
Circuits for High-Performance Low-Power VLSI Logic

by

Albert Ma

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 25, 2006

Certified by. .
Krste Asanović

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Circuits for High-Performance Low-Power VLSI Logic

by

Albert Ma

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

The demands of future computing, as well as the challenges of nanometer-era VLSI design,
require new digital logic techniques and styles that are simultaneously high performance,
energy efficient, and robust to noise and variation. We propose a new family of logic styles
called Preset Skewed Static Logic (PSSL). PSSL bridges the gap between the two main
logic styles, static CMOS logic and domino logic, occupying an intermediate region in the
energy-delay-robustness space between the two. PSSL is better than domino in terms of
energy and robustness, and is better than static CMOS in terms of delay. PSSL works by
partially overlapping the execution of consecutive iterations through speculative evaluation.
This is accomplished by presetting nodes at register boundaries before input arrival.

Thesis Supervisor: Krste Asanović
Title: Associate Professor

3

4

Acknowledgments

I would like thank God for the opportunity He gave me to do this PhD, the strength to

finish it, and the people He gave that supported me all the way. Thank you Krste for your

guidance, patience, and grace. You have done the impossible in graduating me. Thanks to

Srini and Anantha for being on my committee. Thanks to the SCALE group for you help

and support.

I also want to thank my parents, for their sacrifice, love, and support through the years.

Finally, I want to thank my wife Sophia, Pastor Paul, Becky JDSN, Pastor Chris, Sally

SMN, Heechin JDSN, Jean SMN, and all those in the body of Christ who have prayed for

me these ten long years.

This work was partially supported by NSF CAREER Award CCR-0093354, the Cambridge-

MIT Institute award 093-P-IRFT(MIT), PERCS project W0133890, and a donation from

the Intel corporation.

5

6

Contents

1 Introduction 13

2 Background - Scaling and the Challenges for future computing 15
2.1 Power Consumption . 15
2.2 Robustness . 17

2.2.1 Signal noise and signal integrity . 17
2.2.2 Single Event Phenomena and soft errors 18
2.2.3 Variability . 18
2.2.4 Improving Robustness . 19

2.3 Conclusion . 20

3 Background - Logic Styles 21
3.1 Static CMOS . 21
3.2 Domino . 22
3.3 Conclusion . 27

4 Preset Skewed Static Logic 29
4.1 Skewed Static Logic . 29
4.2 Preset . 30
4.3 Unateness . 31
4.4 Pipelining . 32

4.4.1 Level-sensitive . 32
4.4.2 Edge-triggered . 40
4.4.3 Pulsed . 41

4.5 Leakage and leakage variability impact . 43
4.6 Variability impact . 43
4.7 Single Event Phenomena . 44
4.8 Conclusion . 44

5 Previous Work and Comparison 45
5.1 Logic styles . 45
5.2 Variability . 51
5.3 Pipelining . 53
5.4 Timing Elements . 53
5.5 Conclusion . 53

7

6 Managing Leakage 55
6.1 Leakage . 55

6.1.1 Multiple-Vth circuits . 55
6.1.2 Sleep Vector technique . 56
6.1.3 Power Gating . 57
6.1.4 Applications to PSSL . 59

6.2 Conclusion . 61

7 Evaluation 63
7.1 Linear Feedback Shift Register . 63

7.1.1 Methodology . 63
7.1.2 Results . 64

7.2 Shift register using wide fan-in gates . 64
7.2.1 Methodology . 66
7.2.2 Results . 67

7.3 Flip-flop comparison . 67
7.3.1 Methodology . 68
7.3.2 Results . 69

7.4 32-bit Accumulator . 71
7.4.1 Implementation . 71
7.4.2 Evaluation . 72

7.5 Conclusion . 72

8 Testchip 75
8.1 Architecture . 75

8.1.1 Test infrastructure . 75
8.1.2 Measurement infrastructure . 76
8.1.3 Chip operation . 77
8.1.4 ALU architecture . 77

8.2 Implementation . 78
8.2.1 Transistor size selection . 78
8.2.2 Layout . 80

8.3 Simulation Results . 80
8.4 Test and Measurement Methodology . 80
8.5 Conclusion . 82

9 Conclusion 83
9.1 Summary of Contributions . 83
9.2 Future Work . 84

8

List of Figures

2-1 Major transistor leakage paths. 17

3-1 Basic logic styles. 22
3-2 Domino switching and contention. 24
3-3 Sources of noise in domino logic. 25
3-4 Dynamic keeper sizing. 26

4-1 Skewed inverter chain energy-delay performance 30
4-2 Preset Skewed Static Logic. 30
4-3 A 2-input NOR embedded in PSSL preset-high circuitry. 31
4-4 Non-unate logic. 32
4-5 Two stage Level-Sensitive PSSL pipeline and timing diagram. 33
4-6 Two stage Level-Sensitive PSSL pipeline timing overlapping clocks. 34
4-7 LS-PSSL time borrowing. 37
4-8 4-phase LS-PSSL . 38
4-9 N-phase LS-PSSL using dynamic preset and clock waveforms 39
4-10 Edge Triggered PSSL and timing diagram. 40
4-11 Pulsed PSSL pipeline with timing diagram. 41
4-12 Gate leakage in the preset state. 43

5-1 Conditional-keeper technique. 46
5-2 Noise-tolerant precharge . 46
5-3 Skewed CMOS pipeline and timing diagram. 48
5-4 Skewed CMOS vs. LS-PSSL timing charts. 49
5-5 Output Prediction Logic. 50
5-6 Low Voltage Swing Logic. 51
5-7 Process-Compensating Dynamic circuit technique. 52
5-8 Leakage Current Replica Keeper. 52

6-1 Static CMOS leakage paths. 55
6-2 Leakage-proof domino circuits. 56
6-3 Leakage-Biased Domino . 57
6-4 Multithreshold voltage CMOS logic. 58
6-5 Super Cut-Off CMOS logic. 58
6-6 Zigzag Super Cut-Off CMOS logic and leakage paths. 59
6-7 Gate-leakage Suppressing CMOS logic. 60
6-8 Comparison of leakage paths in Static CMOS and multi-Vth PSSL. 60

7-1 Two-bit Linear Feedback Shift Register. 63

9

7-2 Linear Feedback Shift Register implemented using LS-PSSL 64
7-3 Linear Feedback Shift Register energy-delay comparison 65
7-4 LS-PSSL LFSR waveforms . 65
7-5 Four-bit shift register using wide-fan-in gates. 66
7-6 Four-bit shift register energy-delay curves. 67
7-7 Flip-flops for comparison . 68
7-8 Test-bench setup . 69
7-9 Energy versus delay for various flip-flops. 70
7-10 Energy Dissipation across different input waveforms for various flip-flops. . 70
7-11 Accumulator design . 71
7-12 Adder architecture. 71
7-13 32-bit accumulator comparison. 73

8-1 Test-chip block diagram. 76
8-2 On-chip VCO frequency vs. input voltage. 77
8-3 ALU block diagram. 78
8-4 ALU energy-delay comparison with varying transistor sizes. 79
8-5 Testchip die plot. 81

10

List of Tables

3.1 Per-input logical effort of common gates . 23

4.1 LS-PSSL Preset latches and their properties. 36

8.1 Testchip ALU size comparison. 80
8.2 Testchip ALU Energy-Delay comparison. 80

11

12

Chapter 1

Introduction

The relentless drive toward smaller, faster, and cheaper computing systems has, in large
part, been enabled by exponential increases in device density and operating frequency
through VLSI technology scaling. This, however, has led to exponential increases in power
consumption that has reached the limits of reliability and cost effective cooling. In addi-
tion, the continued scaling into the nanometer regime has brought with it design robustness
issues such as signal integrity, soft error, and environmental and process variability. Fur-
thermore, the issues of power consumption and robustness only get worse with time. This
has created, therefore, a crisis in computer system design that threatens to be a stumbling
block to future advancement.

Designers of leading-edge computing systems, at any scale, are finding that power con-
sumption and design robustness are first class constraints, and must be taken into account
at every level of design. At the circuit level, the choice of logic styles is important as it
directly affects power, performance, and robustness. The two prevalent logic styles, static
CMOS and domino logic, do not fully meet the needs of future computing. Static CMOS,
though energy-efficient and robust, is too slow to be used in timing-critical designs. Domino
logic, though fast, consumes too much power and is not robust. In addition, domino logic
scales poorly so that its speed advantage is lessened while its power and robustness disad-
vantages are worsened. We therefore require new digital logic techniques and styles that
are simultaneously high performance, energy efficient, and robust to noise and variation.

We propose a new family of logic styles called Preset Skewed Static Logic (PSSL). PSSL
occupies an intermediate region in the energy-delay-robustness space between domino logic
and static CMOS logic. PSSL is generally better than domino in terms of energy and
robustness, and is generally better than static CMOS in terms of delay. PSSL works by
partially overlapping the execution of consecutive iterations through speculative evaluation.
This is accomplished by presetting nodes at register boundaries before input arrival. This
creates timing slack which can be traded for lower delay and/or lower energy. We also
show a leakage reduction technique in PSSL that takes advantage of this slack to reduce
energy-delay overhead.

13

Chapter 2 discusses the issues arising from scaling, in particular power and robustness.
Chapter 3 describes the two prevailing logic styles: static CMOS and domino. The strengths
and weaknesses of each style will be discussed and we will show that these styles need to be
improved upon and/or complemented. Chapter 4 describes our novel PSSL logic. We will
show its theory of operation and its correctness and derive timing constraints. Chapter 5
discusses related work and how it compares to or complements PSSL. Chapter 6 discusses
ways to manage leakage and variability and proposes a leakage reduction technique for
PSSL. Chapter 7 is a quantitative comparison of PSSL to other logic styles using several
test circuits. Chapter 8 describes a test-chip which implements ALU cores using PSSL,
static CMOS, and domino logic styles. This test chip is intended to validate the suitability
of our logic style in real circuits and provide another comparison to other styles. Finally,
chapter 9 summarizes the contributions of this thesis.

14

Chapter 2

Background - Scaling and the

Challenges for future computing

Integrated circuit technology has advanced tremendously over the past 40 years, as predicted
by Moore’s Law [1]. Device counts have grown exponentially, from the 2300 transistors of the
Intel 4004 processor in 1971, to the 592 million transistors of the Intel Itanium 2 processor
in 2004. Simultaneously, clock frequencies have increased exponentially from 0.1MHz in the
Intel 4004 to 3.8Ghz in currently shipping Intel Pentium 4’s.

Historically, and according to predictions in the International Technology Roadmap for
Semiconductors (ITRS) [2], each technology generation, which occur at 2.5–3 year intervals,
brings with it a 0.7× scaling in drawn gate length as well as other layout geometry lengths.
The physical gate length follows the same 0.7× scaling. Assuming a constant die size, this
means a 2× scaling in device count and a 1.4× scaling in total transistor width. In addition,
the intrinsic switching speed of a transistor increases at roughly 1.5× per generation.

On the other hand, power consumption has been increasing at 20% per year and has
reached power density limits. At the same time, noise, from many sources, as a fraction of
power supply voltage, has increased while noise sensitivity has also increased. These factors,
together with increased relative process variation and environmental variation, have made
predictability and robustness difficult to achieve in new designs. This chapter explains the
connection between scaling and power consumption and design robustness.

2.1 Power Consumption

Power has always been one of the foremost issues in system design. No matter what
the design scale, there is a direct correspondence between power dissipation and perfor-
mance/functionality, battery life, cost, and size. A hand-held device, for example, must be
small. There is, therefore, no room for a fan or a large battery. Similarly, a personal com-
puter should be inexpensive; few are willing to pay for exotic cooling technologies. In fact,

15

high performance processors have already reached the power density limit for cost-effective
cooling. All these things limit the amount of power a processing chip can burn.

The costs of power dissipation extend beyond the power used for computing. Take a
data center for example. Firstly, there is, of course, the electricity bill from the comput-
ers. Secondly, there is the electricity bill and maintenance for the air conditioning system
which has to remove the heat due to power dissipation. Finally, thermal concerns dictate a
maximum power density of a system; in other words, the more power a system burns, the
more space it must occupy. Therefore we must add in the rent for the space occupied by
the system. In all, one account calculates power dissipation at 25% of the total cost of a
data center [3].

Chip power can be divided into two main components: dynamic switching and static
leakage. Dynamic power dissipation, ignoring short-circuit current which is usually a small
fraction of total dynamic power, is given by P = 1

2CV 2f , where C is the average total
on-chip capacitance switched per cycle. Up until recently, VLSI scaling could be counted
on to alleviate the power problem. Ever since the 0.5 µm generation, the gate dielectric
oxide thickness, supply voltage, and threshold voltage have scaled with device dimensions
by 0.7× per generation to limit the growth of dynamic power consumption while improving
performance.

This, however, is only half the power story. The reduction of oxide thickness and
threshold voltage has led to exponential increases in static leakage power. There are six
leakage mechanisms in nanometer scale transistors [4], of which the three most significant are
subthreshold leakage, gate leakage, and band-to-band tunneling (BTBT) leakage [5]. These
are indicated in Figure 2-1. Subthreshold leakage is the current flowing from drain to source
(or vice versa) when the transistor is nominally off. This current is inversely exponentially
proportional to the transistor’s threshold voltage and has therefore grown exponentially.
Gate leakage is the current flowing from the gate to the source, drain, or bulk (or vice versa).
This is caused by direct tunneling of electrons or holes through the oxide insulator. This
current is inversely exponentially proportional to the transistor’s oxide thickness, leading
to the exponential increase in gate leakage. Band-to-band tunneling is the current flowing
through the reverse-biased drain/substrate and source/substrate junctions. This current
is exponentially proportional to the doping concentrations on either side of the junction,
which have also increased in scaled devices, leading to the exponential increase in BTBT
leakage. Subthreshold leakage was the major component of total leakage at technologies
larger than 130nm (drawn gate length). However, below 130nm gate leakage dominates. At
45nm gate leakage is about 10 to 100 times larger than subthreshold leakage, depending on
temperature. BTBT leakage is the most affected by scaling. BTBT leakage is insignificant
at 130nm, is on the same scale as subthreshold leakage at 90nm, and is on the same scale as
gate leakage at 45nm [6, 7]. Further, all leakage sources are directly proportional to total
transistor width, which increases by 1.4× in each technology generation.

16

BTBT

subthreshold

gate

poly

n+ n+

p−substrate

Figure 2-1: Major transistor leakage paths.

There is, therefore, a trade-off between dynamic and static power consumption in choos-
ing voltage levels. Further, leakage power, which was once insignificant, has grown such that
leakage and dynamic power are now of approximately the same magnitude [8]. The result
is that the scaling of supply and threshold voltages slowed in the 130nm node and voltages
have essentially remained flat since the 90nm node. Power has thus become a stumbling
block to further scaling. It is impossible to continue simultaneously increasing the active
device count and clock frequency while maintaining constant power envelopes if we only
relay on scaling and device engineering.

