i has a
cost (penalty in PACORA) function ⇡i : R

n
! R[ {1}, where ⇡i is convex. We let ⇡i take

on the value +1 to encode constraints on the resource allocation.
The total cost function is

⇡1(a1) + · · ·+ ⇡N(aN) + g(Nz),

where g : Rn
! R [ {+1} is the cost of consuming a total amount of resources (including

any limits on total available resources). Note that the first N terms are the costs associated
with the applications (i.e., their penalty contribution to the system), and the last term is the
cost of providing the total resources (i.e., penalty from application 0 for using the system
power/energy). The problem is to choose the allocations ai to minimize the total cost (in
terms of penalty), which is a convex optimization problem [24, 25].

We will solve this problem using the sharing ADMM algorithm from [25]:

a

k+1
i := argmin

ai

⇣
⇡i(ai) + (⇢/2)kai � a

k
i + a

k
� z

k + u

k
k

2
2

⌘

z

k+1 := argmin
z

⇣
g(Nz) + (N⇢/2)kz � u

k
� a

k+1
k

2
2

⌘

u

k+1 := u

k + a

k+1
� z

k+1
.

9Since PACORA’s penalty functions contain a discontinuity in the gradient, other approaches such as
gradient decent don’t behave appropriately.



CHAPTER 5. PACORA IMPLEMENTATION IN A MANYCORE OS 65

Here ⇢ > 0 is an algorithm parameter, k is the iteration number, and a

k is the average of the
consumption vectors ak1, . . . , a

k
N . We interpret aki as the (proposed) resource consumption of

application i, zk as the (proposed) average resource consumption, and u

k as a dual variable,
all at iteration k. This algorithm converges to an optimal allocation, and (1/⇢)uk converges
to the optimal dual variables (prices) for the resources.

The x-update can be carried out in parallel, for i = 1, . . . , N . Each application, in each
iteration, must minimize a function of the form

⇡i(ai) + (⇢/2)kai � vk

2
2,

i.e., , each application evaluates a proximal operator; see [113].
The z-update step requires gathering a

k+1
i to form the averages, and then solving a

problem with n variables. This step is also a proximal evaluation.
After the u-update, the new value of ak+1

� z

k+1 + u

k+1 is scattered to the subsystems.

Applications

We disregard the interaction terms in our RTFs for this implementation as we found them
rarely useful, and therefore did not seem worth the cost of the increased computation. Thus,
our RTF model of application i is

⌧i(ai) = ⌧0,i +
nX

j=1

(wi)j/(ai)j

for ai > 0, and +1 otherwise, where ⌧0,i 2 R+ and wi 2 Rn
++ are given response time model

parameters. Recall the application cost is given by PACORA’s penalty function

⇡i(ai) = si(⌧i(ai)� di)+,

where s > 0 is a parameter and di is the deadline. Note that ⌧i(ai)�di is the excess response
time.

In each iteration of the sharing algorithm, we need to evaluate the proximal operator of
⇡i. To simply notation, we drop the subscript i and consider one application. We need to
minimize

s

0

@
⌧0 +

nX

j=1

wj/aj � d

1

A

+

+ (⇢/2)
nX

j=1

(aj � vj)
2

over aj � 0. Note that we can combine s and ⇢ (say, by dividing by s) and we can combine
⌧0 and d. So we now assume that s = 1 and ⌧0 = 0, with the understanding that s and ⌧0

have been incorporated into ⇢ and d.
We work out several cases. First suppose that the excess response time is negative. The

first term above is zero and we must have a = v. So a = v is the solution when v > 0 and
nX

j=1

wj/vj � d  0.
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Now consider the case when the excess response time is positive. In this case we simply
minimize

nX

j=1

wj/aj + (⇢/2)
nX

j=1

(aj � vj)
2
,

which can be done for each aj separately. Each aj must satisfy

wj/a
2
j = ⇢(aj � vj).

This equation can be solved extremely quickly, using a bisection method, Newton’s method,
or many others to find the unique (positive) values a

?
j that satisfy the equation. We then

check if the resulting values of aj give nonnegative excess response time, i.e., , if

nX

j=1

wj/a
?
j � d � 0.

If so, we are done: a? is the value of the proximal operator.
Finally, we consider the special case (which occurs often) when the optimal values have

zero excess response time, i.e., ,
nX

j=1

wj/aj � d = 0.

The optimality condition in this case is that exists a ✓ 2 [0, 1] for which

✓wj/a
2
j = ⇢(aj � vj)

(along with the condition
Pn

j=1 wj/aj � d = 0). We solve this equation by bisection on
✓. For each value of ✓, we use the same method as above to find aj. We then check ifPn

j=1 wj/aj � d = 0 is positive or negative. If it is positive, we increase ✓; otherwise we
decrease it.

Total Resource Cost

We take the resource cost to have the form

g(z) =
nX

i=1

gi(zi).

Here gi(zi) is the cost of providing resource i at level zi. A simple model is

gi(zi) =

(
cizi zi  Zi

+1 zi > Zi or zi < 0,

where Zi > 0 is the maximum available, and ci > 0 is the price for resource i. Since g is
separable, we can minimize over each resource separately; these are scalar problems.
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We need to minimize
gi(Nzi) + (N⇢/2)(zi � vi)

2

over the (scalar) zi. (Here vi = u

k
i + a

k+1
i .) The solution is simple:

zi = max{0,min{vi � ci/⇢, Zi/N}}.

Note that N drops out, but we need to scale the bound accordingly. Also note that when
the average zi = Zi/N , the total amount of resource is Nzi = Zi, meaning that resource i is
at its maximum possible level.

Total Resource Cost with Free Zone

We model the resource cost in terms of energy consumed with a function of the form

g(z) = �

 
nX

i=1

cizi � b

!

+

,

where ci > 0 represents the amount of energy consumed by unit amount of resource i, the
constant b > 0 is a threshold below which power consumption is free, and � > 0 is the price
charged for excess energy used (or relative weight used to tradeo↵ between response time and
energy). We also impose lower and upper bounds on z, i.e., , 0  zi  Zi for i = 1, . . . , n.

To evaluate the proximal operator, we need to minimize

g(Nz) +
N⇢

2

nX

i=1

(zi � vi)
2
,

where z is the averge resource vector, and vi = u

k
i + x

k+1
i . This is equivalent to

minimize � (
Pn

i=1 cizi � b/N)+ + (⇢/2)
Pn

i=1(zi � vi)2

subject to 0  zi  Zi/N, i = 1, . . . , n.

The solution can be obtained in a way similar to that used for evaluating the proximal
operator of the response-time penalty functions.

