
US008321634B2

(12) Unlted States Patent (10) Patent N0.2 US 8,321,634 B2
Miller et al. (45) Date of Patent: *Nov. 27, 2012

(54) SYSTEM AND METHOD FOR PERFORMING (58) Field of Classi?cation Search 71 1/ 141,
MEMORY OPERATIONS IN A COMPUTING 711/127
SYSTEM See application ?le for complete search history.

(75) Inventors: Steven C. Miller, Livermore, CA (U S); (56) References Clted

Martin M- Deneroff, Oakhurst, (US); Curt F. Schimmel, San Ramon,
_ . 4,403,286 A 9/1983 Fry et al.

CA (Us), Larry RudolPh, Brookhne, 4,412,303 A 10/1983 Barnes et a1.
MA (US); Charles E. Leiserson, 5,892,962 A 4/1999 Cloutier
Cambridge, MA (US); Bradley C. 2% 2 i/l?tlgba

' ~ 5 5 Kuszmzful’ Lexmgton’ MA ms)’ Krste 6,327,668 B1 12/2001 Williams
Asallovlc, Cambndge, MA (Us) 6,823,516 B1 11/2004 Cooper

6,948,035 B2 * 9/2005 RoWlands et al. 711/141

(73) Assignee: Silicon Graphics International Corp., (Continued)
Fremont, CA (US)

OTHER PUBLICATIONS

() Nonce' SutbJetCt. to altly (3115312111116; thte fiermdof?glg Jim Handy, The Cache Memory Book, 1998, Academic Press Lim
?lselé llssjébiltio 35y: Jus e un er ited, Second Edition pp. 124 and 156.

This patent is subject to a terminal dis- Primary ExamineriHashem Farrokh _ _
Claimem (74) Attorney, Agent, or Fzrm * Morgan, LeW1s & Bockrus

LLP

(22) Filed; API._ 11, 2011 A processor may operate in‘ one of a plurality of operating
states. In a Normal operatmg state, the processor 1s not

(65) Prior Publication Data involved With a memory transaction. Upon receipt of a trans
action instruction to access a memory location, the processor

Us 201 1/0191545 A1 Aug‘ 4’ 201 1 transitions to a Transaction o eratin state. In the Transaction P g
_ _ operating state, the processor performs changes to a cache

Related U's' Apphcatlon Data line and data associated With the memory location. While in

(63) Continuation of application No. 12/ 168,689, ?led on the Transaction operating state, any changes to the data and
Jul. 7, 2008, noW Pat. No. 7,925,839, Which is a the cache line is not visible to other processors in the com
continuation of application No. 10/836,932, ?led on puting system. These changes become visible upon the pro
Apr. 30, 2004, noW Pat. No. 7,398,359. cessor entering a Commit operating state in response to

(60) Provisional application No. 60/467,019, ?led on Apr. Fecelpt of a Comm“ mstrucnon' After Changes- become VIS
30 2003 1ble, the processor returns to the Normal operatmg state. If an

’ ' abort event occurs prior to receipt of the commit instruction,
the rocessor transitions to an Abort o eratin state Where

(51) Int. or. P . P . g
G06F 12/00 (2006 01) any changes to the data and cache line are drscarded.

(52) U.S. Cl. 711/141; 711/127 22 Claims, 1 Drawing Sheet

STATE TRANSITIONS DUE TO
INSTRUCTION EXECUTION

US 8,321,634 B2
Page 2

2003/0177320 A1*
2004/0010610 A1
2004/0093467 A1

9/2003 Sah et a1.
1/2004 Cypher

U.S. PATENT DOCUMENTS

7,502,917 B2 * 3/2009 Arimilli et a1. 712/225
2002/0095554 A1 7/2002 McCrory et a1.
2002/0198883 A1 12/2002 NishiZaWa et a1.
2003/0155423 A1 8/2003 Limelette et a1. * cited by examiner

5/2004 Shen et a1.