Power dissipation has become such an issue that Intel has changed course on their
microprocessor roadmap. Intel had previously sought performance through deep pipelining
and high clock frequencies, as in the Pentium 4, without regard to power dissipation. This
resulted in power dissipation that reached the absolute limit of cost-effective cooling, and
left Intel with no strategy for scaling to higher performance. Intel subsequently switched to
seeking balanced power and performance, utilizing greater parallelism with shorter pipelines
and lower clock frequencies as in the Pentium M [9].

2.2 Robustness

Robustness is the measure of a design’s tolerance to uncertainty. This uncertainty comes
from various sources, most importantly from signal noise, single event phenomena (SEP),
and variability.

2.2.1 Signal noise and signal integrity

Within a chip, signals are not the nice 0’s and 1’s of the digital abstraction; real signals have
noise. Dealing with this noise is the signal integrity challenge. Signal integrity problems
manifest primarily in two ways. Firstly, they can directly cause state, such as dynamic
nodes, latch nodes, and memory nodes, to be corrupted, causing incorrect computation.
Secondly, they can add significant and unexpected delay. This also causes incorrect compu-
tation if the delay is not accounted for in the clock cycle budget. Signal integrity problems
can be hard to detect because they are data dependent. In order to safeguard against signal

17

integrity issues, designers often add extra safety margin, negatively affecting performance
and power.

VLSI scaling has made signal integrity critical for a variety of reasons. Clock frequencies
and total power draw have increased exponentially in time, leading to large power supply
current transients and thus significant noise on power and ground due to resistance and
inductance. Techniques to reduce power consumption, such as clock and power gating,
further exacerbate the noise problem, creating a new source of noise at different fundamen-
tal frequencies from those caused by clocking. Moreover, as technology scales, wires are
packed closer together and become relatively longer to connect to more and more devices.
Accordingly, coupling capacitance has grown drastically relative to device parasitics so that
switching activity on wires has a greater noise effect on neighboring wires. Finally, sensitiv-
ity to noise on signal and supply nets has increased because of reduced threshold voltages
and supply voltages.

2.2.2 Single Event Phenomena and soft errors

One issue affecting the reliability of computing systems is soft errors. Soft errors are the
result of SEP, spatially and temporally random events such as the collision and absorption
of high-energy ionizing particles. An SEP manifests itself as a Single Event Upset (SEU),
which is the flipping of a state node (RAM, latch, or dynamic node), or as a Single Event
Transient (SET), a transient noise pulse that travels through logic and might be captured
by a memory. Both SEU and SET can lead to soft error.

Soft errors have long been a concern for memory; their prevention requires the addition
of error-correcting-codes (ECC) to the memory. Soft errors have not been a concern for
logic because of the larger capacitances found on logic nodes. However, scaling has made
soft errors more of a problem because of the reduced energy (proportional to CV 2) at each
node. ECC can also be applied to protect logic from soft error; however, this comes at a
large area, energy, and delay cost.

2.2.3 Variability

The cost of producing a chip is inversely proportional to the chip yield, that is, the fraction
of chips that meet specifications. Chip yield is threatened by device variability. Because
of geometry scaling, even tiny absolute deviations in the structure of a transistor represent
large relative deviations. The gate oxide, for example, will be only 4 atomic layers high in
the 45nm generation scheduled for 2007. Also, as transistor area decreases, the total number
of dopant atoms and defects become small. Even the presence or absence of one atom, and
its exact location, makes a big difference. Finally, gate length is difficult to control because
gate length is so much shorter than the wavelength of light used in the lithography and, in
addition, the diffusion of dopants is imprecise.

18

Leakage current is particularly sensitive to variation because many of its components
have an exponential relationship to the aforementioned factors. For example, NMOS tran-
sistors in the TSMC 65nm process show about a 1000× variation in Ioff [10]. Statistical
models have shown that 90nm NMOS devices at 300◦K display 210%/31%/48% σ/µ varia-
tion in subthreshold/BTBT/gate leakage respectively for a 10% 3σ variation of all process
parameters [11]. PMOS devices are even more sensitive to process variation. Subthreshold
leakage is a strong factor in determining the noise margin of a gate.

Gate delay is also affected by variability, but to a much smaller extent. Rao et al. [12]
show gate delays vary by ±15% for a ±3σ variation in gate length.

Besides process variability, temperature variability is a concern. Most chips dissipation
power unevenly throughout the chip, leading to local hotspots. In addition, the locations of
hotspots are not entirely predictable as they depend on activity. Temperature has a strong
influence on gate delays and on subthreshold leakage.

2.2.4 Improving Robustness

The conventional solution to improving robustness has been design margining, that is,
designing for the worst case. This, however, has large energy-delay cost and becomes
infeasible as relative uncertainty increases due to scaling. More accurate statistical modeling
and analysis has mitigated, but not eliminated the overhead. Also, design margining does
not help with soft errors.

More recently, the notion of Better Than Worst-Case Design [13], typified by the ar-
chitectural technique DIVA [14] and the circuit technique Razor [15], has been proposed
to significantly improve robustness. In DIVA, the functionality of critical pipeline feedback
loops, such as the fetch-execute loop in a microprocessor, is duplicated outside the critical
loop. The outputs of the original block and the duplicate block are compared prior to com-
mitting the results to ensure accurate computation. Since the duplicated block is outside
any critical loops, its latency is unimportant and it can be designed purely for robustness.
DIVA, being an architectural technique, can be used with any logic style. However, it does
have significant energy and area overhead, and is limited in its scope.

Razor is a fine-grained technique; each latch or flip-flop is duplicated outside the normal
execution path. The data is sampled by the duplicate latch or flip-flop usually half a cycle
later. The outputs are then compared. In the case of mismatch, a bubble (or bubbles) is
inserted in the pipeline and the cycle is repeated. This allows the pipeline to recover from
unexpected timing delay from noise and even Single Event Transients. Further, Razor can
exploit data dependent delay variance. Worst case constraints only need to be met for the
shadow latch. This allows the clock to be run at a higher frequency than normally possible.
Razor has low overhead and wide applicability; however, it is not compatible with all logic
styles. Better Than Worst-Case Design techniques may well have to be employed in scaled
technologies because of the increased effect of timing unpredictability and soft error.

19

2.3 Conclusion

Power and robustness are so critical to leading edge designs that they need to be addressed
at every level of design. At the circuit level, the choice of logic styles is important. Logic
styles differ in terms of energy, delay, and robustness. Traditionally, logic styles have been
judged purely by energy, or purely by delay, or, at best, a combined energy-delay metric.
However, because every design requires compromises and trade-offs, designers need to pick
and choose circuits from different points on an energy-delay-robustness envelope to meet
each circuit need. Meeting the needs of future computing will require, among other things,
logic styles that combine high-performance, low-power, high-robustness in the face of noise
and variability, and ease of implementation and verification. In addition, we want to use
logic styles that are compatible with techniques such as Razor to further improve robustness.
In the following chapters we’ll show why existing logic styles do not meet these needs and
how PSSL can fill the void.

20

Chapter 3

Background - Logic Styles

There two most common basic logic styles are static CMOS and domino (Figure 3-1). In
this chapter, we review these two styles and show why they fall short in meeting the energy,
delay, and robustness requirements of future computing. A third logic style, Pass Transistor
Logic (PTL), is qualitatively similar to static CMOS and can be lumped together with static
CMOS for the purposes of this work.

3.1 Static CMOS

A static CMOS logic network is composed of static CMOS gates which are a combination of
two networks: a pull-up network, consisting of PMOS transistors, connected to power, and
a pull-down network, consisting of NMOS transistors, connected to ground. The networks
are constructed such that exactly one of the networks is conducting for any set of inputs.
Static CMOS is a universal logic – any logic function can be implemented.

Static CMOS logic is common in ASIC design, where the extra design cost of higher
performance logic is often not justified by the relatively low volumes, and where ultimate
performance is often not required. However, it can also be found in portions of even the
highest performing microprocessor designs, often in non-timing critical circuits or in circuits
that cannot be implemented in domino logic.

The appeal of static CMOS logic is its simplicity. The gates are generally relatively easy
to lay out. There are no clocks and no feedback involved. The simplicity of static CMOS
generally leads to relatively low power dissipation, especially for low fan-in gates. One can,
for the most part, ignore transistor width ratios, even sizing altogether, and still obtain a
working circuit. Because of this, static CMOS logic is robust to process and environmental
variation.

In addition, the gates can recover fully from transient noise. Even if there is a significant
noise pulse (from any source including SEP) that flips the output node, the node and all
downstream combinational logic is eventually restored to the proper levels. A static logic
pipeline run slowly enough (or stopped) is thus immune to soft error from transient noise.

21

(a)

footΦ

Φ

(b)

Figure 3-1: Basic logic styles. (a) Static CMOS. (b) Domino. The feedback keeper on the
dynamic node, shown in gray, provides noise rejection. Smaller transistors are less critical.
The clocked transistor on the NMOS pull-down is not present in the footless variant.

Even better, a pipeline using static gates and Razor latches [15] is also immune to soft error
from transient noise (even running at full speed), with little timing overhead and, at the
same time, gets speedup from exploiting data-dependent delay variance.

The problem with static CMOS is that it performs too poorly for the most aggressive
designs. A full pull-up and pull-down chain are required, meaning that any function requires
at least 2 transistors per input. In addition, it is not very efficient in implementing circuits
such as XOR/XNOR, wide-fanin NOR, or binary encoded multiplexers, requiring an exponential
number of transistors and/or a n transistor pull-up chain for n inputs.

3.2 Domino

A domino logic network [16] is composed of alternating dynamic and static CMOS gates.
In a dynamic gate, the PMOS pull-up chain found in a static CMOS gate is replaced with
a clocked pull-up transistor, reducing the input load by a factor of 1 + r, where r is the
PMOS to NMOS width ratio. When the input clock is low, the dynamic output node is
precharged high. When the input clock rises, the gate evaluates, conditionally discharging
the dynamic node. If the node does not discharge, the feedback keeper maintains the high
value at the dynamic node.

Domino logic is frequently chosen for high-speed design because of the higher perfor-
mance of dynamic gates. An indication of the relative performance of static CMOS and
dynamic gates can be found in the theory of Logical Effort [17]. Logical Effort is the mea-
sure of output drive divided by input capacitance, relative to an inverter. The contribution
of a gate to the total delay of an optimal path is shown to be proportional to the logarithm
of the logical effort of the gate. The logical effort of common gates are shown in Table 3.1.
A dynamic logic gate generally outperforms the equivalent static CMOS logic gate because

22

the logical effort for each gate is lower.

Logical Effort
Gate Type Static Footed dynamic Footless dynamic

INV 1 2/3 1/3
NAND (n + 2)/3 (n + 1)/3 n/3
NOR (1 + 2n)/3 2/3 1/3

one-hot MUX 2 1 2/3
symmetric XOR n2n−1 N/A N/A

Table 3.1: Per-input logical effort of common gates, where n is number of inputs. The
ratio of NMOS to PMOS drive is assumed to be 2. Static gates are sized to have balanced
rise/fall delay.

The performance of domino logic comes at the cost of power, robustness, and design
effort. Domino logic burns more power because of the increased number of transitions on
the output net. Figure 3-2 shows the operation of the domino buffer when the data input
is always high. Note that nodes A, B, and C switch twice on each cycle, though they are
conceptually holding constant values. The nodes in a static CMOS buffer would not be
switching at all. More generally, for uniformly random input data, the nodes driven by
a domino buffer will toggle twice as often as the nodes driven by a static CMOS buffer,
neglecting glitching activity. Note also that the feedback inverter and node B would not exist
in the static CMOS version; thus there is extra capacitance being switched. In addition,
domino logic presents a much greater clock load than static CMOS, and thus requires
greater power to drive. Compared to data nodes of the same capacitance, clock nodes
account for more power dissipation because of clock tree buffering and greater switching
activity. Further, the feedback keeper also burns power and degrade performance because of
contention when the dynamic gate switches. This is shown in Figure 3-2. After precharge,
the dynamic node is high, meaning that the feedback keeper is on. When both the data
input and the clock go high, the pull-down chain tries to drive the dynamic node low. The
pull-down chain has to fight the keeper until the keeper itself changes state. The amount
of contention, and hence delay degradation and power waste, depends on the relative sizes
of the transistors in the dynamic gate and the feedback keeper.

Another complication is that some form of latching is required in between the clock
stages. This is because the final domino precharge in the stage erases the output right
when the domino gates in the next stage begin to evaluate. Without a latch, the NMOS
chain will not have enough time to fully pull down. The latch (or half-latch) captures the
data before the falling edge of the clock that triggers preset, giving evaluate time to work.
Extra clock phases or non-50% duty cycle clock waveforms can also solve this issue, at the
cost of some complexity.

The absence of a static pull-up chain makes a dynamic gate susceptible to input noise,
power and ground bounce, leakage, charge-sharing, and SEP during the evaluate phase if

23

Φ

Φ

C

B

1

A

B/C

Φ

A

contention

Figure 3-2: Domino switching and contention. Nodes A/B/C always toggle even though the
input is held steady. Contention occurs whenever the evaluate stack begins to pull down.

the outputs are not being pulled down (Figure 3-3). Without the feedback keeper in these
circuits, the gates would have zero noise rejection and the dynamic nodes will discharge
completely given enough time. The feedback keeper placed on the dynamic node maintains
the charge on that node, giving the gate some degree of noise-rejection. The noise rejection
capability of the circuit depends on the relative sizes of the transistors in the dynamic gate
and the feedback keeper. However, note that if the dynamic node incorrectly discharges past
a certain point, the result is irreversible and incorrect computation will result; the Razor
technique [15] is thus ineffective in improving robustness in domino logic. However, the
Razor technique can still be applied to improve performance by exploiting data-dependent
delay variance.

In addition, the static gate that follows the dynamic gate in domino logic has a profound
influence on the overall noise margin. The static gate tends to be heavily skewed to favor
rising transitions, since the falling transition is not a factor in performance. This, however,
compounds the heavy skewing in the dynamic gate, resulting in diminished noise margins.
In order for domino logic to maintain good noise margin, designers must sacrifice power and
performance by increasing the size of the PMOS keeper and the following NMOS chain.

The sizing of the feedback keeper in a domino gate is critical. Figure 3-4a shows the
delay vs. keeper ratio (P/N width) of a PTM [18] 32nm 2-input footless NOR gate at 0.6V,
100◦C. We observe a super-exponential dependence of delay on the keeper ratio. Beyond
a ratio of about three, the gate fails to evaluate. Figure 3-4b shows the noise margin (DC
large-signal unity gain input level) vs. keeper ratio. There is an exponential dependence
of required keeper ratio vs minimum noise margin. We see, then, that we can have large
delay and large noise margin, or small delay and small noise margin. There is always a
trade-off. The maximum acceptable delay sets the upper bound on the keeper ratio, while
the minimum acceptable noise margin sets the lower bound on the keeper ratio. In fact, the
trade-off is extremely sensitive; the delay is super-exponentially dependent on the keeper
ratio which is again exponentially dependent on the target noise margin. Further, the trade-

24

0

0

1

0

1

1

(a) Leakage currents.