We work out several cases. First suppose that the excess energy is negative. The first
term in the objective function is zero. So the solution is

zi = max{0,min{vi, Zi/N}}, i = 1, . . . , n

provided that
nX

i=1

cizi � b/N  0.

Next we consider the case when the excess energy is positive. In this case, we simply
minimize

�

 
nX

i=1

cizi � b/N

!

+ (⇢/2)
nX

i=1

(zi � vi)
2
,
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which can be solved for each zi separately and the solutions are

zi = max{0,min{vi � �ci/⇢, Zi/N}}, i = 1, . . . , n.

We then need to check
nX

i=1

cizi � b/N � 0.

If so, we are done.
Finally we consider the case when the optimal allocations have zero excess energy, i.e., ,

nX

i=1

cizi � b/N = 0.

The solution takes the form

zi = max{0,min{vi � ✓ci/⇢, Zi/N}}, i = 1, . . . , n.

where 0  ✓  �. We can do a bisection on ✓ to make the solution satisfy
Pn

i=1 cizi�b/N = 0.
Basically, if the excess energy is positive, then we increase ✓; otherwise we decrease it.

Stopping criteria

Here we describe a stopping criterion that is similar to the one in §3.3 of [25].
For our resource-allocation problem, the primal residuals at iteration k are

r

k
i = a

k
i � z

k
i , i = 1, . . . , N,

and the dual residuals are

s

k
i = ⇢(zk�1

i � z

k
i ), i = 1, . . . , N.

Here zi for i = 1, . . . , N are the variables that were eliminated to simplify the z-update in
the sharing problem (see §7.3 of [25]). The variable z in the simplified update is actually
their average z = (1/N)

PN
i=1 zi. Based on the derivation in [25, §7.3],

z

k
i = a

k
i � a

k + z

k
, i = 1, . . . , N.

Therefore we have
r

k
i = a

k
i � z

k
i = a

k
� z

k
, i = 1, . . . , N,

i.e., , the primal residuals for the applications are the same as the average primal residue.
The dual residuals become

s

k
i = ⇢(zk�1

i � z

k
i )

= ⇢((ak�1
i � a

k
i ) + (ak � z

k)� (ak�1
� z

k�1))

= ⇢((ak�1
i � a

k
i ) + r

k
� r

k�1), i = 1, . . . , N.
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Figure 5.4: Progress of reducing primal and dual residual norms in ADMM. This is the case
of expensive energy, notice that the simple dual residual often works as well as the accurate
dual residual. Since the resource allocations are not reaching their bounds, so the simple
dual residual kskk2 = ⇢kz

k
� z

k+1
k2 converges to zero only asymptotically, and can serve as

a stopping criterion.

Figure 5.5: Visualization of optimal resource allocation (left) and resulting response time for
each application (right). There are n = 10 resources and N = 20 applications. This is the
case of expensive energy, so the total resources allocated are mostly well below their bounds,
but the application response times are mostly exceeding the deadlines, which is the desirable
result for this case where using resources has a higher penalty than missing deadlines.
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Figure 5.6: Progress of reducing primal and dual residual norms in ADMM. This experiment
is the case of cheap energy, notice that the simple dual residual becomes exactly zero (dis-
continued in the plot) after 10 iterations, Since the energy is cheap, the resource allocations
reach their bounds easily, so the simple dual residual kskk2 = ⇢kz

k
�z

k+1
k2 = 0 become zero

quickly, therefore can not serve as a stopping criterion.

Figure 5.7: Visualization of optimal resource allocation (left) and resulting response time
for each application (right). There are n = 10 resources and N = 20 applications. This
experiment is the case of cheap energy, so the total resources allocated all reach their bounds,
and most of the application response times are within their deadlines.
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So the dual residuals are di↵erent for di↵erent applications.
The following termination criterion is similar to the one proposed in [25, §3.3]:

kr

k
k2 = kx

k
� z

k
k2  ✏

pri
,

max{ksk1k2, . . . , ks
k
Nk2}  ✏

dual
,

with

✏

pri =
p

n✏

abs + ✏

rel max{kx1k2, . . . , kxNk2, kz1k2, . . . , kzNk2},

✏

dual =
p

n✏

abs + ✏

rel
⇢ku

k
k2.

Since the computation involved in the above stopping criterion are rather heavy, and we
also experimented with simplified conditions. In particular, we tried the following conditions
which only uses the average vectors:

kr

k
k2 = kx

k
� z

k
k2 

p

n✏

abs + ✏

rel
kz

k
k2,

ks

k
k2 = ⇢(zk�1

� z

k
k2) 

p

n✏

abs + ✏

rel
⇢ku

k
k2.

Basically we simplified the calculation of ✏pri and the dual residual, while leaving the calcu-
lation of primal residual and ✏

dual unchanged.
We perform two simple experiments with di↵erent resource costs to evaluate potential

stopping criteria. Figures 5.4 and 5.5 represent the case where resources are very expensive,
so there may be a lower penalty for applications to miss deadlines than for using more
resources. Figures 5.6 and 5.7 represent the case where resources are very cheap and so
applications should not miss their deadlines.

Figure 5.4 shows both the accurate calculations and their simplified counterparts. We
see that the simple primal ✏pri is slightly smaller than the more accurate calculation, making
primal residual a little harder to satisfy the termination condition. On the other hand,
the simple dual residual calculation is smaller than the accurate dual residual calculation,
making the dual residual easier to satisfy the termination condition. Figure 5.5 illustrates
the optimal resource allocation and resulting response time for each of the applications.

It looks that the simplified stopping criterion is e↵ective and su�cient. However, when
we vary the parameters in the resource allocation problem, the simple conditions may break-
down. Figure 5.6 and 5.7 plot the same quantities but in the case of cheap energy (mean-
ing that price � in the total resource cost function is small). In this case, the total re-
sources allocated all reach their bounds, and most of the application response time are
within their deadlines. Notice that the simplified dual residual becomes exactly zero (dis-
continued in the right plot of Figure 5.6) after 10 iterations. The reason is that since the
energy is cheap, the resource allocations reach their bounds easily, so the simple dual resid-
ual kskk2 = ⇢kz

k
� z

k+1
k2 = 0 become zero quickly, therefore can not serve as a stopping

criterion.
In our implementation, we use the simplified calculation of ✏pri, but do not simplify the

calculation of the dual residual.
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5.6 Summary

In this chapter, we presented details of PACORA’s implementation in Tessellation, a many-
core research OS. We gave an overview of Tessellation and our rational for selecting it. We
provided the interfaces for applications and Tessellation to communicate with PACORA.
We then presented the mathematical details for our online RTF creation using incremental
non-negative least squares. Our incremental NNLS algorithm can add a new value to an
application’s model in just 4 µs by removing an appropriate row from the matrix and re-
placing it with the new value. We then presented our penalty optimization using sharing
ADMM. ADMM naturally distributes the optimization by alternating between solving the
primal and the dual problems. We performed a few simple experiments in simulation to test
potential stopping criteria and found that we could simplify some of the calculation, but
not all. Our NNLS and ADMM algorithms are self-contained and not Tessellation-specific
and thus can be reused in any PACORA implementation. The next chapter evaluates their
implementation in Tessellation.
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Chapter 6

Evaluation in a Manycore OS

In this chapter, we evaluate our PACORA implementation in Tessellation OS using a
video conference as a motivating scenario.