.................... .. 711/158

US. Patent

I l l I I I l l I J

NOV. 27, 2012 US 8,321,634 B2

STATE TRANSITIONS TO
INSTRUCTION EXEC N

Func Codé

CPU |
_______.____|

TState {N,T.C,A} I
_________l

WBPtr —{—————J, ‘______.___._l
EvictPtr -—I———— Nextp" “" l
'_'_""—'l ' Func Code Nextptr

FreePtr °—l- Addr
-_-___——1'
_______ ___. Data Addr

v

Data
NextPtr '—-————¢
EvictedAddr - Nextptr

V

EvictedAddr
NextPtr *———————¢

NextPtr

FIG. 2

US 8,321,634 B2
1

SYSTEM AND METHOD FOR PERFORMING
MEMORY OPERATIONS IN A COMPUTING

SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of US. appli
cation Ser. No. 12/168,689 now US. Pat. No. 7,925,839
Which is a continuation of US. application Ser. No. 10/836,
932 now US. Pat. No. 7,398,359 Which claims the bene?t of
US. Provisional Application No. 60/467,019 ?led Apr. 30,
2003, all of Which are hereby incorporated by reference
herein.

TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to computer sys
tem processing and more particularly to a system and method
for performing memory operations in a computing system.

BACKGROUND OF THE INVENTION

In computer systems, there is a disparity betWeen processor
cycle time and memory access time. Since this disparity lim
its processor utiliZation, caches have been introduced to solve
this problem. Caches, Which are based on the principal of
locality, provide a small amount of extremely fast memory
directly connected to a processor to avoid the delay in access
ing the main memory and reduce the bandWidth needed to the
main memory. Even though caches signi?cantly improve sys
tem performance, a coherency problem occurs as a result of
the main memory being updated With neW data While the
cache contains old data. For shared multi-processor systems,
a cache is almost a necessity since access latency to memory
is further increased due to contention for the path to the
memory. It is not possible for the operating system to ensure
coherency since processors need to share data to run parallel
programs and processors cannot share a cache due to band
Width constraints.

Various algorithms and protocols have been developed to
handle cache coherency. For example, in a directory based
caching structure, a Write invalidate scheme alloWs for a
processor to modify the data in its associated cache at a
particular time and force the other processors to invalidate
that data in their respective caches. When a processor reads
the data previously modi?ed by another processor, the modi
fying processor is then forced to Write the modi?ed data back
to the main memory. Though such a scheme handles cache
coherency in theory, limitations in system performance are
still apparent.

SUMMARY OF THE INVENTION

From the foregoing, it may be appreciated by those skilled
in the art that a need has arisen for an extended coherency
protocol and an ability to track access to memory locations
involved in a transaction and processor state information. In
accordance With the present invention, there is provided a
system and method for performing memory operations in a
computing system that substantially eliminates or greatly
reduces disadvantages and problems associated With conven
tional coherency protocols.

According to an embodiment of the present invention,
there is provided a system for performing memory operations
in a computing system that includes a processor that operates
in one of a plurality of operating states. In a Normal operating

20

25

30

35

40

45

50

55

60

65

2
state, the processor is not involved With a memory transac
tion. Upon execution of a transaction instruction to access a

memory location, the processor transitions to a Transaction
operating state. In the Transaction operating state, the proces
sor performs changes to a cache line in a cache memory
associated With the memory location to include changing
from a MESI coherency protocol to one of a plurality of
transactional coherency states associated With the Transac
tion operating state. While in the Transaction operating state,
any changes to the data and the cache line are not visible to
other processors in the computing system. These changes
become visible upon the processor entering a Commit oper
ating state in response to receipt of a commit instruction.
After changes become visible and the cache line is returned to
the MESI coherency protocol, the processor returns to the
Normal operating state. If an abort event occurs prior to
receipt of the commit instruction, the processor transitions to
an Abort operating state Where any changes to the data and
cache line are discarded. Upon discarding the changes, the
processor transitions to a Suspended state and aWaits receipt
of a commit instruction before transitioning to the Normal
operating state
The present invention provides various technical advan