1

0

1

1

(b) Supply noise.

1

1

1

(c) Input noise.

1

1

0

0

1

(d) Charge sharing.

Figure 3-3: Sources of noise in domino logic. SEP not shown.

25

0 0.5 1 1.5 2 2.5 3
10

1

10
2

keeper ratio

de
la

y
(p

s)

l + 2nm
nominal
l − 2nm

(a)

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

keeper ratio

no
is

e
m

ar
gi

n
(V

)

l + 2nm
nominal
l − 2nm

(b)

Figure 3-4: Keeper sizing for a PTM 32nm 2-input footless dynamic NOR gate at 0.6V,
100◦C. Channel lengths are varied by ±2 nm. (a) Delay vs. keeper ratio. One input varying
with 25ps input rise time. Second input constant 0. 740nm evaluation width. 20fF load.
(b) Noise margin vs. keeper ratio. Both inputs varying.

off between performance and noise margin gets worse with scaling. The acceptable range
of keeper ratios shrinks as technology scales [19].

To make matters worse, domino logic is sensitive to variation. Figure 3-4 also shows the
keeper sizing curves when the transistor channel lengths are varied by ±2 nm, corresponding
to approximately 3σ process deviation [2]. Correct operation requires delay to be verified
at the slow corner and noise margin to be verified at the fast corner. This further shrinks
the range of acceptable keeper ratios. As relative device variability increases, this effect will
become larger.

Footless domino pipelines require separate delayed clocks for each stage of logic, each
separated by two slow inverters. The timing constraints for the clocks are complex. The
rising edge of each stage’s clock should precede the rising edge of data for performance. The
falling edge of each stage’s clock should follow the falling edge of data to prevent contention.
This careful clock shaping is also sensitive to variation. The clock generation requires
extra area and power and, because of their complexity, are appropriate only in critical
datapaths and in wide-or structures such as register files where the clock delay circuitry can
be amortized across many gates in a stage. These schemes also require careful analysis. One
must account for process and environment variation to ensure accurate tracking of clock
and data delays.

Because of the keeper sizing issue, the delay/robustness trade-off, and variability con-
cerns, it is not clear how well dynamic circuits will scale into the nanometer regime. A
study of technology scaling on CMOS Logic styles was performed by Anis et al. [20]. They
showed that, for the technology nodes from 0.80µm to 0.25 µm, the performance advantage
of domino logic over static logic is reduced. Another analytical study by Anders [19] showed

26

that if we hold noise margins to a constant fraction of the supply voltage, the performance
of dynamic circuits are severely degraded at the 70 nm node, and conventional dynamic
circuits cease to function below 70 nm. This last prediction, however, was flawed because
it presumed voltage scaling would continue. Nevertheless, domino circuits will continue to
face serious noise and scaling issues.

In addition to power-performance-robustness scaling issues, domino logic requires ad-
ditional design effort because of complex intra-cell routing and routing to reduce noise.
Finally, domino logic can only implement non-inverting logic functions, which limits it use.
Variations on domino logic such as dual-rail domino, or use of deracers or complementary
signal generators [21], enable inverting logic, but at the cost of increased power and area.

3.3 Conclusion

Static CMOS logic and Domino logic occupy very different points in the energy-delay-
robustness space. Static CMOS is good in terms of energy and robustness, but is poor
in terms of delay. Domino is good in terms of delay, but is poor in terms of energy and
robustness. In particular, it cannot take advantage of the Razor technique for robustness
against transient noise. Finally, domino has serious scaling issues. In the following chapters,
we show how PSSL combines the best features of static CMOS and domino.

27

28

Chapter 4

Preset Skewed Static Logic

In this chapter, we present Preset Skewed Static Logic (PSSL). PSSL combines the energy-
efficiency and robustness of static CMOS logic with the performance of domino logic. We
first show how Skewed Static Logic can improve performance in the presence of timing slack.
We then show how to generate slack through preset. We then show the implementation of
PSSL logic and PSSL pipelines. Finally we discuss various scaling issues with respect to
PSSL.

4.1 Skewed Static Logic

Figure 4-1a shows a chain of four static CMOS inverters. The dashed curve indicates the
transistor activation path, that is, the sequence of transistor chains that are turned on, for a
rising input transition. The solid curve indicates the transistor activation path for a falling
input transition. Note that the total path delay times of a rising input and that of a falling
input are not necessarily the same. There is a trade-off between the two delay times and also
between delay and energy; this is controlled by varying the sizes of individual transistors.
For example, by increasing the size of transistors under the dashed curve, one can speed up
the response of the circuit to a rising input transition. This comes at the cost of a slower
response to falling input transitions and increased energy dissipation. Figure 4-1b shows
this trade-off. The plot shows the energy and delay of two inverters within a long fan-out-
of-4 (FO4) chain. The X and Y axes represent delays through rising input and falling input
paths. The shade at each x,y location indicates the required energy dissipation to achieve
the delays. Note that the shade axis is logarithmic.

More generally, consider any multiple-input, multiple-output acyclic combinational cir-
cuit. There can be many activation paths. If there is any difference in the delay times
between different paths, then there is slack. By appropriately resizing transistors, one can
often use slack to either increase performance or reduce power dissipation.

29

(a)

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

delayr (ps)

d
e
la

y
f
(p

s
)

lo
g
 e

n
e
rg

y
 (

J
)

−12.6

−12.4

−12.2

−12

−11.8

−11.6

−11.4

(b)

Figure 4-1: (a) Inverter Chain (b) Energy-Delay. TSMC 0.18 µm process. FO4 configura-
tion. 10.4fF wire load.

Φ

A B
C

Φ

A

B

C

Figure 4-2: Preset Skewed Static Logic. Smaller transistors are less critical.

4.2 Preset

A simple PSSL circuit is shown in Figure 4-2. This resembles the chain of static inverters in
Figure 4-1a, except that the first inverter has been replaced by a NAND gate with one input
tied to the clock. The logical function of this circuit is the same as the inverter chain.

Let us assume that the input A is expected to arrive at the rising edge of the clock.
The operation of this circuit as is follows. First, the falling edge of the clock initiates the
process of preset. In preset, all circuit nodes are indirectly forced to pre-determined values.
In particular, node B rises in turn causing node C to fall, thus completing the preset process.
The idea behind the preset process is that we are speculatively computing all the nodes of
the circuit presuming low input values. This begins one clock phase before the actual input
value(s) arrive, so this computation has an extra clock phase to complete.

The rising edge of the clock initiates the process of evaluate. Note that the process
of evaluate is independent of the process of preset, and, in particular, evaluate can begin
before preset completes. If the value of the input node, A is low at the rising edge of the

30

A

B

A B

Φ

Φ

out

Figure 4-3: A 2-input NOR embedded in PSSL preset-high circuitry.

clock and remains low, nothing further happens in the circuit and evaluate is complete.
However, if the input node, A, is high when the clock rises or node A rises while the clock is
high, then it causes node B to fall, in turn causing node C to rise, completing the evaluate
process.

Whether node A is high or low, eventually node C gets the correct value. However, we
have decoupled the computation for low values of A (the preset process) from the computa-
tion for high values of A (the evaluate process), giving the former computation extra time
and thus creating slack in the path of transistors in the preset process (i.e. the preset path).
We can take advantage of this slack by reducing the size of transistors in the preset path
to reduce power consumption, or by increasing the size of transistors in the evaluate path
to reduce delay. Preset allows PSSL to outperform generic static CMOS logic. However,
preset comes at the cost of extra power consumption because of spurious transitions from
input mis-speculation and extra clocking overhead.

A NAND gate was used to preset nodes high. A similar analysis holds if we use a NOR

gate for preset. This time, preset is initiated by the rising edge of the clock, and node B of
Figure 4-2 is preset low.

One can embed logic into the gate used for preset. Figure 4-3 is an example of a 2-input
NOR gate folded into a preset-high gate. For logic embedding, it is usually preferable to use
preset-high since only a single NMOS transistor is added to the NMOS chain of logic gate.
For preset-low, a PMOS transistor is added to the PMOS chain of the logic gate. The latter
has a larger energy-delay impact.

4.3 Unateness

Speedup from preset depends upon the decoupling of the computation for high and low
inputs. This requires that the preset and evaluate paths go through distinct sets of transis-

31

?

?
?

Figure 4-4: Non-unate logic. Since the bottom input of the XOR gate cannot be known
a priori, a rising input at the top input produces an unknown transition at the XOR gate
output, producing unknown transitions for all downstream logic.

tors. If the paths coincide at a transistor, the worst case timing path will apply, reducing
the benefits of preset. The paths are distinct only if the boolean logic function being imple-
mented is unate, meaning that any particular input transition in any particular direction
can only cause the output to transition in one direction. In others, it is always inverting
or non-inverting. Figure 4-4 shows a non-unate logic network, consisting of an XOR gate
and an inverter. Since the bottom input of the XOR gate cannot be known a priori, a rising
input at the top input produces an unknown transition at the XOR gate output, producing
unknown transitions for all downstream logic.

Even if a function as a whole is not unate, it may be composed of unate subfunctions.
These subfunctions can benefit from preset. Performance can be maximized by locating
non-unate blocks as far downstream from preset circuitry as possible.

4.4 Pipelining

We now examine how to create pipelines using PSSL. We present PSSL using the three
major clocking schemes: level-sensitive, edge-triggered, and pulsed.

4.4.1 Level-sensitive

Level-sensitive clocking uses alternating transparent latches as timing elements. A two-
phase Level-Sensitive PSSL (LS-PSSL) pipeline, shown in Figure 4-5, is the composition
of PSSL pipeline stages of alternating phase, separated by transparent latches. One stage
begins preset when adjacent stages begin evaluate. In LS-PSSL, the transparent latches
serve two purposes. First, they hold pipeline state. Every legal (non-wave pipelined [22])
pipeline must have at least one latch in each full pipeline stage. Second, the latches prevent
the preset wave-front from propagating to the following stage until after the preset phase.
Otherwise, if the wave-front propagates early, it will cause inter-symbol interference as it
becomes indistinguishable from the evaluate wave-front from the previous cycle. However,
in contrast to their use in static CMOS pipelines, transparent latches are not used for

32

Φ Φ

A

Φ

B
C D E

Φ

A

B

C

D

E

t
Φ l

t
Φh

2
t

t
1

Figure 4-5: Two stage Level-Sensitive PSSL pipeline and timing diagram. Only half of the
pipeline is shown. Smaller transistors are less critical. 50% duty cycle clocks are assumed.

synchronization (i.e. delay). Every legal pipeline must have a total of exactly one cycle of
delay in each full pipeline stage. In LS-PSSL, the synchronization is performed by the NAND
gates.

The operation of LS-PSSL, shown in Figure 4-5, is as follows. The falling edge of the
clock begins preset, causing C to rise, D to fall, and finally E to rise. This path, whose delay
is t1, must complete in one clock cycle, less setup delay. This coincides with the closing of
the second latch at the falling edge of the clock. Therefore we derive the constraint

t1 + ts < tΦh + tΦl (4.1)

where ts is the setup time of the latch.

The rising edge of the clock begins evaluate. The value of A is effectively sampled by
the first latch and NAND gate combination at the rising edge of the clock. If it is low, then
C falls, D rises, and, finally, E falls. This path, whose delay is t2, must complete one setup
delay before the closing edge of the latch. Therefore we derive the constraint

t2 + ts < tΦh (4.2)

Similarly, the equations of the other half of the pipeline (not shown) are given by

t3 + ts < tΦl + tΦh (4.3)

t4 + ts < tΦl (4.4)

The preset path delays, t1 and t3 can be twice as long as the evaluate path delays, t2 and
t4.

33

Φ
1

Φ
0

E

B

C

I

F

G

A

t
Φ l

t
Φh

2t 4t

time borrowing

time borrowing

Figure 4-6: Two stage Level-Sensitive PSSL pipeline timing with overlapping clocks.

Note that there is a hard edge on every constraint. Each timing path begins at a clock
edge and ends at a clock edge. This means that clock uncertainty, or jitter, needs to be
considered in maximum delay timing analysis. Even worse, for t2 and t4, the jitter needs
to be subtracted from each phase, not just each cycle. However, if we allow the clock
waveforms to have greater than 50% duty cycle so that the clocks overlap, then limited
time borrowing is allowed as data can flow through the NAND gate before the preceding
latch closes[23] (Figure 4-6). Therefore, in this case, jitter does not need to be taken into
account for maximum delay analysis. The equations 4.2 and 4.4 are thus replaced by

t2 + t4 < tΦh + tΦl (4.5)

A problem with using overlapping clocks is that the latches no longer prevent the preset
wave-front from advancing early. Therefore, all preset paths must meet a minimum path
delay in order to guarantee correct operation, as if the circuit were wave pipelined. These
constraints are given by

tΦl < t1 (4.6)

tΦh < t3 (4.7)

We can also resolve this by using Φn for the latch clock instead of Φn−1. This allows time
borrowing on the evaluate path, but not time borrowing on the preset path.

34

Latch and preset implementation

Table 4.1 shows eight implementations of the latch and preset gate for level-sensitive PSSL.
Row (a) is an implementation of Figure 4-5. Since the latches are used in PSSL mainly to
prevent the preset from interfering with the evaluation of data from the previous cycle, the
latches can be simplified under certain conditions. These simplified variants are shown in
rows (b) through (h).

The variants differ in their properties. This is shown in Table 4.1. The preset/precharge
input constraints column indicates the required logic level (on preset) of any input signals
that are preset or precharged. The functional constraint column lists which input edges
(rising or falling) must arrive prior to the rising edge of the clock, Φn, to guarantee the
correct functionality of the circuit. The timing constraint column lists which input edges
(rising or falling) must arrive prior to the rising edge of the clock for there to be any benefit
from preset. The functionality of the circuit is not otherwise affected by not meeting
this constraint. The time borrow column lists which input edge, if any, can benefit from
time borrowing. Note, though, that a timing constraint on the same edge precludes time
borrowing for all practical purposes. Finally the output preset column indicates the logic
level to which the output is preset.

The variants shown in rows (g) and (h) combine the latch and preset gate into one
dynamic gate. They are equivalent to the variants in rows (d) and (e), except for output
inversion. The dynamic gate variants have lower energy and delay and so are usually
preferable. Even though PSSL can use dynamic gates, as domino does, they are used
for completely different purposes. In domino, the dynamic gates are used for their high
performance. In PSSL, the dynamic gates are used to preset downstream logic. Preset is
the source of speedup. Even if the PSSL dynamic gate were slower than its static equivalent,
PSSL would outperform static CMOS.