6.1 Dynamic Resource Allocation in a Manycore OS

In evaluating PACORA’s ability to allocate resources dynamically to many applications,
we selected a motivating scenario that we felt could easily occur on current laptops, if not
yet mobile devices. We constructed a video conference scenario similar to chatting with a
group of friends on Google Hangout or meeting with coworkers on Microsoft’s Lync. In our
video conference, every person in the meeting has a separate performance-guaranteed video
stream. Typically, the videos are a small size, but the current speaker has a larger, high
resolution video. Simultaneously, participants may be collaborating through web browsers,
or watching shared video clips and web searching, while their systems run compute-intensive
background tasks such as updates, virus scans, or file indexing.

Although it may be relatively straightforward to provide responsiveness guarantees for
individual applications such as video streams in current systems, it is a real challenge to do
so without reserving excessive resources, which will compromise system utilization, power
consumption, or responsiveness of other applications. The goal was to show that PACORA
can allocate for a mix of throughput and realtime applications e↵ectively without significant
overprovisioning.

6.2 Experimental Setup

In this section, we describe our platform, data collection system, and workloads for our
dynamic resource allocation experiments.
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Platform

Our dynamic experiments are all run on an Intel Nehalem-EP system with two 2.66-GHz
Xeon X5550 quad-core processors and hyperthreading enabled, resulting in 16 total hardware
threads. This system contains a 1-Gbps Intel Pro/1000 Ethernet network adapter, which we
use to receive incoming video streams and data. Tessellation allocates resources directly to
applications. In addition to allocating cores and cache ways as in the experiments in Chap-
ter 4, Tessellation can also allocate fractions of network bandwidth. This platform has the
advantage of more cores, which allows us to simultaneously run more applications; however,
it lacks cache-partitioning hardware, so we are only able show PACORA allocating cores
and network bandwidth. In this system, PACORA has eight cores available to allocate, and
Tessellation uses the remaining cores to run OS services. We artificially limit the available
network bandwidth to 1500 kbits/s to make the resources more constrained.

The applications employ a second-level scheduler to schedule work onto the resources.
Our experiments use a preemptive scheduling framework called PULSE (Preemptive User-
Level SchEduling) [35], with two di↵erent scheduling strategies: applications with respon-
siveness requirements use an earliest-deadline-first (EDF) scheduler and throughput-oriented
applications use a round-robin (GRR) scheduler.

Performance and Energy Measurement

Applications report their own measured response times to PACORA through the heartbeat
interface presented in Chapter 5, and PACORA uses this information to build response-time
functions (RTFs) o✏ine or online. Our o✏ine modeling uses CVX [68] in MATLAB [98] to
build the models. Online we use our Non-Negative Least Squares (NNLS) implementation
described in Chapter 5. The online models are identical to our o✏ine models for the same
inputs, so the method used has no e↵ect on resource-allocation decisions.

We also use the same heartbeat information to show if the application is making its
deadlines for the experiments. Tessellation enables PACORA to directly measure the system
energy. However, energy counters are not available on our Nehalem-EP system and thus we
extend the power model from the Sandy Bridge system to function as our application 0 RTF.

Description of Workloads

Our video conference scenario has three types of applications: a video application, a network
bandwidth hog, and a file indexer.

Our streaming video application is a multi-threaded, CPU- and network-intensive work-
load intended to simulate multiparty video-chat applications like Google Hangout or Mi-
crosoft Lync. The application has a separate, performance-guaranteed incoming video stream
for each participant and adjusts video sizes based on which person is speaking. The speaker’s
video is larger and has higher resolution than the other video streams, and as the speaker
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Figure 6.1: Screenshot of our video-chat scenario with all small videos (right) and one large
video (right).

changes, the requirements for the video streams change. Figure 6.1 shows screenshots of our
video application running.

Our application can have up to nine incoming video streams each handled by a thread
in our video cell. In the cell, each video stream has an EDF-scheduled thread with 33 ms
deadlines. Tessellation provides separate network bandwidth allocation to each video thread,
and the videos share their core allocations using the EDF scheduler.

In our experiments, videos are resized using a keyboard command. Small videos require
roughly 90 kbit/s of network bandwidth while large videos require 275 kbit/s of network
bandwidth. We use Big Buck Bunny [18] for all videos. Each video stream is encoded o✏ine
in the H.264 format using libx264, transported across the network through a TCP connection
from a Linux Xeon E5-based server, and decoded and displayed by the Tessellation client.
The client receives, decodes, and displays each frame using lib↵mpeg and libx264.

Our network bandwidth hog application is designed to represent an application such as
Google Drive or Dropbox uploading files to the cloud in the background during the video
conference. The bandwidth hog is a simple, single-threaded application that transmits data
at the fastest possible rate. The hog contends with the video player for bandwidth by
constantly sending UDP messages to the Linux server.

Finally, we use psearchy [91], a parallel text indexer, from MOSBENCH [26] to represent
compute-intensive tasks such as virus scans or file indexing, which could be executing in the
background. Psearchy was designed to index and query Web pages, but instead we index the
Linux 2.4.0 source code. It runs on top of a pthread-compatible runtime system implemented
in Pulse.
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6.3 Resource Allocation Experiments

Now we demonstrate how PACORA can be used to e�ciently allocate resources for di↵erent
parts of the video conference scenario. This section demonstrates using PACORA as the
overall resource allocation system, dividing resources between the incoming video streams,
a file indexer, and outgoing network data. We assign a moderate penalty (10.0) for missing
the deadline to small videos, and a significant penalty (50.0) for the large videos. We assign
a small penalty for the network hog (5.0) and a very small penalty to the file indexer (0.1),
with no deadlines for either.