tages over conventional coherency protocols. For example,
one technical advantage is to treat memory access and opera
tions as transactions. Another technical advantage is to pro
vide a transaction record in the processor to track the state of
the processor during memory transactions. Yet another tech
nical advantage is to integrate an extended cache coherency
protocol With the transaction record of the processor.
Embodiments of the present invention may include all, some,
or none of these technical advantages While other technical
advantages may be readily apparent to those skilled in the art
from the folloWing ?gures, description, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven
tion and the advantages thereof, reference is noW made to the
folloWing description taken in conjunction With the accom
panying draWings, Wherein like reference numerals represent
like parts, in Which:

FIG. 1 illustrates a state diagram for a processor in a com
puting system;

FIG. 2 illustrates the implementation of a transaction
record maintained by the processor;

FIG. 3 illustrates the cache coherency state transitions due
to instruction execution.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 shoWs a state diagram of the transition states that are
entered into by a processor during operation. The transition
states include Normal, Transaction, Commit, Abort, and Sus
pended. The Normal state indicates that there is no active
transaction to process. The Transaction state indicates that a
transaction is in progress. The Commit state indicates that a
transaction has successfully completed but the transaction is
in the process of being cleaned. The Abort state indicates that
a transaction has been aborted but the transaction is still in the
process of being cleaned. The Suspended state indicates that
a transaction has been aborted and cleaned but the processor
has not executed a Commit or Abort instruction.

In order to support transactions, the processor provides
support for tracking access to memory locations involved in a
transaction and state information for recording the proces
sor’s transaction state. To track transaction states, each pro

US 8,321,634 B2
3

cessor maintains a Transaction Record as Well as a mecha

nism (such as a pointer to a free list) to obtain memory
locations for storage of additional transaction state informa
tion. In addition, the primary data cache state ?eld is
expanded to include the states of Invalid (I), Shared (S),
Exclusive (E), Dirty (D), Shared Transactional (ST), Exclu
sive Transactional (ET), and Dirty Transactional (DT). Each
cache tag also includes tWo added bits, TV and TVE, to
indicate that transaction data formerly resided in that line and
has been evicted. The TV bit indicates that data Was evicted
from the ST state. The TVE bit indicates that data Was evicted
from the ET or DT state. These bits are persistent through
changes to the tag but are cleared When the transaction state is
cleaned up during the Abort or Commit states.

FIG. 2 shoWs the implementation of a Transaction Record
maintained by the processor. The Transaction Record is a set
of hardWare registers in the processor storing the folloWing
?elds: TState {Normal, Transaction, Commit, Abort, Sus
pended}, WBPtr {pointer to WBRrecord), and EvictPtr
{pointer to evicted shared addresses}. Other information may
be included to support additional functionality. When in the
Normal state, the processor begins a transaction With the
execution of any Transactional Memory Reference instruc
tion (see folloWing section for description of these instruc
tions). This causes transition 1 in the state diagram of FIG. 1
and causes the processor to set the Transaction Record to the
Transaction state. As long as the processor remains in the
Normal state, it is not involved in a transaction and its actions
obey the conventional coherency protocols.
Upon entering the Transaction state, the processor’ s behav

ior changes as it is noW engaged in a transaction and, from that
point until a successful Commit state, the processor Will do
nothing Which Will cause the state of memory visible to other
processors in the system to change. The processor’s cache is
used to hold changes Which it makes, and any data Which is
evicted from the primary data cache is copied into an eviction
list instead of being sent back to its normal memory location.
Upon executing a Commit state, all changes to memory per
formed during the transaction are made globally visible. If,
instead, the transaction aborts, the locations in the cache
containing changes made during the transaction and the
evicted Writebacks are discarded, restoring the state of
memory (as vieWed by all processors) to What it Was at the
beginning of the transaction.