The simplified versions allow time borrowing because of the partial removal of latching.
An example pipeline and timing diagram are shown in Figure 4-7.

If the preset/precharge constraints are violated, the state node is not protected from
corruption by preset. However, the circuit can still operate correctly if the preset paths are
sufficiently slow as to not interfere with the evaluation of the previous cycle. This is a form
of wave pipelining [22]. Formally, this means that one or both of the following minimum
path delay constraints must be met.

tΦl < t1 (4.8)

tΦh < t3 (4.9)

A reasonable design, however, should ensure that these minimum path delay constraints
apply to only one clock phase so that the clock can be stopped on the other clock phase for
standby operation.

35

input constraints time output
circuit preset/precharge functional timing borrow preset

a

Φ
n

Φ
n−1

Φ
n−1

rise/fall high

b
Φ
n−1

Φ
n−1 Φ

n

rise/fall low

c

Φ
n

Φ
n−1

low fall rise rise high

d

Φ
n

Φ
n−1

low fall rise low

e
Φ
n−1

Φ
n

high rise fall high

f

Φ
n

Φ
n−1

high rise fall fall low

g

Φ

low fall rise high

h

Φ

high rise fall low

Table 4.1: LS-PSSL Preset latches and their properties.

36

Φ Φ Φ

A B C D
E

F G H I

Φ

A

B

E

F

I

t
Φh

t
lΦ

2
t

t
3

1
t 4

t

Figure 4-7: LS-PSSL time borrowing. Full pipeline shown. Smaller transistors are less
critical.

One complication arises in connecting the output of 2-phase non-overlapping footed
domino logic to the input of LS-PSSL. The domino output can be a narrow pulse around
the rising edge of the capturing clock. The dynamic preset gates may not work correctly
since they begin sampling after the rising edge. The best solution is to use one of the
latch/NAND combinations, with Φn for the latch clock.

N-phase clocking

It is possible to extend LS-PSSL to arbitrary numbers of clock phases, as in Figure 4-8.
As with a 2-phase LS-PSSL pipeline, each preset path is allowed one cycle to complete.
The evaluate paths are allowed, on average, 1/n of a clock cycle. This means a factor of n

speedup on the preset paths. N-phase LS-PSSL, where n > 2, differs from two-phase in that
time borrowing is allowed on the evaluate paths even when the full latch (see Table 4.1a)
is used with 50% duty-cycle clocks[23] since the clocks will always overlap. There is also
no preset minimum path delay problem as would occur with a 2-phase overlapping clock
design since the rising edge of one clock follows the falling edge (from the previous cycle)
of the following clock.

The analysis is different when using dynamic gates for the combined latch and preset
(see Table 4.1g and h) since there is no separate clock for latching and preset. Figure 4-9

37

Φ
0

Φ
1

Φ
2

Φ
3

Φ
2

Φ
1

Φ
0

Φ
3

D

CBA

Φ
0

Φ
1

Φ
2

Φ
3

0

0

1

1

1

1

A

B

C

D

2

Figure 4-8: 4-phase LS-PSSL. Time borrowing is enabled by the overlapping clocks.

38

Φ
n

Φ
n+1

B C D

E

F
A

(a)

Φ
0

Φ
1

Φ
2

Φ
3

(b)

Φ
0

Φ
1

Φ
2

Φ
3

(c)

Figure 4-9: N-phase LS-PSSL using dynamic preset and clock waveforms. (a) Partial
pipeline shown. Smaller transistors are less critical. (b) 4-phase 50% duty cycle clock input
waveforms. (c) 4-phase 25% duty cycle clock input waveforms. Preset path timing is shown
in red.

39

Φ Φ

A
Φ

B
C D E

Φ

A

B

C

D

E

t
lΦ

t
Φh

t
1

2
t

Figure 4-10: Edge Triggered PSSL and timing diagram. Full pipeline shown. Smaller
transistors are less critical.

shows the pipeline using dynamic preset, along with two timing diagrams with different
clock waveforms. As in the two-phase case, the preset path begins at the falling edge of
the clock and ends with the rising edge of the clock to the next stage. Using 4-phase 50%
duty cycle clocks, the preset paths can take 3/4 of a clock cycle, for a speedup of 3 on the
preset paths. Using 4-phase 25% duty cycle clocks, the preset paths can take one whole
clock cycle, for a speedup of 4. In general, n-phase 50% duty cycle clocks achieve 1 + n

2

speedup whereas 1/n duty cycle clocks achieve n speedup.

4.4.2 Edge-triggered

As opposed to level-sensitive clocking, edge-triggered clocking uses a single monolithic tim-
ing element (usually a flip-flop). Figure 4-10 shows a pipeline using the same latch and
NAND gate combination as before. However, this time there is only one set in a full pipeline
stage, along with the diagram diagram. The corresponding timing constraints are

t1 + ts < tΦh + 2tΦl (4.10)

t2 + ts < tΦh + tΦl (4.11)

t1 > tΦl (4.12)

The timing paths being and end on clock edges so that there is no time borrowing
allowed. Note that there is a minimum path delay constraint on clock phase 2. Violating
this constraint would cause inter-symbol interference. This is a fundamental race condition
that cannot be avoided. It is impossible to have a data valid window greater than a clock
cycle. The constraint means that the clock can only be stopped on clock phase 1 (clock
high). With a 50% duty cycle clock, a speedup of a factor of 1.5 can be achieved for the

40

C D

π

Φ

π

A

Φ

B E

π

A

B

C

D

E

Φ

t
lΦ

t
Φh

2
t

t
1

t
wπt

dπ

π
Φ

Figure 4-11: Pulsed PSSL pipeline with timing diagram. Full pipeline shown. Smaller
transistors are less critical.

preset path. If the clock is a narrow pulse, a theoretical speedup of a factor of 2 can be
achieved. However, finite rise/fall times and the requirements of latching impose a lower
limit on the clock pulse width.

4.4.3 Pulsed

Pulsed clocking uses transparent latches that are clocked with narrow pulses. Figure 4-
11 shows a pulsed PSSL pipeline along with its timing diagram. It uses a novel flip-flop
structure which we call the Double Pulsed Set Conditional-Reset Flip Flop (DPSCRFF) [24].
In the DPSCRFF, the path from input to output is only a single stage of logic. This is the
key to the design’s high-performance. Another advantage is that the data input sees only
a single transistor load which reduces required input drive and energy consumption. The
pulse, π should be timed to follow the rising edge of the clock, Φ. As with the edge-triggered
PSSL, there is an unavoidable race condition, the preset path must take longer than a clock
phase. The timing constraints in the general case are given by

tΦl + tdπ + twπ < t1 (4.13)

t1 < tΦh + 2tΦl + tdπ (4.14)

tdπ + twπ < t2 (4.15)

t2 + ts < tΦh + tΦl + tdπ (4.16)

tdπ + twπ is the hold time of the pulsed-latch. No time borrowing is allowed in the general
case.

41

If the intervening logic is strictly inverting, then the timing constraints are given by

tΦl + tdπ < t1 (4.17)

t1 < tΦh + 2tΦl + tdπ (4.18)

tdπ + twπ < t2 (4.19)

t2 + ts < tΦh + tΦl + tdπ + twπ (4.20)

Limited time borrowing is allowed in the evaluate path if it completes in the middle of the
latching clock pulse.

If the intervening logic is strictly non-inverting, then the timing constraints are given
by

tΦl + tdπ + twπ < t1 (4.21)

t1 < tΦh + 2tΦl + tdπ + twπ (4.22)

tdπ < t2 (4.23)

t2 + ts < tΦh + tΦl + tdπ (4.24)

Limited time borrowing is allowed in the preset path if it completes in the middle of the
latching clock pulse.

In this pipeline, all the state is held in the DPSCRFF outputs. Since these are erased
when the clock is low, the clock can only be stopped when the clock is high. Fortunately,
there is no minimum path delay constraint on phase 1. One of the potential problems with
pulsed clocking is the minimum path delay constraint on phase 2. However, this can usually
be resolved without slowing down critical paths.

With a 50% duty cycle clock, a speedup of a factor of roughly 1.5 can be achieved for
the preset path. A theoretical speedup of a factor of 2 can be achieved if the pulse is made
infinitely small and is moved to the right before the falling edge of the clock. However, finite
rise/fall times and the requirements of latching impose a lower limit on the pulse width.
In addition, the output of the DPSCRFF becomes a narrow pulse, so there is the concern
that the data pulse might actually dissipate before reaching the next stage. Fortunately,
the skewing of the logic works to stretch out the pulse. However, the pulse integrity would
still need to be verified across process corners.

Pulsed-PSSL and edge-triggered PSSL have similar timing properties. Assuming that
clock pulse generation is not a problem, it is clear that pulsed-PSSL is superior to edge-
triggered-PSSL because of the lower device count and latency of pulsed-PSSL. Therefore
we do not consider edge-triggered PSSL in the evaluations.

42

Figure 4-12: Gate leakage, indicated by arrows, in the preset state is predominantly through
the smaller preset path transistors.

4.5 Leakage and leakage variability impact

Insofar as PSSL pipelines use static gates, PSSL is robust to leakage’s impact on noise mar-
gin, even accounting for variability, because static gates have ample noise margin. However,
because PSSL static gates will be moderately skewed, the gates will not have the same noise
margin as those in a pure static CMOS pipeline. Leakage, however, does increase the amount
of energy consumed in the same way as in static CMOS. We do note, however, that transis-
tors in a PSSL pipeline, especially those in the preset path, will be smaller than transistors
in static CMOS pipeline of the same performance. In addition, a node in a PSSL pipeline
is statistically more likely to be in the preset state than the equivalent node in the static
CMOS pipeline. In the preset state, gate leakage occurs predominantly from the transistors
on the preset path (Figure 4-12). We thus expect a significant decrease in gate leakage
because of the reduced transistor sizes.

Dynamic gates in PSSL pipelines face the same challenges as those in domino. However,
the scale of the problems in terms of design and verification is smaller because there are
far fewer dynamic gates being used. Also, the dynamic gates in PSSL will have higher
noise margin than those in footed domino because the static gates following the dynamic
gates will not be as highly skewed in PSSL as in domino. This is because the gates in the
precharge path do not contribute to timing, except in extreme cases. This, however, does
not apply to footless domino styles as the timing of the precharge paths matter. However,
footless domino styles have their own issues as described in Section 3.2.

4.6 Variability impact

Variability is a serious concern for pulsed latches as it becomes difficult to predict and
control the final shape of the clock pulses. Clock pulses cannot be allowed to dissipate or
fail to swing fully. In order to ensure this in the face of variability, the clock buffer tree
must be designed to widen the clock pulse as a safety margin as it passes through. This,
of course, creates serious hold time issues. Therefore, it is not clear if pulsed-PSSL will be
viable in scaled technologies.

43

Pulsed-PSSL, Edge-triggered PSSL, and LS-PSSL (in certain cases) make use of wave
pipelining. This technique, however, becomes harder to use in the face of variability. Care-
ful analysis of minimum clock width constraints must be performed taking into account
variability on timing paths. This only becomes a problem if there is no clock frequency that
simultaneously satisfies minimum clock width constraints on the fast corners and maximum
clock width constraints on the slow corners.

4.7 Single Event Phenomena

PSSL shares static CMOS’s ability to recover from SEP. Even the use of dynamic gates in
PSSL does not increase the probability of soft error because the dynamic gate replaces what
would otherwise be a latch. SEP, however, can cause transients that are later captured by
state elements. As described in Section 2.2, the Razor technique can be applied to reduce or
even eliminate the impact of SEP as well as other sources of uncertainty such as variability
and noise.

4.8 Conclusion

PSSL is an ideal technology to cope with scaling issues. It is more robust than domino
because of its reduced reliance on dynamic logic. As previously discussed, it becomes
harder to use dynamic logic as technology scales because of increased noise and decreased
noise-immunity. PSSL uses dynamic logic gates, not for its lower logical effort, but for its
preset, which can be used to speed up all the downstream logic. Therefore, the reduced
performance of dynamic logic due to scaling becomes unimportant.

44

Chapter 5

Previous Work and Comparison

In this chapter, we describe work that is related to PSSL. We describe in particular several
Domino modifications and Domino-Static hybrids, along with two recently proposed exotic
logic styles. We show that LS-PSSL is higher-performing, easier to design with, more robust,
and more widely applicable than existing styles. We also describe work to improve dynamic
circuit robustness to variability. Finally we discuss some work on pipelining and timing
elements.

5.1 Logic styles

Conditional Keeper technique

Some variants to dynamic logic have been proposed to enable it to scale better in terms
of performance [25, 26, 27, 28]. These techniques modify the feedback keeper to reduce
contention. In particular, the conditional keeper technique [26], shown in Figure 5-1, has
been successfully used by Intel across three process generations, from 130nm down to 65nm.
Here the conventional keeper is replaced with a pair of keepers, a weak fixed keeper and a
stronger conditional keeper. The conditional keeper only turns on some time after evaluate
begins, giving a small window after the end of precharge for the gate to conditionally pull
down. There is a problem, though, if the input data arrives in the middle of evaluate, as will
happen with gates located at the end of a phase. This is resolved by generating separate
delayed clocks for each stage of logic. Thus this scheme complements footless domino and
shares all its design issues, and thus will likely only be used in wide-OR structures such as
RAMS and register files.

Noise Tolerant Precharge

Another idea, originally called Noise Tolerant Precharge (NTP), removes the feedback
keeper entirely and replaces it with a weak static CMOS pull-up [29, 30], as shown in
Figure 5-2. However, a more recent study [31], showed that conventional domino was su-

45

Figure 5-1: Conditional-keeper technique. The conventional keeper is replaced with a pair
of keepers, a weak fixed keeper and a stronger conditional keeper. The conditional keeper
only turns on some time after evaluate begins to allow time for the gate to switch.

Figure 5-2: Noise-tolerant precharge. The feedback keeper is eliminated and replaced with
a weak PMOS pull-up network.

46

perior to NTP in terms of overall energy-delay-robustness. At the same time, NTP is not
a complete replacement for dynamic logic. Dynamic logic has the ability to synchronize,
that is, to prevent inputs from affecting outputs. It also has the ability to hold, that is, to
keep some memory of old values. These two abilities allow a dynamic gate to function as
a latch. NTP, on the other hand, can only synchronize; it cannot hold a value. A pipeline
using only alternating NTP and static gates will work through wave pipelining, but only at
a minimum clock frequency. In particular, the clock could not be stopped to save power.
Therefore, either latches have to be inserted, adding delay and preventing time borrowing,
or some gates need to be converted to dynamic gates. NTP complements PSSL. It can be
used in place of a static CMOS gate where the inputs are known to be monotonic and the
static CMOS gate would have poor performance. It can also be used to replace certain
instances of dynamic gates in PSSL where the hold ability is not required.