Our first experiment uses o✏ine modeling and assumes that system is running on wall
power and thus sets application 0’s penalty slope to 0. Figure 6.2 shows the results. All
network allocations were initially set to 120 kbits/s, and as shown in plots (a) and (b). The
first adaptation event occurs at t= 2 s, when PACORA changes the allocations from their
initial settings to application-specific allocations. PACORA changes all of the video threads
to 96 kbits/s, just above the required network bandwidth for small videos. PACORA removes
all bandwidth from the file indexer since it does not use network bandwidth and gives the
remaining bandwidth in the system to the network hog. Plot (d) shows that PACORA
removes cores from the video cell and gives them to the file indexer.

Additional resizing events occur at 25, 35, 52, 58 and 65 seconds, when videos 1, 2, 3,
and 4 change size. As shown in plots (a) and (b) , PACORA reduces the network hog’s
allocation in order to give su�cient bandwidth to the large video. However, when all the
videos are small the bandwidth is returned to the network hog. We can see in plot (f) that
PACORA allocates 99.6% of the total bandwidth on average throughout the experiment
with a standard deviation of 0.5%.

Plot (d) shows that larger videos do not need enough additional processing power to
require an increase in cores, so the core allocations do not change after the initial adaptation.
Plot (c) shows that the videos do not drop below the required frame rate except when resizing.
These glitches while resizing are an artifact of the application implementation.

Plot (e) shows the time for PACORA to run it’s resource-allocation algorithm. The
average runtime is 285 µs, but optimizations where the allocations change significantly can
take as long as 1.4ms.

We believe these results show the potential of PACORA. Running in a real operating
system, PACORA is able to dynamically allocate resources to a mix of realtime and high-
throughput applications without missing any deadlines. PACORA takes less than 1.4ms to
calculate new allocations, and allocates 99% of the resources.

Figure 6.3 shows results for the same experiment except now that we have changed
application 0’s penalty slope to 10 to represent that the system is running on battery power
and saving energy is now important. We can see that the allocations di↵er slightly for those
in Figure 6.2—most likely as a result of some inaccuracies in our power model that was built
for a di↵erent machine and our certain stopping criteria. All allocations stay at their initial
allocations until video 2 becomes large at 19 seconds. We can see that PACORA takes a few
steps to increase the network allocation for video 2 above threshold. When video 2 becomes
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Figure 6.2: Allocation results for video conference with 9 videos, a bandwidth hog, and a
file indexer with wall power and o✏ine modeling. Periodically, one of the videos becomes
large causing the allocations to change. Plot (a) shows the network bandwidth allocations
for the nine video threads. The two red lines represent the required network bandwidth for a
large and small video. Plot (b) shows the network bandwidth allocations for the bandwidth
hog and the file indexer. Plot (c) shows the measured frame rate for the video threads. The
red line represents the desired frame rate of 30 frames per second. Plot (d) shows the core
allocations for the video cell, bandwidth hog, and file indexer. Plot (e) shows the time to run
PACORA’s resource allocation algorithm. Plot (f) shows the network allocations in plots
(a) and (b) stacked.
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Figure 6.3: Allocation results for video conference with 9 videos, a bandwidth hog, and a
file indexer with battery power and o✏ine modeling. Periodically, one of the videos becomes
large causing the allocations to change. Plot (a) shows the network bandwidth allocations
for the nine video threads. The two red lines represent the required network bandwidth for a
large and small video. Plot (b) shows the network bandwidth allocations for the bandwidth
hog and the file indexer. Plot (c) shows the measured frame rate for the video threads. The
red line represents the desired frame rate of 30 frames per second. Plot (d) shows the core
allocations for the video cell, bandwidth hog, and file indexer. Plot (e) shows the time to run
PACORA’s resource allocation algorithm. Plot (f) shows the network allocations in plots
(a) and (b) stacked.
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small again at 42 seconds, the video allocation says slightly above the lowest possible, and
index is given an extra core. However, despite these minor quirks, which we believe can
be fixed with a better power model and more experimentation with stopping criteria, the
results in plot (f) look promising. PACORA now only allocates 76.9% of the total available
network allocation, leaving the rest idle.

6.4 Summary

In this chapter, we demonstrated PACORA’s ability to allocate resources in a manycore
OS for a video conference scenario. We believe the results are a good proof-of-concept for
PACORA; however, the next step for future work will be to experiment with a larger range
of applications.
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Chapter 7

Discussion

In this chapter, we discuss some of the potential challenges that could arise when deploying
PACORA in a real system with real applications and present techniques we have considered
to address these challenges. PACORA’s challenges can be broadly categorized into two types:
performance non-convexity and performance variability. The main concern with performance
non-convexity and variability is their e↵ects on the accuracy of the response-time functions
(RTFs). In the following sections, we describe the di↵erent sources of non-convexity and
variability and how to cope with them to reduce their e↵ect on model accuracy. However, as
shown in the experiments in Chapter 4, we have found that model accuracy has less impact
on the quality of resource allocation decisions than we anticipated. As a result, we feel that
many of the challenges discussed in this chapter may arise more often in theory than in
practice.

7.1 Performance Non-Convexity

Since the RTF models are convex, non-convex application performance can be a challenge for
PACORA. Generally, non-convex behavior can occur in two ways: outliers and quasiconvex
response times. In this section, we describe these problems in more detail, present examples
we have observed in our studies, and discuss potential ways mitigate their e↵ects.

Outliers

Outliers are particular resource allocations whose response times are significantly di↵erent
(typically much worse) than the general surface of the response time of the application.
These are often a result of interference between di↵erent interacting systems in modern
hardware and operating systems. For example, (as presented in Chapter 3) we have seen
outliers in applications when dealing with hyperthreads (Figure 3.4 and stencilprobe in
Figure 7.1), which are likely the result of prefetching or other data management failures due
to the mismatched execution rates of threads. (Figure 3.5). Many applications also have



CHAPTER 7. DISCUSSION 81

outliers for extremely small allocations of particular resources (i.e., one cache way, as shown
in blackscholes Figure 7.1). While outliers will likely always be a reality in real systems,
as responsiveness, predictability, and e�ciency increase in importance we expect to see an
increased number of chip designs that provide more performance convexity and reduce the
total number of outliers.

Figure 7.1: Actual measured response times (black X) and the predicted response times
(red X) for the stencilprobe and blackscholes benchmarks. Each point represents a
prediction for particular allocation, and points are ordered along the x-axis by increasing
resource amounts (clusters count up 1 core, 2 cores, etc. and within a cluster cache ways
increase 1-12). Y-axis plots predicted or measured runtime in cycles.

Two potential problems arise from outliers. First, they can distort the accuracy of the
model for other resource allocations. Our model construction optimization (described in
Chapter 5) tries to minimize total error and since outliers can often be very far away from
the other points they tend to pull the model towards them. Figure 7.1, which was produced
from the experiments in Chapter 4, demonstrates this e↵ect. The typical result of outliers is
that PACORA will have an overly pessimistic view of response times and likely over allocate.
To alleviate this problem, outliers should be thrown out during the model creation phase.
Chapter 5 describes our implementation’s scheme for identifying and removing outliers.