While in the Transaction state, any transactional load
instruction to a neW address adds that address to the transac
tion’ s Read Set and any transactional load exclusive or trans
actional store instruction adds that address to the transac
tion’ s Write Set. Any attempt by another processor to Write to
an address in the Read Set, or to read or Write from an address
in the Write Set, Will cause the current transaction to abort
(transition 3 in the state diagram of FIG. 1). An abort Will also
be caused by any exception during the transaction or by the
execution of an Abort instruction. Certain simple exceptions
may be permitted, especially Transaction Lookaside Buffer
(TLB) misses (if these are still handled in softWare) to occur
Without causing an abort. An ABORT instruction may be
added at the beginning of the exception handlers instead of
doing the abort in hardWare.

While in Transaction state, the processor’s response to
incoming coherency (Invalidate, Update, and Intervention
Requests) messages is modi?ed as folloWs: Invalidate and
Update requests are processed normally, except that if the
primary cache line it targets has a TV or TVE bit set, the
coherency address is also checked against all addresses in the
Evicted or Writeback list, respectively. If both bits are set,
both lists Will be checked. If the coherency address matches

20

25

30

35

40

45

50

55

60

65

4
any address in one of these lists, or if it hits a line in the ST, ET,
or DT states, the transaction aborts (see beloW for details of
the abort operation). Intervention requests that match the tag
of a line in the DT state Will be processed as if the line Were in
the ET stateithe processor responds With a message indicat
ing that the contents of memory should be used. If the TVE bit
for the line is set, the Intervention address is also checked
against the Writeback list. If the Intervention address matches
a tag or a list address, the transaction aborts.

Other than an abort, the only other Way to exit the Trans
action state is the execution of a Commit instruction, Which
causes the transaction state machine to go to the Commit state
(transition 2 in the state diagram of FIG. 1). Upon execution
of a COMMIT instruction While in Transaction state, the
processor enters the Commit state. In this state, all changes to
memory performed during the committed transaction are
made visible to the rest of the system. To accomplish this, the
folloWing actions are performed:
The Evicted Address list is discarded and the tokens in the

list are attached to the end of the free list. The Evict
Pointer is set to null.

All Writebacks stored in the Writeback list are converted to
WBack messages and Written to their home node. All
tokens in the Writeback list are attached to the end of the
free list. The Writeback Pointer is set to null. The L2
cache is invalidated at the address of the Writeback if that
address is currently stored in the L2 cache.

All TV and TVE bits in the primary cache are set to Zero.
All cache lines in the ST state transition to the S state. All

cache lines in the ET state transition to the E state. All
cache lines in the DT state transition to the D state.

Upon completion of the above actions, the processor transi
tions to the Normal state (transition 4 in the state diagram of
FIG. 1).

While in the Commit state, incoming Intervention, Invali
date, and Update requests are held until the processor exits
this state. It may be feasible to handle these requests in this
state as a performance optimization by taking the actions
needed to produce the same result as Would occur after the
Commit state is complete. Any transactional memory refer
ence instruction that is issued stalls until the processor exits
the Commit state. Commit and Abort instructions are treated
as no operation instructions (NOPs) if executed When the
processor is not in the Transaction state. In some implemen
tations, these instructions trap if an attempt is made to execute
them When already in the Commit state.
When in the Transaction state, the folloWing situations Will

cause a transition to the Abort state (transition 3 in the state
diagram of FIG. 1), aborting the current transaction:

Execution of an Abort instruction.
The processor takes an exception.
An Invalidate or Update Request is received Whose address

matches any cache line that is part of the Read Set.
An Intervention is received Whose address matches any

cacheline that is part of the Write Set.
Upon execution of an abort instruction, the processor

enters the Abort state. In this state, all changes to memory
performed during the aborted transaction are discarded,
restoring the state of the contents of the Write Set to its state
prior to the start of the transaction. To accomplish this, the
folloWing actions are performed:

Eliminate messages may be sent to the directory for all
addresses in the Evicted Address list (this is a perfor
mance optimiZation Which is optional). The Evicted
Address list is discarded and the tokens in the list are
attached to the end of the free list. The Evict Pointer is set
to null.