Skewed CMOS

A static/dynamic hybrid called Skewed CMOS logic was proposed in [32]. This is basically
a generalized NTP domino where where the clocked stages can be placed anywhere in the
pipeline and both precharge high and precharge low NTP are used. In addition, those stages
that are not clocked are skewed to favor the evaluate transition. The resulting circuits are
more noise tolerant than domino. An example pipeline along with its timing diagram is
shown in Figures 5-3. The precharge paths are allowed to take 3 times longer than the
evaluate paths because there are three clocked stages in each phase.

Our work is very similar and shares the idea of using skewed static gates for improved
performance and robustness. They are, however, based on different, but complementary,
timing principles. Figure 5-4 compares the execution of similar 18-stage pipelines, one in
Skewed CMOS and one in LS-PSSL, having the same 3× precharge/preset speedup. In
Skewed CMOS, speedup is attained by having multiple sections of dependent logic in the
same phase precharging simultaneously. Precharge must complete in one phase. The overlap
or speedup factor is independent of the number of clock phases. The total number of clocked
stages is mn where m is the overlap factor and n is the number of phases. In PSSL, speedup
is attained by overlapping the preset of logic in adjacent phases. In LS-PSSL, preset must
complete in one clock cycle. Here, the overlap factor is identical to the number of clock
phases and the total number of clocked stages is m, since there is exactly one clock stage
per phase. Therefore, Skewed CMOS requires a factor of 2 greater clock load for similar
LS-PSSL pipelines with similar speedup. Edge-triggered and pulsed PSSL have even less
resemblance to skewed CMOS. For the former, preset must complete in three phases, the
overlap factor is 1.5 for a 50% duty cycle clock, and the total number of clocked stages is
1. One final issue is that static latches are required between stages because precharge can
arrive early

47

Figure 5-3: 18-stage Skewed CMOS pipeline (half are shown) and timing diagram. The
precharge paths are allowed to take 3 times longer than the evaluate paths because there
are three clocked stages in each phase.

48

evaluate
stable
precharge

ti
m
e

gate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(a) 2-phase Skewed CMOS with 3 clocked stages per phase. Stages 1,4,7,10,13,16 are clocked.

evaluate
stable
preset

ti
m
e

gate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(b) 3-phase LS-PSSL. Stages 1,7,13 are clocked.

Figure 5-4: Skewed CMOS vs. LS-PSSL execution charts. 18-stage design. Both designs
have 3× speedup on the precharge/preset paths.

49

Figure 5-5: Output Prediction Logic.

Output Prediction Logic

Other novel logic styles have also been proposed. In Output Prediction Logic (OPL) [33],
shown in Figure 5-5, every gate is preset high using a footed dynamic gate. The rising
edges of the clocks to each gate are timed to just precede the falling edges of inputs, such
that the output is at the high-gain trip point when the inputs arrive. They showed a 2-
3x improvement in delay over static CMOS in a wide range of circuits with an average
additional energy cost of about one third. Subsequently, a 64-bit adder was implemented
in OPL with a delay of 409ps in 0.18µm dissipating 325pJ per cycle [34] and another
64-bit adder was implemented in differential OPL with a delay of about 226ps in 0.13 µm
dissipating 29.5pJ per cycle [35]. Further circuits were described in [36, 37]. A difficulty with
OPL is the requirement for precise generation of clocks, separated by less than an FO4 delay.
Further the best performance is achieved right when the circuit is about to fail. If the rising
edge of the clock arrives any earlier, the circuit fails. If the clock arrives any later, the circuit
is clock-blocked, slowing it down. Each additional circuit stage compounds this slowing,
as opposed to other logic/pipelining styles which at most block once on each phase. Such
precise control only becomes more difficult in sub-100nm technologies as device variation
and noise cause proportionally more delay variance. Also, this technique is applicable only
to datapaths where the clock generation overhead can be amortized.

Low-Voltage Swing Logic

Another novel logic style, Low-Voltage Swing (LVS) logic [38], utilizes low-voltage differen-
tial signaling and sense-amplifiers–ideas borrowed from RAM design. This allows logic to
be built using large diffusion connected networks, resulting in a huge reduction of circuit
nodes. This is especially advantageous for Manchester carry chains and very wide muxes
or shifters. Combined with reduced voltage swings, the reduction in circuit nodes yields
a reduction in power dissipation even while outperforming domino logic. LVS was used in

50

Figure 5-6: Low Voltage Swing Logic.

the design of the Pentium 4 processor at 90nm technology, which ran the integer core at
7GHz. Designing with LVS takes a lot of design effort and care, especially to eliminate non-
common-mode noise and to ensure layout matching. This level of effort is normally reserved
for RAMs and analog designs and required much work on design tools and methodology. It
is worth noting that LVS was abandoned by Intel at the 65nm node in favor of domino [39]
because LVS did not scale well enough to justify the design effort.

5.2 Variability

The static gates in PSSL are robust to variation. Variability is primarily a concern for
the dynamic preset circuitry in PSSL. Techniques that improve robustness with regard to
variability for domino circuits also apply to the dynamic preset circuitry.

Variation-Compensating Dynamic circuit

The Variation-Compensating Dynamic circuit technique [40], shown in Figure 5-7, is similar
to the contention reduction techniques described previously. The conventional keeper is
replaced with a set of binary-weighted conditional keepers which are digitally programmed
to be on or off to customize the overall keeper strength to track process variation. The NAND
gates used for turning on and off the keepers require extra area and add extra capacitance
to the output node. The extra capacitance hurts the energy-delay of the circuit. This
technique will be very useful in cases where the output node is already heavily loaded, as
in the case of a RAM bit line, so that the added overhead is negligible. However, this
technique is not as useful in the general case.

51

Figure 5-7: Process- Compensating Dynamic circuit technique. The conventional keeper is
replaced with a set of binary-weighted conditional keepers which are digitally programmed
to be on or off to customize the overall keeper strength to track process variation.

Figure 5-8: Leakage Current Replica Keeper. An analog current mirror replicates the
leakage current of a reference pull-down stack onto the keeper. This allows the keeper
current to track the actual leakage current.

Leakage Current Replica Keeper

The Leakage Current Replica Keeper [41], shown in Figure 5-8, uses an analog current
mirror to replicate the leakage current of a reference pull-down stack onto the keeper. This
allows the keeper current to track the actual leakage current with die-to-die process variation
and environment variation. There is little penalty with this scheme, but care must be taken
with the analog KPR signal to avoid noise.

Applicability to PSSL

Schemes that improve dynamic gate robustness to variability inevitably incur area, delay,
energy, or design overhead. Since PSSL uses few, if any, dynamic gates, it may be preferable

52

to over-size the keeper and pay the delay penalty. The penalty from over-sizing in PSSL
should be smaller than the penalty for Domino, in proportion to the number of gates in
each pipeline stages

5.3 Pipelining

There has been work on improving performance through better pipelining. In standard two-
phase footed domino logic, static latches are required between half-pipeline stages because
of the early arriving precharge. In [23], Harris describes the removal of static latches,
allowing certain dynamic gates to function as latches. This eliminates all synchronization
delay and enables time-borrowing to be used improve performance. However, doing this
with a 2-phase clocking scheme requires greater than 50% duty cycle clocks, creating clock
generation complexity and hold time issues. LS-PSSL with the simplified latches allows
time-borrowing even with 50% duty cycle clocks.

In [22] the authors describe wave-pipelining, where several waves of operands are pro-
cessed simultaneously in a combinational circuit without being separated by latches. Subse-
quently this was applied to domino logic in [42]. We utilize this technique to allow non-unate
signals to be used with the simplified latch/preset circuitry.

5.4 Timing Elements

Flip-flops are critical timing elements in digital circuits and have a large impact on circuit
speed and power consumption. Consequently, extensive research has been performed to
develop fast and low-power flip-flops [43, 44, 45, 46]. Recently, pulsed latch structures have
emerged as the fastest known flip-flop structures [43, 44]. By reducing the transparency
period of a latch to a narrow window, the latch can operate as a flip-flop with the additional
advantage of allowing limited time-borrowing across cycle boundaries to reduce sensitivity
to clock skew and jitter. These structures have the disadvantage of large positive hold times
which complicates timing verification. The pulse generators can also consume considerable
energy as pulses must be generated locally to avoid pulse distortion. Nonetheless, because of
their performance advantages, these pulsed latch structures have been used in several com-
mercial high-performance microprocessors [47, 48]. The DPSCRFF is simpler and faster,
and, as we will see later, faster and lower-power than other known pulsed latches while also
providing logic speedup from preset.

5.5 Conclusion

There is not likely to be a single logic style or logic element that is best for every instance in
every design. However, we believe PSSL complements and improves upon previous work on

53

logic styles and timing elements. It achieves higher performance, lower energy, and higher
robustness. It is also more widely applicable and easier to design with.

54

Chapter 6

Managing Leakage

As leakage is a major scaling concern, we present a survey of techniques to deal with leakage,
highlighting special considerations for PSSL.

6.1 Leakage

The leakage paths (Figure 2-1) in a static CMOS inverter chain are shown in Figure 6-1.
There are various ways to reduce the leakage. A survey of leakage reduction techniques can
be found in [4]. Four major techniques are multiple-threshold circuits, sleep vector, power
gating, and body biasing. We will limit our discussion to the first three. The last technique
is, for the most part, orthogonal to logic style.

6.1.1 Multiple-Vth circuits

To reduce leakage in active circuitry, one important technique is to use two (or more) types
of transistors, each type with different Vth voltages. In the simplest scheme, the low-Vth

transistors are reserved for gates in the critical paths; high-Vth transistors are used every-
where else [49]. In theory, this would cut leakage drastically without hurting performance
or dynamic power. However, the problem is that few paths are truly non-critical since
any timing slack can be traded for reduced dynamic power through transistor sizing and

gate

BTBT

subthreshold
1 0 01

Figure 6-1: Static CMOS leakage paths.

55

(a) original (b) improved

Figure 6-2: Leakage-proof domino circuits. CLK and SLEEP are forced high during sleep,
which sets all the nodes low.

possibly voltage scaling. Therefore, a holistic optimization strategy that considers supply
voltage, threshold voltage, and transistor sizing would be more effective [50]. The multiple-
Vth technique adds a degree of freedom in circuit design, providing a way to trade-off static
power vs. dynamic power vs. delay.

This technique can be applied to all the logic styles, with some minor differences. In
static CMOS circuits, the Vth choice will generally be made per gate. For each gate, every
transistor will have low-Vth or every transistor will have high-Vth. This is because usually all
timing paths through the gate are (relatively) critical or they are all (relatively) non-critical.
As an optimization, deeply stacked transistors might be left as low-Vth since they have lower
subthreshold leakage on average. In domino circuits, the transistors in the precharge path,
including the static gate pull-down, always have high-Vth because they are not in any timing
paths. In PSSL circuits, it is beneficial to consider the PMOS and NMOS halves separately
since they often have wildly different timing constraints. Transistors in the preset path will
generally be less critical than transistors in the evaluate path; therefore, there is generally
less penalty for using high-Vth devices in the preset path. Using high-Vth devices in the
preset path also tends to reduce the skew ratio of gates and thus will enhance noise-margin.

6.1.2 Sleep Vector technique

Sleep vector techniques take advantage of the fact that the amount of leakage in a circuit is
data dependent. On sleep, a fixed input vector is applied to the primary inputs of a block.
This input vector is designed to minimize the leakage in the block [51]. One can further
reduce leakage, at the cost of energy and delay, by introducing internal control points that
set specific nodes on sleep [52]. Sleep vector techniques, on their own, are highly dependent
on circuit topology for their effectiveness and can rarely entirely suppress leakage.

There are various sleep vector techniques specifically suited to domino using multiple-

56

VddVdd
VddVdd

VddVdd
VddVdd

VddVdd

sleep

sleepb

clk

in node1 node2
(=0)

(=0)

(=1)

(=1)

(1->0) (0->1)

Figure 6-3: Leakage-Biased Domino. Sleep transistors are placed off the evaluate path.
Leakage currents bias the circuit into a low-leakage state.

Vth devices. These can almost entirely suppress leakage. Figure 6-2a shows Leakage-proof
domino [53]. CLK and SLEEP are forced high during sleep, driving the dynamic and static
outputs low and cutting off the static pull-up. There is, however, some performance over-
head due to the addition of a high-Vth transistor in the critical pull-up chain of the static
gate. An improved technique [54], shown in Figure 6-2b, eliminates the performance over-
head of the earlier technique. In Leakage-Biased Domino [55](shown in Figure 6-3), sleep
transistors are placed off the critical evaluate path. Instead, leakage currents bias the circuit
into a low-leakage state.

The above techniques work because of the high-Vth transistors in the precharge circuitry
of domino logic which do not hurt performance. Similar techniques can also work for PSSL,
though at some dynamic power and performance penalty, if all transistors in the preset
path have high-Vth.

6.1.3 Power Gating

Another class of ideas uses sleep transistors to cut off power and/or ground from the logic.
The original idea of power gating comes from Multithreshold voltage CMOS (MTCMOS)
logic [56], shown in Figure 6-4. MTCMOS cuts off the circuit from both rails using high-
Vth transistors. MTCMOS was truly ahead of its time. It was proposed not as a way to
deal with leakage (which was virtually non-existent in their 0.5 µm technology), but as a
high-performance low-power circuit technique. Since they used transistors with lower than
normal Vth and used ultra-low supply voltages, they ended up facing the same issues that
designers would later face four or five technology generations later. There is also a variant
of MTCMOS using only a single sleep transistor.

The problem with MTCMOS is that its high-Vth transistors degrade performance. In
contrast, Super Cut-Off CMOS (SCCMOS) logic [57], shown in Figure 6-5, does not require

57

Vddv

Vssv

X X X X

sleep

sleep

Figure 6-4: Multithreshold voltage CMOS logic. The shaded transistors are high-Vth to cut
off the circuit from both rails.

vVdd

X 0 X 0

sleep

Figure 6-5: Super Cut-Off CMOS logic. The gate of the sleep transistor is boosted above
Vdd in sleep mode to cut off the circuit from the Vdd rail.

high-Vth transistors. Rather, the gate of the sleep transistor is boosted above Vdd in sleep
mode to cut off the circuit from the Vdd rail.

A problem with SCCMOS (and single sleep transistor MTCMOS) is the long time
required to wake up from sleep mode due to the high-capacitance virtual supply node that
needs to be recharged. During sleep, the virtual supply node is completely discharged
due to leakage. Zigzag Super Cut-Off CMOS (ZSCCMOS) logic [58], shown in Figure 6-6,
addresses this. Low output gates are tied to virtual Vdd and high output gates are tied
to virtual Vss in a zigzag pattern. As in SCCMOS, the gates of the PMOS/NMOS sleep
transistors are boosted above Vdd/below Vss in sleep mode to cut off gates from the Vdd/Vss
rails. In this configuration, the virtual rails do not swing as much so their recovery time
is about 11× less than for SCCMOS. A drawback of ZSCCMOS is that gate leakage is not
reduced [59].