The second issue occurs when PACORA’s resource-allocation optimization unknowingly
selects an outlier allocation to give the application. In this case, the actual performance
will be significantly worse than expected—possibly increasing total penalty and violating
application SLOs. To prevent this, we propose an approach where PACORA keeps track
of the points with extreme error in the model and uses heuristics to adjust the resource
allocations coming out of the optimization to avoid such points. Allocations could be reduced
or increased slightly to move o↵ the outlier point, and the RTF model could be used as an
oracle to determine the e�cacy of either approach. Increasing allocations would require either
retaining some slack resources in the system or removing resources from another application.
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We did not implement any of these heuristics in our current evaluation as outlier points were
so rarely selected, but we do plan to experiment with them in future work.

Quasiconvex Response Time Functions

The other potential form of non-convex behavior is where the basic shape of the response-
time function is not actually convex, as opposed to just a few outlier points that violate
convexity. Since applications usually follow the “Law of Diminishing Returns” for resource
allocations, the only realistic example of this behavior is performance “plateaus” (Figure 3.6).
Such plateaus can be caused by adaptations within the application, such as adjusting the
algorithm or output quality, or certain resources that only provide performance improvements
in increments rather than smoothly. For example, a video player may choose to increase
resolution having received an increase in network bandwidth and thus the system may not
measure an improvement in frame rate.

In these applications, the response time is really the minimum of several convex functions
depending on allocation, and the point-wise minimum that the application implements fails
to preserve convexity. The e↵ect of the plateaus will be a non-convex penalty as shown in
Figure 3.7 and multiple extrema in the optimization problem will be a likely result.

There are a few potential ways to avoid this problem. One is based on the observation
that such response-time functions will at least be quasiconvex. A function f is quasiconvex
if all of its sublevel sets S` = {x|f(x)  `} are convex sets. Alternatively, f is quasiconvex
if its domain is convex and

f(✓x+ (1� ✓)y)  max(f(x), f(y)), 0  ✓  1

Quasiconvex optimization can be performed by selecting a threshold ` and replacing the
objective function with a convex constraint function whose sublevel set S` is the same as that
of f . Next, the algorithm determines whether there is a feasible solution for that particular
threshold `. Using repeated application of this technique while performing a binary search
on ` should reduce the level of feasibility until the solution is approximated reasonably well.

An alternative approach is to use additional constraints to explore convex sub-domains of
⌧ . For example, the a�ne constraint ap,r�µ  0 excludes application p from any assignment
of resource r exceeding µ. Similarly, µ� ap,r  0 excludes the opposite possibility. A binary
(or even linear) search of such sub-domains could be used to find the optimal value.

In practice, we did not observe plateaus1 because modern hardware is fairly e↵ective at
gracefully degrading performance as a function of resources2 and most applications do not
frequently adapt to their resources. Since both approaches add significant computational
cost, we chose not to use either in our PACORA implementation.

1except in our synthetic microbenchmarks running on simulated hardware (Figure 3.2)
2Similar results were found in the experiments in [38]
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7.2 Variability

Variability is when an application does not consistently have the same performance for a given
allocation. Large variability can make it di�cult to create an accurate model since a single
predicted response time value for an allocation may not convey how likely an application is to
achieve that response time. For example, Figures 7.2a and 7.2b show the recorded frame rate
for an n-bodies application running on Windows 7 over 100 frames with di↵erent memory
page and core allocations. Figure 7.2a has an allocation of 5 cores and 2500 memory pages
while Figure 7.2b has significantly more cores at 15 but only 550 memory pages. The two
figures have very similar average frame rates of 36.6 and 37.0 frames/second respectively.
However, if the application quality-of-service requirement was 30 frames/second, despite
having the higher average frame rate, the allocation in Figure 7.2b’s would miss 15% of the
deadlines while the allocation in Figure 7.2a misses no deadlines.

Figure 7.2: Actual measured frame rate for an n-bodies application when allocated (a) 5
cores and 2500 memory pages and (b) 15 cores and 550 memory pages. Each point represents
frames/second achieved by the application.

Techniques to Address Variability

Variability in application performance typically has three potential sources: phase changes,
performance changes due to di↵ering inputs, and variable resource performance due to ex-
ternal causes or interference from sharing. Depending on the source of the variability and
magnitude of the variability, we have developed three primary ways to address it. The first
approach is to rapidly adapt the models online, the second is to build more than one model
per application, and the third is to use stochastic models. In this section, we first describe
each of the techniques and then discuss how they can be applied to the di↵erent sources
of variability. We imagine the techniques can be used independently or in combination to
address the challenge of variability.
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Online Modeling

PACORA’s online modeling, which was presented in Chapter 5, can be used to rapidly
adapt models to the current state of the machine and application. Online modeling has the
advantage that it can react to performance situations that PACORA has not seen before
whereas o✏ine modeling requires all of the potentially variability to be observed in advance
during the training phase. The downside of online modeling is that it requires several samples
before the new results begin to a↵ect the resource allocations.

Multiple Models

An orthogonal technique is to build multiple models for the application and change the model
as appropriate. For example, in the experiments in Chapter 6 the video application has two
distinct operating modes: large video and small video. PACORA could build one model
for each operating mode and then change the model in use as the operating mode changes.
This approach has the advantage over pure online modeling, which tries to rapidly adapt the
existing model to changes in applications, that it may not need many samples to adapt to
a change in operating mode. However, it does require additional overhead to maintain and
store multiple models. Furthermore, it requires identifying di↵erent operating modes in an
application in order to know when to build new models and when to change models. With
the help of the application identifying di↵erent modes could be feasible; however, without the
application input, identifying changes such as phases is still an active area of research [41].

Stochastic Models

The most natural and potentially simplest way to address the problem demonstrated in Fig-
ures 7.2a and 7.2b to use stochastic models in PACORA. In our o✏ine modeling experiments,
we used the average value measured to build the model, and our online modeling approach
uses the most recent value (unless it is believed to be an outlier). Alternatively, we could
choose to select values for modeling building that provide the higher degree of confidence
required to meet the QoS requirements of the applications.