US 8,321,634 B2
5

Eliminate messages may be sent to the directory for all
addresses in the Writeback list (this is a performance
optimization Which is optional). All Writebacks stored in
the Writeback list are discarded. All tokens in the Write
back list are attached to the end of the free list. The
Writeback Pointer is set to null. The L2 cache is invali
dated at the address of the Writeback if that address is
currently stored in the L2 cache.

All TV and TVE bits in the primary cache are set to Zero.
All cache lines in the ST state transition to the S state. All

cache lines in the ET state transition to the E state. All
cache lines in The DT state transition to the I state.
Eliminate messages may be sent to the directory for all
cache lines transitioned to the I state.

Upon completion of the above actions, the processor tran
sitions to the Suspended state (transition 5 in the state diagram
of FIG. 1) until a Commit instruction is executed (Commit
instructions Will stall if dispatched While in the Abort state
and execute as soon as the transition to the Suspend state

occurs).
While in the Abort state, incoming Intervention, Invalidate,

and Update requests are held until the processor exits this
state. It may be feasible to handle these requests in this state
as a performance optimiZation by taking the actions needed to
produce the same result as Would occur after the abort instruc
tion is complete. Any transactional memory reference
instruction that is issued stalls until the processor exits the
Abort state.

The processor enters the Suspended state as soon as it

completes the cleanup of the aborted transaction in the Abort
state. While in the Suspended state, the processor executes as
in the Normal state except that all transactional memory
reference instructions are treated as NOPs. Upon executing a
Commit instruction, the processor transitions to the Normal
state, making it ready to begin another transaction.
The folloWing neW processor instructions are added:
TEST_T (R)iSets register R to a non-Zero Reason Code

(reason codes to be de?ned) if the processor is currently
in the Abort or Suspended states; sets R to Zero other
Wise. This instruction is used to test to see Whether the
current transaction has been aborted to alloW skipping
the execution of useless instructions.

ABORTiAborts the current transactioniIf the processor
is in the Transaction state, sets the Transaction State to
the Abort state thereby initiating the actions described
above. If the current transaction has already aborted, or
the processor is in any state other than the Transaction
state, this instruction acts as a NOP.

COMMIT (R)iAttempts to commit the current transac
tioniIf the processor is in the Transaction state, sets the
Transaction state to the Commit state, performing the
commit of the current transaction, as described above. If
the current transaction has already aborted (the proces
sor being in the Suspended state), the COMMIT instruc
tion causes a transition to the Normal state. If the current
state is the Abort state, the COMMIT instruction stalls
until transaction cleanup completes and the processor
transitions to the Normal state. Register R is set to a
non-Zero Reason Code (reason codes to be de?ned) if
the processor is currently in the Abort or Suspended
states; R is set to Zero otherWise. If executed While in the
Normal or Commit states, a COMMIT instruction acts
as a NOP or may cause an exception.

For the folloWing group of Transactional Memory Refer
ence instructions, if the processor’ s state is Normal, executing

20

25

30

35

40

45

50

55

60

65

6
these sets the processor state to Transaction. These instruc
tions may be in single and double Word, integer, and ?oating
point forms.
LT (Load Transactional)iPerforms a Load for read access

only and adds the referenced memory location to the
Read Set of the current transaction. This instruction acts
exactly like an ordinary Load instruction, except that it
sets the cache state to the ST state instead of the S state.
If the cache is already in the S or E state, it transitions to
ST; if already in the D state it performs an ordinary
Writeback With Data Retained and transitions to ST. If
the cache is already in any *T state, the state remains
unchanged.