Gate-leakage Suppressing CMOS (GSCMOS) logic [60], shown in Figure 6-7, is a modi-

58

sleep
Vddv

sleep

Vssv

1 0 1 0

Figure 6-6: Zigzag Super Cut-Off CMOS logic and leakage paths. Low output gates are tied
to virtual Vdd and high output gates are tied to virtual Vss in a zigzag pattern. The gates
of the PMOS/NMOS sleep transistors are boosted above Vdd/below Vss in sleep mode to cut
off gates from the Vdd/Vss rails. Gate leakage, indicated by the arrows, is not eliminated.

fication of ZSCCMOS to deal with gate leakage. Low output gates are tied to virtual Vdd1
and high output gates are tied to virtual Vdd2 and also virtual Vss in a zigzag pattern. The
gates of the PMOS/NMOS sleep transistors are boosted above Vdd/below Vss in sleep mode
to cut off gates from the Vdd/Vss rails.

6.1.4 Applications to PSSL

For deep sleep states, where power consumption is the primary concern, the only true way
to eliminate leakage is through power gating. ZSCCMOS is not completely effective and
so is not recommended in scaled technologies where gate leakage is large. The MTCMOS
and SCCMOS techniques are independent of logic style. For static CMOS logic, using
ZSCCMOS and GSCMOS requires applying a sleep vector so that the state of internal
nodes is predetermined. Domino and PSSL can use precharge/preset in lieu of a sleep
vector.

For fine grained leakage reduction, where low overhead is the primary concern, a sleep
vector technique that utilizes high-Vth transistors is best. Domino logic works well with
these schemes because the transistors in the precharge path do not contribute to timing,
so it is convenient to put all the high-Vth transistors there. Static CMOS logic, on the
other hand, faces a dynamic energy vs. delay vs. static energy tradeoff wherever high-Vth

transistors are used. PSSL, however, opens up new opportunities for managing leakage
reduction. Figure 6-8 compares the leakage paths in Static CMOS and multi-Vth PSSL,
where all the of transistors on the preset path are high-VthẆhen the PSSL circuit is placed
in the opposite state of preset, all subthreshold leakage is eliminated, and gate leakage is

59

Vddv1

Vddv2

Vssv

X 0 X 0

sleep
sleep

sleep

Figure 6-7: Gate-leakage Suppressing CMOS logic. Low output gates are tied to virtual
Vdd1 and high output gates are tied to virtual Vdd2 and also virtual Vss in a zigzag pattern.
The gates of the PMOS/NMOS sleep transistors are boosted above Vdd/below Vss in sleep
mode to cut off gates from the Vdd/Vss rails.

gate

BTBT

subthreshold
1 0 01

(a) Static CMOS

gate

BTBT

subthreshold
1 0 01

(b) PSSL

Figure 6-8: Comparison of leakage paths in Static CMOS and multi-Vth PSSL. Smaller
transistors are on the Preset path and are high-VthẆhen the PSSL circuit is placed in the
opposite state of preset, all subthreshold leakage is eliminated, and gate leakage is reduced
by 1/3. BTBT is also reduced because of the reduced size of the transistors.

60

reduced by 1/3. BTBT is also reduced because of the reduced size of the transistors. This
same scheme can be applied with Static CMOS logic; however, with PSSL, there is half the
delay penalty (for 2-phase LS-PSSL), since the preset path is stretched over 1 cycle.

6.2 Conclusion

We have surveyed a number of leakage reduction techniques and have found that PSSL
creates opportunities for leakage reduction. We have proposed a fine grained leakage reduc-
tion technique that takes advantage of the unique properties of PSSL; this technique has
reduced overhead when used in PSSL as compared to static CMOS.

61

62

Chapter 7

Evaluation

In this chapter we show the effectiveness of PSSL logic quantitatively. Several test circuits
were implemented in PSSL and other logic styles, starting from simple inverter pipelines
and culminating in the implementation of 32-bit accumulators. In addition, the DPSCRFF
flip-flop is also compared against existing flip-flop designs.

7.1 Linear Feedback Shift Register

We implemented a 2-bit linear feedback shift register (LFSR) shown in Figure 7-1 using
both static CMOS logic and LS-PSSL. This LFSR implements the sequence 11,01,00,10
(repeated) and was chosen because it is simple and yet exercises the complete set of one-bit
state transitions, providing a good test of pipeline functionality.

7.1.1 Methodology

The design of the LFSR in LS-PSSL is shown in Figure 7-2. Of the four phases, three are
non-inverting, and thus race-free. However, the last phase is inverting and thus presents a
minimum path delay with respect to the high phase of the clock. However, as there are no
such constraints with respect to the low phase of the clock, the clock can be stopped in that
phase. The inverters in the design are skewed such that the preset path delay is roughly
twice the non-preset path delay.

The static CMOS design is similar except that standard latches are used and that,
instead of alternately skewed inverters, one type of inverter is used.

D Q

Φ
D Q

Φ

Figure 7-1: Two-bit Linear Feedback Shift Register.

63

Φ Φ Φ Φ

P N P P N P P N P P N P N

Figure 7-2: Linear Feedback Shift Register implemented using LS-PSSL. Feedback devices
have been omitted for clarity. Inverters labeled P/N are skewed to favor the rising/falling
transition respectively.

These were tested using HSPICE in a TSMC 0.18 µm process with estimated device
parasitics. All nodes were loaded with 12fF of capacitance to represent the loading of wire
and of other logic. The minimum clock period and the energy dissipation, excluding clock
energy, was measured for each design point.

The static CMOS design was hand optimized to generate the energy-delay curve. We
then optimized the PSSL design to have minimum delay subject to a 460fJ energy constraint,
which is about the median among the static CMOS energies.

7.1.2 Results

The results are shown in Figure 7-3. The PSSL implementation runs at about 1.5GHz
whereas static CMOS implementation runs at about 1GHz when dissipating about 460fJ
per clock cycle. This comparison was performed with a fixed load at each node. The
improvement would be even better if the load scaled with the sizes of the inverters because
of the lower input capacitance of PSSL.

The simulation waveforms for the last stage of the LFSR is shown in Figure 7-4. The
top graph shows the output of the dynamic gate. There is an extra pulse whenever the
output remains in a 0 state. It thus toggles twice as often as the equivalent node in the
static CMOS implementation. Subsequent graphs show the outputs of successive inverters.
The pulse is attenuated and eventually eliminated. This occurs because of the skew in the
inverter chain. The faster evaluate path eventually overtakes the slower preset path. This
reduces the energy penalty of preset so that PSSL can attain better energy-delay. It can
be noted that this effect is timing dependent. The faster the circuit is run, the faster the
preset pulse is eliminated and the less energy per cycle is expended.

7.2 Shift register using wide fan-in gates

We implemented a 4-bit shift register to further compare PSSL to other logic styles. The
design of the shift register is shown in Figure 7-5. In contrast to the 2-bit LFSR of the
previous section, the 4-bit design is non-inverting and thus has a straightforward domino
implementation. Also, instead of inverters, we used alternating 3-input NAND and NOR gates.

64

0 200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

minimum clock period (ps)

en
er

gy
 p

er
 c

yc
le

 (
fJ

)

SCMOS
PSSL

Figure 7-3: Linear Feedback Shift Register energy-delay comparison at 0.18µm, 1.8V, TT,
25◦C.

V
o

lt
ag

es
 (

lin
)

0

500m

1

1.5

V
o

lt
ag

es
 (

lin
)

0

500m

1

1.5

V
o

lt
ag

es
 (

lin
)

0

500m

1

1.5

V
o

lt
ag

es
 (

lin
)

0

500m

1

1.5

V
o

lt
ag

es
 (

lin
)

0

500m

1

1.5

Time (lin) (TIME)
0 2n 4n 6n 8n 10n 12n

pssl level-sensitive lfsr

Figure 7-4: LS-PSSL LFSR waveforms. The top graph is the output of the last dynamic
gate in the design. Subsequent graphs show the outputs of successive inverters.

65

���
���
���
���
���

���
���
���
���
���

Φ Φ Φ Φ Φ Φ Φ Φ

Φ

Figure 7-5: Four-bit shift register using wide-fan-in gates.

This structure was chosen because it mimics the implementation of very wide fan-in gates.
In addition, this structure highlights the advantages of skewed logic styles such as PSSL
and domino. It also provides a vehicle for examining the scaling of wide-fanin circuits into
nanometer technologies. Domino, footless-domino, static CMOS, and LS-PSSL designs were
compared.

7.2.1 Methodology

We chose to limit our evaluation to designs requiring only 50% duty cycle clocks. For
Domino, this would normally mean the insertion of static latches between pipeline stages
to solve the precharge race condition. This has the drawback of adding two extra stages of
logic in the pipeline. Instead, the last NAND gate of each stage has an extra clock NMOS
transistor to form a half-latch (with full keeper). For Footless Domino, this means that the
delays of the precharge and evaluate phases has to match. Higher performance could be
attained by relaxing the duty cycle requirement. However, it is not clear how feasible this
would be in practice. The LS-PSSL version uses dynamic gates for preset to minimize delay
and to avoid the penalty of clock jitter.

The static CMOS version uses a fully static 8-transistor inverting latch between stages.
This intentionally inverts each half-pipe stage so that the slow path through the gates is
followed by the fast path. Using time borrowing, the minimum clock period becomes the
sum of the delays of the fast and slow paths, instead of twice the slow path as would be the
case without the inversion.

We randomly generated variants of each of the four designs. Each variant was simulated
in Hspice using the PTM [18] 32nm process at 0.6 volts, 100◦C, and with 1fF of capacitive
load at each node in addition to estimated device parasitics. For each design, the delay

66

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

delay (ps)

en
er

gy
 p

er
 c

yc
le

 (
fJ

)

PSSL
Domino
Footless
Static

Figure 7-6: Four-bit shift register energy-delay curves at 32nm, 0.6V, 100◦C.

was measured, then, running at the maximum clock frequency, the energy per cycle was
measured.

7.2.2 Results

The results are shown in Figure 7-6. Only the optimal points, those on the good quadrant
of the convex hull, are plotted. Over a wide range of design points, PSSL has the lowest
energy and delay. At the 1000ps design point, it is almost twice as fast as Static CMOS for
the same energy and uses about 30% less energy than Domino at the same delay. Footless
domino is better than Footed domino, but worse than PSSL.

7.3 Flip-flop comparison

We compared the energy-delay curves of DPSCRFF against previously published designs
(Figure 7-7) [61]. For the delay metric we chose the minimum D-to-Q delay. This is
appropriate because it takes into account the relationship between input arrival time and

67

Vdd

D

Clk

Q

VddVdd

D

Clkb
Clkb

Clkb
ClkbClk

Clk
Clk

Q

Clk

Vdd

Vdd

D

Clk

Q Qb

Db

Clk

PClk

D

Q

(a) PowerPC 603 master-slave latch (PPCFF)

(b) StrongArm110 flip-flop (SAFF)

(c) SSASPL (d) Hybrid Latch Flip-Flop (HLFF)

Figure 7-7: Flip-flops for comparison

Clk-to-Q delay [45].

7.3.1 Methodology

All flip-flops were simulated using Hspice from schematic netlists annotated with accurate
source/drain parasitic diode parameters using a TSMC 0.25µm process. Figure 7-8 shows
the test-bench used for the evaluation. The test-bench is based on that in [61]. However, we
chose more balanced 2/1 inverters instead of minimum sized inverters in the data and clock
buffers. As in [61, 45], we subtracted out the energy dissipated in charging and discharging
the output load capacitors. In addition, as in [45], we also subtracted out the energy
dissipated in the input buffers.

The relative ranking of flip-flops depends on the loading conditions assumed [62]. For
this evaluation, we chose a load of 7.2 fF which corresponds to four minimum sized inverters
in this technology. This represents a typical light load in a datapath structure [61]. To
drive higher loads, it is likely that additional levels of output buffering should be used [62].

68

TE

7.2 fF
D

CData In

Clock

Q

Figure 7-8: Test-bench setup. Balanced FO4 2/1 inverter trees provide realistic input
waveforms.

The pulse generators of the DPSCRFF and the SSASPL were connected to four of the
flip-flops, and the energy cost of the pulse generation is considered to be amortized between
them.

The transistor sizes in the designs were each optimized for several design points. This
optimization was performed using data inputs that were stable well before and after the
arrival of the clock. The clock was un-gated and the data alternated on every cycle. Clk-
to-Q delay and energy were measured. Afterward the minimum D-to-Q delays were found
by optimizing the data input arrival times.

7.3.2 Results

Figure 7-9 show the results. As can be seen, the fastest DPSCRFF at 54 ps is significantly
faster than the next fastest flops, HLFF and SSASPL, at roughly 150 ps. The lowest-power
DPSCRFF at 141 fJ is comparable to the lowest-power flop, PPCFF, at 130 fJ. However, it
has a propagation delay of only 167 ps compared to 342 ps.

Figure 7-10 show how the energy dissipation varies with different clock and data input
patterns for the different flip-flops. Note that the flip-flops shown in this figure have widely
varying propagation delays as shown by the labels in the axes. When the data is held
low while the clock continues to run, the energy dissipation of the DPSCRFF is reduced.
However, if the clock is running and the data is held high, the DPSCRFF actually dissipates
more power than for the full activity waveforms because of its output glitches. When the
clock is held stable, no internal nodes change state and only the single data input gate
toggles. The DPSCRFF therefore has low energy when the local clock is gated.

69

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

Delay (ps)

E
n

er
g

y
p

er
 c

yc
le

 (
fJ

)

DPSCRFF
HLFF
PPCFF
SAFF
SSASPL

Figure 7-9: Energy versus delay for various flip-flops at 0.25 µm, 2.5V, TT, 25◦C.

DPSCRFF−63ps HLFF−148ps PPCFF−318ps SAFF−378ps SSASPL−148ps
0

50

100

150

200

250

300

350

E
ne

rg
y

pe
r

cy
cl

e
(f

J)

clock low
data low
data high
full activity

Figure 7-10: Energy Dissipation across different input waveforms for various flip-flops.

70

reset

+

Figure 7-11: Accumulator design. The datapath is 32-bits wide. The inverter chain adds
extra delay to facilitate two-phase clocking.

pg pg

cmcmcmcmcmcmcmcmcmcmcmcmcmcmcmcm

cmcmcmcmcmcmcmcmcmcmcmcmcmcmcmcm

cmcmcmcmcmcmcmcmcmcmcmcmcmcmcmcm

cmcmcmcmcmcmcmcmcmcmcmcmcmcmcmcm

cmcmcmcmcmcmcmcmcmcmcmcmcmcmcmcm

sum

muxmux mux mux mux mux mux mux mux mux mux mux mux mux mux mux

sum sum sum sum sum sum sum sum sum sum sum sum sum sum sum sum

ab31

s32 s0

ab0 c

Figure 7-12: Adder architecture. The hybrid carry-lookahead/carry-select implementation
computes every other carry bit in the lookahead tree, like a Han-Carlson adder, saving area
and energy, but precomputes the final sum bits to reduce the number of logic stages by one.