The lowest cost approach to this would be to maintain the mean and standard deviation
for the application and use a Chebyshev bound to adjust the response times accordingly.
Random fluctuations will be reflected in the runtime measurements t and the residual error
✏ = t� �. The sample mean and standard deviation of the error can bound the probability
that the actual runtime will exceed the prediction ⌧ . Using this information, a Chebyshev
bound on the error of the form

Pr
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can guarantee the probability that a particular runtime requirement is met. For example,
if an application needs a probability 0.99, and has given an error sample mean of 3 mi-
croseconds (meaning ⌧ underestimates t by that much) and a sample standard deviation
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of 2 microseconds, then for a predicted runtime of ⌧ of 27 microseconds we need to solve
⌧ + 3 <= x � k�✏ for x to determine which x to use as the model input to guarantee that
t = ⌧ + ✏ exceeds x microseconds only 1% of the time. In this example, x should be 50
microseconds. The downside of Chebyshev is that it can be a very loose bound and thus
significantly over-estimate resources.

For a tighter bound, we could instead use quantile regression [80] and select the value at
the appropriate quantile as input to the model. For example, we could use the 99th percentile
value for a particular allocation. However, quantile regression requires significantly more
samples than the Chebyshev approach, particularly for high quantiles.

Stochastic models would be straightforward to use in our current PACORA implemen-
tation since they only require preprocessing the data that is sent to the model creation
optimization. However, stochastic models really require online modeling because it would be
extremely di�cult to capture all the variability in advance. Depending on the metric cho-
sen and the variability of the application, they may require significantly more samples and
would likely necessitate a lower reallocation frequencies in order to collect the appropriate
number of samples at any given allocation. Additionally, they will result in larger resource
allocations, but this can be viewed not a cost specific to stochastic models, but the general
cost of guaranteeing performance in a noisy environment.

Sources of Variability

We have identified three primary sources of variability in applications: phases, input depen-
dence, and variable resources. In this section, we discuss how we see the techniques described
above being applied to address variability from each of these sources.

Phases

Application phases can be handled with online modeling or multiple models; both of which
were demonstrated in the experiments in Chapter 6. One concern with using the multiple
models approach more generally with phases is that phase detection is an active area of
research3. However, if the application can be modified to signal phase changes—as was the
case in our video application—then this becomes less of a concern.

Another possible approach is to build a model that represents the resource requirements
of the most demanding phase. The system can be designed to make use of the idle resources
when available or power management mechanisms can put them in low-power mode to reduce
their energy overhead.

Input Dependence

Some applications may significantly change performance as a function of their inputs. In
the case of our video application, we ignored its input dependence without significant e↵ect.

3[41] provides an overview of techniques.
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However, for other applications the e↵ect may be more pronounced. If the input dependency
is coarse-grained, for example, it only changes at the start of the application, a solution might
be to keep multiple models for the application and select one based on the current input.
This approach assumes that it is possible to identify the input and cluster it with other inputs
that produce similar performance e↵ects. Online modeling is also a reasonable solution for
coarse-grain input dependencies.

For fine-grain input dependencies, such as the performance changing as a function of the
frame that needs to be rendered, then ignoring the variability but adding a little slack is
a reasonable solution. Alternatively, fine-grained input dependencies are a natural fit for
stochastic models.

Resource Variability

Resource variability arising from non-deterministic and shared resources was the most com-
mon form of variability observed in our studies. As Figure 4.5 shows, the average variability
per allocation per application is 9%, and applications like tradebeans that use the network
connection or other non-deterministic resources have an even higher variability. Stochastic
models are most likely the right way to deal with non-deterministic resources and may be
particularly necessary for representing disk-based storage in warehouse-scale computing.

Shared resources can also be handled with stochastic models. However, since the mod-
els can be built online while other applications are running, the interference from a loaded
machine is already captured in the model. In our evaluation in Chapter 4, we built the
models in isolation but found that PACORA was still able to make near-optimal resource
allocations for a loaded machine despite the shared resources. These results are supported
by the data in Figure 7.3. In the experiments, bandwidth is the primary shared resource
between applications. In Figure 7.3 we have run each application with a bandwidth hog,
stream uncached, and presented the slowdown over the application executing on the ma-
chine alone with the same resource allocation. stream uncached is really a worst case test
for bandwidth sensitivity and still most of the applications experience little or no slow down.
While there will likely always be some shared resources, we expect results like this to be
the norm in the future. There appears to be an trend towards minimizing interference in
emerging chip designs4, as e�ciency and predictability begin to trump utilization as primary
concerns. Alternately, shared resources could be turned into PACORA-controlled resources
by adding hardware or software QoS mechanisms to them.

The final source of resource variability comes from resources that can dynamically vary
their performance. Dynamic frequency scaling in processors is the most common example of
this in modern systems. The best way to handle frequency scaling in PACORA is still open
research; however, we have imagined a few possible alternatives. The simplest approach
would be to ignore it or assume that online modeling is su�cient. Alternatively, we could
view higher frequencies as an e�ciency optimization (like Turbo Mode) and build models

4This is particularly relevant for cloud providers who are often hosting VMs from di↵erent customers on
the same machines.
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Figure 7.3: Application performance when run with a bandwidth hog, stream uncached,
normalized to running on the machine alone with the same resource allocation.

based on lower frequencies. If the cores happen to run faster than expected, the system
can reclaim or power down idle resources. Stochastic models would also be a reasonable
approach to represent variability due to frequency changes. Opportunities in this area are
discussed further in Chapter 8.

Another set of techniques involves explicitly embracing frequency changes in the models
rather than simply viewing them as noise. We could use the multiple models approach
and have a di↵erent model for each frequency range. This assumes that all the cores of an
application are running at the same frequency, which is a reasonable assumption for current
single-node hardware, but may not be for future hardware and clusters. We could also
consider treating frequency as a resource dimension; again if all the cores of a single type
are running at the same frequency. Another approach would be to consider cores running at
di↵erent frequencies as di↵erent types of resources (like a heterogenous system) with di↵erent
energy costs and use PACORA to select the lowest frequencies possible.
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7.3 Summary

In this chapter, we discussed some of the potential challenges for PACORA in a real system,
namely non-convex behavior and performance variability. We described the di↵erent sources
of these challenges and presented various technique to potentially reduce their e↵ect on
model accuracy. Given the limited value of extremely accurate models, PACORA’s design
is likely good enough for many scenarios that appear in practice today. However, more
experimentation is needed to test this hypothesis.
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Chapter 8

Conclusion and Future Work

In this chapter, we give our closing thoughts on the PACORA research presented in this
thesis and discuss future work and other possible extensions to the research.