LTX (Load Transactional Exclusive)iPerforms a Load
for Write access and adds the referenced memory loca
tion to the Write Set of the current transaction. This
instruction acts exactly like an ordinary Load instruc
tion, except that it issues a read exclusive request to the
directory and sets the cache state to the ET state instead
of the S state. If the cache is already in the S, ST, or E
states, it sends an Upgrade request to the directory and
transitions to ET; if already in the D state it performs an
ordinary Writeback With Data Retained and transitions
to the ET state. If the cache is already in ET or DT state,
the state remains unchanged. This instruction may
replace a LL instruction.

STX (Store Transactional)iPerforms a Store and adds the
referenced memory location to the Write Set of the cur
rent transaction. This instruction acts exactly like an
ordinary Store instruction, except that it sets the cache
state to the DT state instead of the D state. If the cache is
already in the S, ST, or E states, it sends an Upgrade
request to the directory and transitions to the DT state; if
already in the D state it performs an ordinary Writeback
With data retained and transitions to the DT state; if
already in the ET state, the cache transitions to the DT
state. If the cache is already in the DT state, the state
remains unchanged.

FIG. 3 shoWs the cache state transitions due to instruction
execution. The folloWing shoWs the system behavior for the
various cache states under the extended coherency model
needed to support the functions described above.

Invalid (I)iCache line is not in use and contains no valid
data. The directory may be in any state.

Shared (S)iCache line contains a copy of data Which is
the same as the contents of memory and the contents of
other caches also in S or ST states. The directory Will be
in the S state and its sharing vector Will point at this node.

Shared Transactional (ST)iCache line contains a copy of
data that is the same as the contents of memory (and the
same as the contents of other caches also in the S or ST
states). The collection of all cache lines in the ST state
plus all of the cache lines in the Eviction List constitutes
the Read Set of a transaction. The directory Will be in the
S state and its sharing vector Will point at this node.
When a cache line is in the ST state and the processor is
in the Transaction state, an eviction of the line from the
processor’s cache Will cause the evicted address to be
added to the Eviction List and the TV bit for that cache
tag to be set.

Exclusive (E)iCache line contains a copy of data that is
the same as the contents of memory. No other cache in
the system contains a copy of this data and the processor
may Write to this line Without performing any coherency
transactions. The directory Will be in the E state and its
pointer Will point at this node.

US 8,321,634 B2
7

Exclusive Transactional (ET)4Cache line contains a copy
of data that is the same as the contents of memory. No
other cache in the system contains a copy of this data and
the processor may Write to this line Without performing
any coherency transactions. The directory Will be in the
E state and its pointer Will point at this node. When a
cache line is in the ET state and the processor is in the
Transaction state, an eviction of the line from the pro
cessor’ s cache Will cause the evicted address to be added
to the Writeback List and the TVE bit for that cache tag
to be set.

Dirty (D)iCache line contains modi?ed data that is dif
ferent from the contents of memory. No other cache in
the system contains a copy of this data and the processor
may Write to this line Without performing any coherency
transactions. The directory Will be in the E state and its
pointer Will point at this node.

Dirty Transactional (DT)iCache line contains modi?ed
data that is different from the contents of memory. The
directory Will be in the E state and its pointer Will point
at this node. When a cache line is in DT state and the
processor is in the Transaction state, an eviction of the
line from the processor’s cache Will cause the evicted
address and data to be added to the Writeback List and
the TVE bit for that cache tag to be set.