7.4 32-bit Accumulator

Adders are an important case to consider as they are found in the critical paths of micro-
processors and DSP’s. We implemented a 32-bit accumulator to serve as a realistic test case
for PSSL. The accumulator design is shown in Figure 7-11. Some extra delay was added to
the pipeline to facilitate two phase-clocking.

For the adder we chose a hybrid carry-lookahead/carry-select architecture shown in
Figure 7-12. Like in a Han-Carlson adder, the carry-lookahead tree only computes every
other carry bit, so requires only half the resources as a full carry-lookahead. However, unlike
the Han-Carlson which has a final ripple carry calculation to calculate the remaining carry
bits, this design precomputes two versions of each 2-bit sum, reducing the number of logic
stages by one. Static CMOS, domino, LS-PSSL, and pulsed-PSSL variants were designed
and evaluated.

7.4.1 Implementation

A carry-lookahead adder has three major components: carry-generation, partial-sum gen-
eration, and final-sum generation. The former two operate in parallel and the results are
combined in the last component. Carry-generation is unate. Partial and final sum gen-

71

eration, however, are not unate. There is, therefore, some amount of trickery involved in
designing a PSSL or domino implementation. One solution for domino implementation is
to use a dual-rail scheme throughout. However, this is inefficient as the carry-generation
component forms the bulk of the circuitry. Another solution is to employ de-racers or com-
plementary signal generators at the boundaries of unate and non-unate sections [21]. This
is the solution that is chosen in our design. However, some of the de-racers are in the critical
path between carry-generation and final-sum generation. This is unavoidable in the domino
and pulsed-PSSL designs. However, one of the advantages of LS-PSSL is that non-unate
logic is allowed if certain minimum-path timing restrictions are met. We take advantage
of this to remove the de-racers at the output of the carry-generation component. All the
versions were designed to be as similar as feasible to one another for fair comparison.

7.4.2 Evaluation

We simulated the designs in the TSMC 0.18 µm micron process at 1.8V and 1.2V. The
netlist was annotated to include estimated wire and source/drain parasitics. To measure
critical path delay we used Pathmill, which is a transistor level static timing analysis tool.
To measure energy consumption we used Nanosim to simulate the accumulator designs over
9 cycles with the same set of random input data. The supply energy draw for the entire
design was measured.

In order to generate energy-delay curves we designed and implemented an algorithm
to optimally size transistors in the circuit. The algorithm begins with the circuit in the
minimum size/lowest energy configuration. In each iteration it selects the transistors which
control the node in the critical path of the design with the slowest transition time. Rising
transitions are given a

√
3 delay factor over falling transitions. The sizes of the selected

transistors are increased so that the transition times on the critical paths will tend to
be more balanced. These ideas were drawn from [17]. The algorithm results compared
favorably with those from hand optimization.

The results are shown in Figure 7-13. At 1.8V LS-PSSL is superior to static CMOS
except at the lowest energy points and is superior to domino except at the lowest delay
points. At the 500ps design point, it uses 20% less energy than domino and is 33% faster
than static CMOS. At 1.2V the results are qualitatively similar. However, the voltage
scaling does not degrade the performance of static CMOS as severely so the crossover point
between static CMOS and PSSL occurs at a higher point on the curve.

7.5 Conclusion

We have tested PSSL and compared it against other common logic styles, using several test
circuits from shift registers to accumulators. We have shown that, over a wide range of
design points, PSSL is superior to domino and static CMOS logic in terms on energy and

72

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16

delay (ns)

en
er

gy
 p

er
 c

yc
le

 (
pJ

)

PSSL
Domino
Static

(a) 1.8V

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

delay (ns)

en
er

gy
 p

er
 c

yc
le

 (
pJ

)

PSSL
Domino
Static

(b) 1.2V

Figure 7-13: 32-bit accumulator comparison at 0.18 µm, TT, 25◦C

73

delay, and at the same time is more robust than domino. In particular, we have shown 20-
30% energy reduction vs. domino and 33-50% delay reduction vs. static CMOS. In addition,
we have presented the Double Pulsed Set Conditional-Reset Flip Flop (DPSCRFF), which is
twice as fast as previous flip flops described in literature while consuming the same amount
of energy.

74

Chapter 8

Testchip

To demonstrate the advantages of PSSL in real hardware, we built a custom test-chip in the
TSMC 180nm process with three ALU cores, using the static CMOS, domino, and LS-PSSL
logic styles. In this chapter, we describe the design, implementation, operation, and testing
of this chip. We also present initial energy delay performance comparisons between the
ALUs implemented in the three logic styles.

8.1 Architecture

A block diagram of the test-chip is shown in Figure 8-1. The ALU cores consume a 40-bit
input vector and produce a 32-bit output word on every cycle, at up to roughly 1 GHz, for
a total bandwidth of up to about 72Gb/s. A fourth pass-through ALU merely passes inputs
to outputs and can be used for end-to-end testing of the test infrastructure. The testchip
reuses an existing socket and bus interface in order to limit the hardware and software
design effort. Data is communicated on/off-chip through the Asynchronous Host Interface
Protocol (AHIP) bus. This 8-bit bidirectional bus operates in the low tens of megahertz
with a 50% control overhead, for an effective bandwidth of roughly 50-100Mb/s.

8.1.1 Test infrastructure

To verify correct operation of the cores, a mechanism must exist to provide known test
vectors and to check results. The simplest and most flexible mechanism feeds input data
and samples output directly from off-chip at full-speed. This is, however, impossible because
of the 1000× discrepancy between required and available bandwidth, even if we allow for
test compression techniques.

Since the AHIP bus does not have the required bandwidth to supply the ALUs, an
internal 128-entry 40-bit Pattern Generator RAM (PGRAM) is included to provide input
data to the cores at full speed. The contents of the PGRAM are written offline, through
the AHIP bus. In addition, a 128-entry 32-bit Logic Analyzer RAM (LARAM) is included

75

static

domino

LS−PSSL

serialize

lev
el−

sh
ift/m

u
x

d
eserialize

AHIP

PGRAM LARAM

4X frequency

passthrough

Figure 8-1: Test-chip block diagram.

to capture output data from the cores at full speed. The contents of the LARAM are read
offline, also through the AHIP bus. The core operating frequency of 1 GHz is well beyond
the capabilities of the test infrastructure, and in particular the RAMS. Therefore, most
of the chip runs at a quarter of the core frequency. Together, the LARAM and PGRAM
allow full cycle-level control and visibility of the ALU inputs and outputs. The LARAM
contents can be compared to expected results offline to determine whether a particular ALU
functioned as expected.

An internal register selects the active ALU. This register can be written to through the
AHIP bus. Only the active ALU is clocked. The outputs of the active ALU are written
into the LARAM.

8.1.2 Measurement infrastructure

The core clock can be provided either by an off-chip clock generator or by an internal voltage
controlled oscillator. In either case, the frequency can be measured through an external pin.
The frequency of the internal clock generator is set by the voltage on an external pin. The
voltage-frequency relationship of the internal clock generator is shown in Figure 8-2.

Each of the ALUs, except the pass-through ALU, is connected to a separate power
supply. The voltage for each power supply can be digitally set and measured. In addition,

76

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

6

10
7

10
8

10
9

10
10

Voltage (V)

F
re

qu
en

cy
 (

hz
)

Figure 8-2: On-chip VCO frequency vs. input voltage at 1.8V, 25◦C.

the current can be measured and recorded digitally in real time. This allows one to measure
the power consumption of each ALU.

8.1.3 Chip operation

On each slow cycle, the PGRAM produces four input vectors. These are fed serially to
the ALUs on each core cycle. The outputs of the ALUs are level-shifted to the main chip
voltage of 1.8V. On each core cycle, one of the shifted outputs are selected and fed into the
deserializer, which produces a 4-word wide vector on each slow cycle, which is then written
into the LARAM.

8.1.4 ALU architecture

The architecture of each ALU is shown in Figure 8-3. This architecture is chosen to mimic
the critical ALU bypass path of microprocessors. A pair of input muxes select data from
either outside the ALU (presumably the register file), the output of the ALU (for the primary
pipeline bypass), or from one of two other inputs (representing other possible input sources).
The last two inputs are tied to 0 and -1. An XOR in the second input path, along with the
carry input, allows the selectable computation of A+B, A−B, A+B+1, and A−B−1. An
output mux selects data from either the output the adder, or from one of three other inputs
(representing the outputs of other functional units such as shifters or logic units). This
organization is fairly typical. That said, the exactness of correspondence of this datapath
to any other ALU datapath is unimportant.

77

+
Φ

Φ

Φ

Figure 8-3: ALU block diagram.

8.2 Implementation

The adders in the ALUs are the same as those described in section 7.4, except for transistor
sizes.

8.2.1 Transistor size selection

The theory of transistor size selection is as follows. Let S ⊂ <n be the set of valid transistor
size vectors. Let s be a transistor size vector such that s ∈ S. Let V ⊂ < be the set of valid
supply voltages. Let v be a supply voltage such that v ∈ V . Let y(s, v) and x(s, v) be the
energy and delay, respectively, of the circuit at the given sizes and voltages. A well chosen
transistor size design point is such that the energy-delay trade-off from voltage scaling is
identical to the energy-delay trade-off from transistor sizing. In general, this is described
by a curve in S×V that satisfies ∇y(s, v) = λ∇x(s, v) for λ ∈ <. Second order constraints
also apply to filter out local maxima and saddle points. Different values of λ yield different
points on the optimal curve.

For our purposes, we wish to optimize around the point at v=1.8V. Since we are only
interest in that point, we can prune the search space by only considering points at 1.8V.
We first trace a curve in S that satisfies ∇y(s, 1.8) = λ∇x(s, 1.8). This was done with
the assistance of a computer program using an algorithm based on gradient descent but
modified to prune the search space by only looking at transistors on the critical path. We
then retraced the curves at v=1.5V to give an approximation for ∂y

∂v , ∂x
∂v at every point.

This algorithm was applied to each of the three ALU designs. The resulting energy-
delay curves, based on extracted and back-annotated parasitics, are shown in Figure 8-4.
Energy results are from Nanosim spice simulation. Delay results are from Pathmill static
timing analysis. Note that we did not consider noise-margin in the transistor sizing.

The energy-delay efficient point is determined by dy/ds
dx/ds = ∂y/∂v

∂x/∂v . Using this equation,
we chose the PSSL design point of just under 1GHz frequency. We sized the domino design
to be approximately the same speed as the PSSL design at 1.8V. We sized the static CMOS

78

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1000

2000

3000

4000

5000

6000

7000

min period (ns)

av
g

cu
rr

en
t (

nA
)

ALU @1.8V, TT, 400MHz

static
domino
pssl

Figure 8-4: ALU energy-delay comparison with varying transistor sizes, TT, 25◦C.

79

design to consume approximately the same energy as the PSSL design at 1.8V.

It can be argued that this comparison is unfair because the domino ALU should have
been implemented at a faster design point, then run at a lower voltage for comparison
against PSSL. Similar, the static ALU should have been implemented at a slower design
point, then run at a higher voltage for comparison. However, we felt that this would make
the comparison less clear. Also, it may be unreasonable to increase the voltage of the static
ALU beyond 1.8V and risk gate breakdown.

8.2.2 Layout

A die plot of the testchip is shown in Figure 8-5. The chip was built using a semi-custom
tool-flow. The datapath leaf-cells were drawn manually, but the datapaths were placed and
routed procedurally, using custom software written by this author. All datapath leaf cells
and standard cells were designed to a height of 9 wiring tracks, or 5.04 µm. The sizes for
each ALU is shown in table 8.1.

style width (µm) height (µm) area (µm2)
Domino 97.68 176.4 17231
LS-PSSL 112.2 176.4 19792

Static CMOS 169.62 176.4 29921

Table 8.1: Testchip ALU size comparison.

8.3 Simulation Results

A comparison of the energy and delay of the ALUs in the testchip is shown in Table 8.2.
The results are from simulation of fully extracted layout at 1.8V, TT, 25◦C.

8.4 Test and Measurement Methodology

In order to generate an energy-delay curve for each ALU, we need to find the maximum
frequency the ALU can operate at for various supply voltages. This is complicated by the
fact that there is no direct control, without additional hardware and software support, over

ALU speed (MHz) energy (pJ/cycle)
PSSL 847 23.4
Static 687 25.0

Domino 868 27.0

Table 8.2: Testchip ALU Energy-Delay comparison. Simulated with fully extracted layout
at 1.8V, TT, 25◦C.

80

Figure 8-5: Testchip die plot.

81

the clock frequency and measuring the clock frequency is a manual process through the
oscilloscope.

Therefore, we break the process into two steps. The first step is to measure the VCO
clock frequency vs VCO input voltage. We start at a low input voltage and steadily increase
the voltage by a small increment each time, all the while recording the clock frequencies.

In the second step we try to find the maximum VCO input voltage for each ALU supply
voltage for which the ALU generates the correct output vectors. The step will be performed
completely automatically by software. The process is as follows:

1. load the test input vectors
2. set the ALU select register
3. set the VCO input voltage to the minimum
4. set the ALU supply voltage to the minimum
5. wait a short time
6. read the output vectors
7. compare output vectors against expected results
8. if the vectors match then

(a) record VCO input voltage, ALU supply voltage, average current draw

(b) increase the VCO input voltage by some small fixed amount

otherwise increase the ALU supply voltage by some small fixed amount.
9. repeat from step 5

We finally combine the data from the two steps to yield the final energy delay curve.

8.5 Conclusion

We have designed and submitted for fabrication a testchip demonstrating functional PSSL
ALUs. Initial simulations indicate that the PSSL ALU has lower energy consumption than
the equivalent domino logic ALU over some range of delays. We have also shown that it
has higher performance than the equivalent static CMOS ALU over some range of energy
consumption. This testchip is currently in fabrication.

82

Chapter 9

Conclusion

In this work we have introduced and demonstrated Preset Skewed Static Logic (PSSL), a
novel high-performance, low-power, robust family of logic styles. Over a wide range of design
points, PSSL is superior to domino and static CMOS logic in terms on energy and delay,
and at the same time is more robust than domino. In particular, we have shown 20-30%
energy reduction vs. domino and 33-50% delay reduction vs. static CMOS. In addition, we
have presented the Double Pulsed Set Conditional-Reset Flip Flop (DPSCRFF), which is
twice as fast as previous flip flops described in literature while consuming the same amount
of energy.

9.1 Summary of Contributions

The main contributions presented in this thesis are:

• PSSL design. We have described the structure and operation of the novel PSSL logic
style, and shown how to build pipelines using three PSSL clocking schemes: level-
sensitive, edge-triggered, and pulsed.