8.1 Concluding Thoughts

In this thesis, we have presented PACORA, which is a framework designed to determine the
proper amount of each resource type to give each application. PACORA takes a di↵erent ap-
proach to resource allocation than traditional systems, relying heavily on application-specific
functions built through measurement and convex optimization. By building application-
specific functions online and formulating resource allocation as an optimization problem,
PACORA is able to accomplish multi-dimensional resource allocation on a general set of
resources, thereby handling heterogeneity and the growing diversity of modern hardware
while protecting application developers from needing to understand resources. Using con-
vex optimization lets PACORA perform real-time resource allocation inexpensively, enabling
PACORA to dynamically allocate resources to adjust to the changing state of the the system.

We constructed the PACORA prototype in Tessellation from the ground up, providing a
“clean-room” view of the embodied ideas. We feel our initial implementation of PACORA
in the Tessellation OS shows real promise as a proof-of-concept. PACORA is able to make
decisions in microseconds and only requires a few hundred bytes of additional storage per
application, which makes PACORA’s overhead negligible for most systems. For the small
allocation decisions studied in Chapter 4, allocations were near optimal—only 2% from the
best possible allocation on average. When making larger allocations decisions in Chapter 6,
we found that PACORA was able to allocate resources very e�ciently to provide QoS to
the applications with deadlines, while still providing significant throughput for background
applications. We feel that PACORA can be applied in many settings in addition to client
operating systems such as Tessellation: it could adaptively and continuously right-size the
multiple virtual machines in a corporate server, deliver real-time responsiveness in an em-
bedded system, or adjust resources to meet SLAs in an implementation of a cloud service.
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However, that’s not to say that PACORA is completely production ready. As discussed in
Chapter 7, in practice, variability could potentially provide a challenge to using PACORA.
Of course, the primary concern with variability is it’s potential to a↵ect model accuracy,
and in our studies, we have found that the impact of model accuracy on the quality of
resource decisions is not significant. Models with errors above 20% still produce near optimal
allocations, and so it’s quite possible that variability will be less impactful than originally
expected. Particularly since PACORA can always over-provision slightly to make guarantees
and still be more e↵ective than most of the current resource allocation practices. Therefore,
we believe PACORA or other modeling-based approaches to be feasible in real systems with
noisy applications.

Additionally, we simply need more experiments with additional applications and resources
to show that PACORA can cover the wide variety of situations that it may encounter in
a production system. While we tried to work with a representative variety of benchmarks
and applications in our studies, we were primarily limited to applications that could be
ported to Tessellation OS; that is applications that rely on few libraries and have source
code available. We do not expect most applications to provide any additional challenges to
PACORA; however, it will be necessary to explore the corner cases to be confident enough
to deploy it. In the following section, we discuss the directions we are taking PACORA to
test it further and increase the number of situations it can handle.

8.2 Future Work

While there are many possible directions to explore for future PACORA research, we found
the following few to be the most promising based on immediate needs of potential users and
have begun to work on these ideas, which we describe below.

PACORA in the Cloud

While a client OS was an interesting system for a proof-of-concept because it required ex-
tremely low overheads and fast reallocation, PACORA is more likely to be deployed in cloud
systems. Unlike client OSs, which do not separate resource allocation from scheduling, many
cloud systems are already used to dividing resources among competing applications that per-
form their own scheduling. As a result, all of the resource-control mechanisms required by
PACORA are already available. We’ve also found that the measurement mechanisms are
often already there as well because they are used to communicate SLA-relevant metrics.
However, a major factor which makes PACORA more appealing in the cloud is not the
availability of mechanisms, but an appropriate cost structure. As more players have entered
the market, the cloud is starting to look like a commodity where it’s di�cult for companies
to di↵erentiate their products with more than price. Therefore, providers are looking for
solutions to make their cloud o↵erings less expensive; one option is to use something like
PACORA to increase resource utilization without violating SLAs.
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We’re exploring several di↵erent levels for deploying PACORA in the cloud. The first is
close to the original client OS implementation; the idea is to use PACORA to consolidate
virtual machines on a node. PACORA could be used as an oracle to find VM combinations
that have low total penalties or it could divide the hardware resources on the machine among
VMs. Alternatively, PACORA could calculate the number of underutilized resources on a
machine that could be claimed for background computation without violating SLAs of the
applications. We could also imagine performing the same types of decisions at the rack
level rather than for a single machine. Finally, rather than requiring applications to specify
resource requirements, PACORA could be used to determine the correct number of nodes,
storage, and bandwidth to give an application. This application of PACORA also a↵ords
some potentially interesting opportunities to explore alternative business models for the
cloud. For example, a provider could simply sell a performance guarantee to a customer and
then use whatever resources necessary to meet it or the provider could just bill a customer
for the resources they actually used rather than the resources they requested.

We believe PACORA has significant potential in the cloud because it is a natural fit in the
current system architectures and economic ecosystem and because the problem dimensions
are much larger (i.e., more resources and more applications), which makes the problems
more di�cult. As a result, the heuristics used in practice are often further from the true
optimal than in client systems, which a↵ords an opportunity to PACORA to help bridge
that potentially significant gap.

Heterogeneity

We are also exploring the potential of PACORA to help determine the right computational
resources from a heterogeneous set for collection of tasks. In theory, heterogeneity is naturally
handled by PACORA. Each core type can be viewed as a di↵erent resource system, so fat
cores may be resource 1, thin cores may be resource 2, and GPUs could be resource 3. The
application developer would not need to specify which core types the application uses best;
PACORA would try allocating the cores and the resulting performance would be captured
in the response-time function (RTFs). So, for example, if an application did not use a
GPU then this would be discovered empirically and the RTF would show no performance
improvement along the GPU dimension. We believe this would be particularly powerful
when combined with a system such as Dandelion [121] that can automatically compile and
schedule applications on di↵erent core types.

PACORA with Dependencies

We are also working to reformulate PACORA to handle dependencies between applications.
One of the assumptions baked into PACORA’s formulation is the idea that all applications
are independent, so allocating resources to or removing resources from one application does
not impact the performance of other applications. While this is a reasonable assumption
in many scenarios, we have found compelling cases where it would be nice to express the
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dependencies in the optimization. One such example is services that support applications.
In the video experiment in Chapter 6, we first sized the network service appropriately to have
enough capacity to accommodate all the applications and then left PACORA to allocate the
service capacity and remaining resources between the applications. While this is certainly a
reasonable approach, particularly when the number of services is small, it would be better
to represent the dependency in the optimization formulation. PACORA would then be able
to trade-o↵ giving resources to applications or the services that support them depending on
their deadlines and relative importance.

This idea can be extended further to a general hierarchical resource allocation formu-
lation. A hierarchical formulation would let PACORA allocate resources for pipelined or
graph computations such as those created by Dandelion [121] and Naiad [102].

8.3 Other Possible PACORA Extensions and
Improvements

In this section, we describe possible extensions to the PACORA work that we believe would
be interesting and could provide meaningful additions to the PACORA system. Many of
these are still open research problems in other domains whose solutions would benefit more
than just PACORA.

Measurement

Our PACORA implementation requires modifying applications to measure their heartbeats.
However, we believe this process could be automated. One option would be for the compiler
to automatically insert hints around the critical section. Alternatively, we could take ad-
vantage of the second-level scheduler’s close relationship with the application to see if there
is a way for the scheduler to infer the response time. A less invasive approach could be
for the system to try to infer performance information by measuring the application at its
resource-container boundaries and/or using performance counters.

Application Quality

Exploring the relationship between resource allocation and applications that can adjust qual-
ity seems extremely relevant. PACORA only considers the response time of an application
as a↵ecting the user experience (system penalty), but if applications can adjust their quality
than that is another component that impacts the user experience. For example, consider a
video application that naturally adjusts its resolution to guarantee that it always makes its
frame rate. The current implementation of PACORA would view this application as being
resource insensitive and give it the smallest amount of resources; however, the user watching
the low-resolution video may not consider that as successfully minimizing penalty. Experi-
menting with the interface for quality information between PACORA and applications to an-
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swer questions like “should quality be an explicit parameter in the PACORA optimization?”
or “is there a negotiation process between PACORA and applications regarding quality ad-
justments?” could be very interesting. We think this area becomes particularly intriguing
when considered in conjugation with some of the recent work on approximate computing
that automatically adjusts application quality using techniques like loop perforation [126,
165].

Prediction

We believe there significant potential to use predictions from machine learning algorithms as
inputs into the resource-allocation optimization. For example, we could use reinforcement
learning or explore-exploit techniques to infer the penalty or deadlines for applications. These
values could even be personalized and adjusted dynamically. For example, after a page is
loaded we may potentially have some time until the user clicks again. If we could predict
when the click will occur, we could deprioritize the interactive application to complete more
background work without hurting the user experience.

Recent work on predicting application load order and timing, such as SuperFetch in
Windows [134] or Falcon on mobile devices [154], could be used to provide hints to the
resource-allocation system on whether a proposed reallocation will be long lived enough to
justify the cost, if resources could be powered down when nothing is likely to happen, or
if resources should be preallocated for a high-priority application with little slack expect to
start soon.

PACORA as an Oracle

A possible extension of PACORA that we have discussed with hardware designers and cloud
providers alike is the idea of using PACORA as an oracle to help the system make other
types of decisions. For example, PACORA’s RTF and penalty functions could be used pro-
vide power management hardware hints about runtime slack available for a given application.
This information could then be used to decide when to slow down or power down particular
resources to save energy or redirect thermal capacity to other computations. PACORA re-
source allocation optimization runs so quickly it could be used to select which applications
to run together. The idea would be to query it with combinations of applications to deter-
mine the penalty of running these together. Exploring di↵erent subsets of applications with
PACORA would enable the system to determine which applications are best paired. This
mode could be particularly useful for cloud providers when deciding whether it is safe to
co-locate VMs on a machine.

Alternative Resource Representations in RTFs

Another interesting area to explore is alternative resource representations outside of those
in the initial PACORA exploration study. One option we’ve considered is to use bandwidth
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amplification factors from H. T. Kung [85]’s work to turn all resources into bandwidths and
represent the relationship between resources. For example, response time due to memory
accesses might be approximated by a combination of memory bandwidth allocation br1 and
cache allocation mr2. Here we denote an allocation of a bandwidth resource by br and of a
memory resource by mr.

In this case, memory resources, such as the cache, permit exploitation of temporal locality
and thereby amplify associated bandwidths. For example, additional main memory may
reduce the need for storage or network bandwidth, and of course, increased cache capacity
may reduce the need for memory bandwidth.

Kung developed developed tight asymptotic bounds on the bandwidth amplification fac-
tor ↵(m) resulting from a quantity of memorym acting as cache for a variety of computations.
He shows that

↵(m) = ⇥(
p

m) for dense linear algebra solvers
= ⇥(m1/d) for d-dimensional PDE solvers
= ⇥(logm) for comparison sorting and FFTs
= ⇥(1) when temporal locality is absent

A model could represent relationship between the two allocations with the geometric
mean of in the denominator, viz. wr1,r2/

p

br1 ·mr2, without compromising convexity. Each
bandwidth amplification factor could then be described by one of the functions above and
included also in the denominator of the appropriate component in the response time function
model. For example, the storage response time component for the model of an out-of-core
sort application might be the quantity of storage accesses divided by the product of the
storage bandwidth allocation and logm, the amplification function associated with sorting
given a memory allocation of m. Amplification functions for each application might be
learned from response time measurements by observing the e↵ect of varying the associated
memory resource while keeping the bandwidth allocation constant. Alternatively, redundant
components, similar except for amplification function, could be included in the model to let
the model fitting process decide among them.

8.4 Summary

In this chapter, we described our concluding thoughts on PACORA and presented future
work for the project. We believe this thesis is a reasonable step towards proving the feasibility
using of model-base resource allocation for real systems; however, more experimentation is
needed to determine how to handle additional resources, applications and noisy systems in
practice.
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[163] Dakai Zhu, Daniel Mossé, and Rami Melhem. “Multiple-Resource Periodic Scheduling
Problem: how much fairness is necessary?” In: Proceedings of the 24th IEEE Inter-
national Real-Time Systems Symposium. RTSS ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 142–. isbn: 0-7695-2044-8. url: http://dl.acm.org/
citation.cfm?id=956418.956616.

[164] Xiaoyun Zhu et al. “1000 Islands: An Integrated Approach to Resource Management
for Virtualized Data Centers”. In: Cluster Computing 12.1 (Mar. 2009), pp. 45–57.
issn: 1386-7857. doi: 10.1007/s10586-008-0067-6. url: http://dx.doi.org/10.
1007/s10586-008-0067-6.

[165] Zeyuan Allen Zhu et al. “Randomized Accuracy-aware Program Transformations
for E�cient Approximate Computations”. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’12.
Philadelphia, PA, USA: ACM, 2012, pp. 441–454. isbn: 978-1-4503-1083-3. doi: 10.
1145/2103656.2103710. url: http://doi.acm.org/10.1145/2103656.2103710.



BIBLIOGRAPHY 109

[166] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. “Addressing Shared
Resource Contention in Multicore Processors via Scheduling”. In: Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages
and Operating Systems. ASPLOS XV. Pittsburgh, Pennsylvania, USA: ACM, 2010,
pp. 129–142. isbn: 978-1-60558-839-1. doi: 10.1145/1736020.1736036. url: http:
//doi.acm.org/10.1145/1736020.1736036.