• Leakage reduction techniques. We have proposed a fine grained leakage reduction
technique that takes advantage of the unique properties of PSSL. This technique has
reduced overhead when used in PSSL as compared to static CMOS.

• PSSL evaluation. We have tested PSSL and compared it against other common logic
styles, using several test circuits from shift registers to accumulators. We have also
demonstrated the advantages of the DPSCRFF, a novel pulsed latch based flip-flop,
for high speed pipelines.

• Testchip. We have implemented a testchip in TSMC 0.18µm technology containing
32-bit ALUs using the logic styles PSSL, domino, and static CMOS to demonstrate
the feasibility of PSSL. This chip is currently in fabrication.

83

9.2 Future Work

There are several research directions that can be pursued based on this work:

Robustness

The robustness advantage of PSSL over domino can be more fully examined and quantified.
Issues such as soft error, transient noise, and variability each present different failure modes
and these effects should be fully analyzed.

Leakage Reduction

Further leakage reduction techniques should be explored. The leakage reduction technique
proposed in this work can form the basis.

Synthesis and Related Tool Flow

Skewed logic styles present challenges to conventional synthesis tool flows. Unique oppor-
tunities may exist to improve the quality of synthesis results through novel algorithms and
heuristics.

84

Bibliography

[1] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), April 1965.

[2] International technology roadmap for semiconductors. http://public.itrs.net.

[3] Deo Singh and Vivek Tiwari. Power challenges in the internet world. In Cool Chips Tu-
torial: An Industrial Perspective on Low Power Processor Design, pages 8–15, Novem-
ber 1999.

[4] Kaushik Roy, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. Leakage current
mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits.
Proc. IEEE, 91(2):305–327, February 2003.

[5] Saibal Mukhopadhyay, Arijit Raychowdhury, and Kaushik Roy. Accurate estimation
of total leakage in nanometer-scale bulk CMOS circuits based on device geometry and
doping profile. IEEE Trans. Computer-Aided Design of Integrated Circuits and Sytems,
24(3):363–381, March 2005.

[6] A. Agarwal et al. Leakage power analysis and reduction: models, estimation and tools.
IEE Proc. Comput. Digit. Tech., 152(3):353–368, May 2005.

[7] Arjit Raychowdhury, Saibal Mukhopadhyay, and Kaushik Roy. Modeling and estima-
tion of leakage in sub-90nm devices. In Int. Conf. VLSI Design, pages 65–70, 2004.

[8] Gordon Moore. No exponential is forever: but ”forever” can be delayed! In ISSCC,
pages 20–23, February 2003.

[9] Ofri Wechsler. Inside Intel Core microarchitecture. ftp://download.intel.com/
technology/architecture/new architecture 06.pdf.

[10] Samuel K. H. Fung et al. 65nm CMOS high speed, general purpose and low power
transistor technology for high volume foundry application. In Symp. VLSI Tech., pages
92–93, 2004.

[11] Saibal Mukhopadhyay and Kaushik Roy. Modeling and estimation of total leakage
current in nano-scaled CMOS devices considering the effect of parameter variation. In
ISLPED, pages 172–175, August 2003.

[12] Rajeev R. Rao et al. Parametric yield estimation considering leakage variability. In
DAC, pages 442–447, June 2004.

85

http://public.itrs.net
ftp://download.intel.com/technology/architecture/new_architecture_06.pdf
ftp://download.intel.com/technology/architecture/new_architecture_06.pdf

[13] David Blaauw Todd Austin, Valeria Bertacco and Trevor Mudge. Opportunities and
challenges for better than worst-case design. In Asia-South Pacific Design Automation
Conference, January 2005.

[14] Todd Austin. Diva: A reliable substrate for deep submicron microarchitecture design.
In MICRO, pages 196–207, 1999.

[15] Dan Ernst et al. Razor: A low-power pipeline based on circuit-level timing speculation.
In MICRO, pages 7–18, 2003.

[16] R. H. Krambeck, Charles M. Lee, and Hung-Fai Stephen Law. High-speed compact
circuits with CMOS. IEEE J. Solid-State Circuits, 17(3):614–619, June 1982.

[17] Ivan Sutherland, Bob Sproull, and David Harris. Logical Effort: Designing Fast CMOS
Circuits. Morgan Kaufmann Publishers, Inc., 1999.

[18] Y. Cao et al. New paradigm of predictive mosfet and interconnect modeling for early
circuit design. In CICC, pages 201–204, 2000. http://www.eas.asu.edu/∼ptm.

[19] M. Anders et al. Robustness of sub-70nm dynamic circuits: Analytical techniques and
scaling trends. In Symp. VLSI Circuits, volume 3, pages 23–24, June 2001.

[20] Mohab H. Anis, Mohamed W. Allam, and Mohamed I. Elmasry. Impact of technology
scaling on CMOS logic styles. IEEE Trans. Circuits Syst. II, 49(8):577–588, August
2002.

[21] S. K. Mathew et al. Sub-500-ps 64-b ALUs in 0.18µm SOI/bulk CMOS: design and
scaling trends. IEEE J. Solid-State Circuits, 36(11):1636–1646, November 2001.

[22] L. Cotten. Maximum rate pipelined systems. In AFIPS Spring Joint Computer Con-
ference, pages 581–586, 1969.

[23] David Harris. Skew-Tolerant Circuit Design. Morgan Kaufmann Publishers, 2001.

[24] Albert Ma and Krste Asanović. A double-pulsed set-conditional-reset flip-flop. Tech-
nical Report 844, Laboratory for Computer Science, MIT, 2002.

[25] Muhammad E. S. Elrabaa, Mohab H. Anis, and Mohamed I. Elmasry. A contention-free
domino logic for scaled-down CMOS technologies with ultra low threshold voltages. In
ISCAS, volume 1, pages 748–751, 2000.

[26] Atila Alvandpour et al. A conditional keeper technique for sub-0.13 µm wide dynamic
gates. In Symp. VLSI Circuits, volume 3, pages 29–30, 2001.

[27] Seong-Ook Jung et al. Skew-tolerant high-speed (STHS) domino logic. In ISCAS,
volume 4, pages 154–157, 2001.

[28] Mohab H. Anis, Mohamed W. Allam, and Mohamed I. Elmasry. Energy-efficient noise-
tolerant dynamic styles for scaled-down CMOS and MTCMOS technologies. IEEE
Trans. VLSI Syst., 10(2):71–78, April 2002.

[29] Fumio Murabayashi et al. 2.5V CMOS circuit techniques for a 200MHz superscalar
risc processor. IEEE J. Solid-State Circuits, 31(7):972–980, July 1996.

86

http://www.eas.asu.edu/~ptm

[30] Tyler Thorp, Gin Yee, and Carl Sechen. Monotonic static CMOS and dual Vt tech-
nology. In Int. Symp. Low Power Electronics and Design, pages 151–155, San Diego,
CA, 1999.

[31] David Harris, Genevieve Breed, Matt Erler, and David Diaz. Comparison of noise
tolerant precharge (NTP) to conventional feedback keepers for dynamic logic. In Great
Lakes Symp. VLSI, pages 261–264, 2003.

[32] Alexandre Solomatnikov et al. Skewed CMOS: Noise-tolerant high-performance low-
power static circuit family. IEEE Trans. VLSI Syst., 10(4):469–476, August 2002.

[33] L. McMurchie, S. Kio, G. Yee, T. Thorp, and C. Sechen. Output Prediction Logic:
a high-performance CMOS design technique. In Int. Conf. Computer Design, pages
247–254, 2000.

[34] Sheng Sun et al. 409ps 4.7 FO4 64b adder based on output prediction logic in 0.18 µm
CMOS. In ISVLSI, pages 52–58, May 2005.

[35] K. H. Chong, Larry McMurchie, and Carl Sechen. A 64b adder using self-calibrating
differential output prediction logic. In ISSCC, volume 49, pages 440–441, February
2006.

[36] Xinyu Guo and Carl Sechen. A high throughput divider implementation. In CICC,
pages 502–505, September 2005.

[37] Yi Han, Larry McMurchie, and Carl Sechen. A high performance CMOS programmable
logic core. In CICC, pages 439–442, October 2004.

[38] D. J. Deleganes et al. LVS technology for the Intel Pentium 4 processor on 90nm
technology. Intel Technology Journal, 8(1):49–58, February 2004.

[39] Sapumal Wijeratne et al. A 9GHz 65nm Intel Pentium R© 4 processor integer execution
core. In ISSCC, volume 49, pages 110–111, February 2006.

[40] Chris H. Kim et al. A process variation compensating technique for sub-90nm dynamic
circuits. In Symp. VLSI Circuits, pages 205–206, June 2003.

[41] Yolin Lih, Nestoras Tzartzanis, and William W. Walker. A leakage current replica
keeper for dynamic circuits. In ISSCC, pages 442–443, 2006.

[42] W. Lien and W. Burleson. Wave-domino logic: timing analysis and applications. In
ISCAS, volume 6, pages 2949–2952, 1992.

[43] H. Partovi et al. Flow-through latch and edge-triggered flip-flop hybrid elements.
ISSCC, pages 138–139, February 1996.

[44] F. Klass et al. A new family of semidynamic and dynamic flip-flops with embedded
logic for high-performance procesors. IEEE J. Solid-State Circuits, 34(5):712–716, May
1999.

[45] V. Stojanović and V. Oklobdžija. Comparative analysis of master-slave latches and
flip-flops for high-performance and low-power systems. IEEE J. Solid-State Circuits,
34(4):536–548, April 1999.

87

[46] B. Nikolić et al. Improved sense-amplifier-based flip-flop: Design and measurements.
IEEE J. Solid-State Circuits, 35(6):876–884, June 2000.

[47] M. Golden et al. A seventh-generation x86 microprocessor. IEEE J. Solid-State Cir-
cuits, 34(11):1465–1477, November 1999.

[48] R. Heald et al. A third-generation SPARC V9 64-b microprocessor. IEEE J. Solid-State
Circuits, 35(11):1526–1538, November 2000.

[49] Liqiong Wei et al. Design and optimization of dual-threshold circuits for low-voltage
low-power applications. IEEE Trans. VLSI Syst., 7(1):16–24, March 1999.

[50] Pankaj Pant, Vivek K. De, and Abhijit Chatterjee. Simultaneous power supply, thresh-
old voltage, and transistor size optimization for low-power operation of CMOS circuits.
IEEE Trans. VLSI Syst., 6(4):538–545, December 1998.

[51] Yibin Ye, Shekhar Borkar, and Vivek De. A new technique for standby leakage reduc-
tion in high-performance circuits. In Symp. VLSI Circuits, pages 40–41, June 1998.

[52] M. C. Johnson, D. Somasekhar, and K. Roy. Leakage control with efficient use of
transistor stacks in single threshold CMOS. In DAC, pages 442–445, 1999.

[53] G. Yang, Z. D. Wang, and S. M. Kang. Leakage-proof domino circuit design for deep
sub-100nm technologies. In Int. Conf. VLSI Design, pages 222–227, 2004.

[54] Walid Elgharbawy et al. On gate leakage reduction in dynamic CMOS circuits. In
Midwest Symp. Circ. Syst., pages 1390–1393, 2005.

[55] Seongmoo Heo and Krste Asanović. Leakage-biased domino circuits for dynamic fine-
grain leakage reduction. In Symp. VLSI Circuits, pages 316–319, 2002.

[56] Shin’ichiro Mutoh et al. 1-V power supply high-speed digital circuit technology with
multithreshold-voltage CMOS. IEEE J. Solid-State Circuits, 30(8):847–854, August
1995.

[57] Hiroshi Kawaguchi, Koichi Nose, and Takayasu Sakurai. A super cut-off CMOS (SC-
CMOS) scheme for 0.5-V supply voltage with picoampere stand-by current. IEEE J.
Solid-State Circuits, 35(10):1498–1501, 2000.

[58] K. Min, H. Kawaguchi, and T. Sakurai. Zigzag super cut-off CMOS (ZSCCMOS) block
activation with self-adaptive voltage level controller: An alternative to clock-gating
scheme in leakage dominant era. In ISSCC, pages 400–401, 2003.

[59] Mindaugas Draždžiulis and Per Larsson-Edefors. Evaluation of power cut-off techniques
in the presence of gate leakage. In ISCAS, volume 2, pages 745–748, 2004.

[60] Mindaugas Draždžiulis et al. A power cut-off technique for gate leakage suppression.
In ESSCIRC, pages 171–174, 2004.

[61] S. Heo, R. Krashinsky, and K. Asanović. Activity-sensitive flip-flop and latch selection
for reduced energy. In ARVLSI, Salt Lake City, UT, March 2001.

[62] S. Heo and K. Asanović. Load-sensitive flip-flop characterization. In IEEE Workshop
on VLSI, Orlando, FL, April 2001.

88

	1 Introduction
	2 Background - Scaling and the Challenges for future computing
	2.1 Power Consumption
	2.2 Robustness
	2.2.1 Signal noise and signal integrity
	2.2.2 Single Event Phenomena and soft errors
	2.2.3 Variability
	2.2.4 Improving Robustness

	2.3 Conclusion

	3 Background - Logic Styles
	3.1 Static CMOS
	3.2 Domino
	3.3 Conclusion

	4 Preset Skewed Static Logic
	4.1 Skewed Static Logic
	4.2 Preset
	4.3 Unateness
	4.4 Pipelining
	4.4.1 Level-sensitive
	4.4.2 Edge-triggered
	4.4.3 Pulsed

	4.5 Leakage and leakage variability impact
	4.6 Variability impact
	4.7 Single Event Phenomena
	4.8 Conclusion

	5 Previous Work and Comparison
	5.1 Logic styles
	5.2 Variability
	5.3 Pipelining
	5.4 Timing Elements
	5.5 Conclusion

	6 Managing Leakage
	6.1 Leakage
	6.1.1 Multiple-Vth circuits
	6.1.2 Sleep Vector technique
	6.1.3 Power Gating
	6.1.4 Applications to PSSL

	6.2 Conclusion

	7 Evaluation
	7.1 Linear Feedback Shift Register
	7.1.1 Methodology
	7.1.2 Results

	7.2 Shift register using wide fan-in gates
	7.2.1 Methodology
	7.2.2 Results

	7.3 Flip-flop comparison
	7.3.1 Methodology
	7.3.2 Results

	7.4 32-bit Accumulator
	7.4.1 Implementation
	7.4.2 Evaluation

	7.5 Conclusion

	8 Testchip
	8.1 Architecture
	8.1.1 Test infrastructure
	8.1.2 Measurement infrastructure
	8.1.3 Chip operation
	8.1.4 ALU architecture

	8.2 Implementation
	8.2.1 Transistor size selection
	8.2.2 Layout

	8.3 Simulation Results
	8.4 Test and Measurement Methodology
	8.5 Conclusion

	9 Conclusion
	9.1 Summary of Contributions
	9.2 Future Work