In summary, the state of the processor during memory
transactions is maintained in a transaction record of the pro
cessor. The coherency protocol for the cache lines is extended
to include additional states. By providing support for memory
transactions along With an expanded cache state implemen
tation, an improved cache coherency protocol is achieved.
The processing discussed above may be incorporated entirely
in computer softWare code, on a computer readable medium,
or be incorporated into a combine softWare/hardWare imple
mentation.
One of the advantages provided by the present invention is

that the cache coherency protocol does not need to be
changed. Moreover, the directory structures are unchanged
on the memory modules. Another important advantage is that
the footprint of a transaction is not limited by the siZe of the
cache Within a processor module. A sequence of instructions
can be treated as a single transaction that is either atomically
executed With respect to other sequences of instructions or is
not executed. The number of distinct memory locations ref
erenced by an instruction sequence as a single transaction, in
a system having a processor module With a processor and a
cache, is not limited by the siZe of the cache.

Thus, it is apparent that there has been provided, in accor
dance With the present invention, a system and method for
performing memory operations in a computing system that
satis?es the advantages set forth above. Although the present
invention has been described in detail, it should be understood
that various changes, substitutions, and alterations may be
readily ascertainable by those skilled in the art and may be
made herein Without departing from the spirit and scope of the
present invention as de?ned by the folloWing claims. More
over, the present invention is not intended to be limited in any
Way by any statement made herein that is not otherWise
re?ected in the appended claims.

What is claimed is:
1. A method for performing memory operations in a com

puting system, comprising:
transitioning a cache line associated With a memory loca

tion from a conventional MESI coherency protocol to
one of a plurality of transactional coherency states asso
ciated With a Transaction operating state of a processor;

20

25

30

35

40

45

50

55

60

65

8
performing updates to the cache line associated With the
memory location, the updates to the cache line not being
visible to other processors in the computing system;

identifying the cache line With a transaction coherency
state according to the update performed.

2. The method of claim 1, further comprising:
receiving a commit instruction;
transitioning to a Commit operating state;
making any changes to the cache line visible to other pro

cessors in the computing system.
3. The method of claim 2, further comprising:
transitioning the cache line from one of the plurality of

transactional states to the conventional MESI protocol;

transitioning to a Normal operating state upon making
changes to the cache line visible to other processors and
performing the cache line transition.

4. The method of claim 1, further comprising:
receiving an event causing an abort of the cache line

update;
transitioning to an Abort operating state in response to the

event.

5. The method of claim 4, further comprising:
discarding any changes made to the cache line;
transitioning the cache line associated With the memory

location from one of a plurality of transactional coher
ency states associated With the Transaction operating
state to the conventional MESI coherency protocol.

6. The method of claim 5, further comprising:
transitioning to a Suspended operating state upon comple

tion of the discarding of any changes to the cache line.
7. The method of claim 1, further comprising:
processing MESI coherency protocol messages received

from other processors.
8. The method of claim 1, further comprising:
tracking a state of the processor and operations performed

on the cache line.

9. A computer readable storage medium including code for
performing memory operations in a computing system, the
code operable to:

transition a cache line associated With a memory location
from a conventional MESI coherency protocol to one of
a plurality of transactional coherency states associated
With a Transaction operating state of a processor;

perform updates to the cache line associated With the
memory location, the updates to the cache line not being
visible to other processors in the computing system;

identify the cache line With a transaction coherency state
according to the update performed.

1 0. The computer readable medium of claim 9, Wherein the
code is further operable to:

receive a commit instruction;

transition to a Commit operating state;

make any changes to the cache line visible to other proces
sors in the computing system.

11. The computer readable medium of claim 10, Wherein
the code is further operable to:

transition the cache line from one of the plurality of trans
actional states to the conventional MESI protocol;

transition to a Normal operating state upon making
changes to the cache line visible to other processors and
performing the cache line transition.

US 8,321,634 B2
9

12. The computer readable medium of claim 9, Wherein the
code is further operable to:

receive an event causing an abort of the cache line update;
transition to an Abort operating state in response to the

event.

13. The computer readable medium of claim 12, Wherein
the code is further operable to:

discard any changes made to the cache line;
transition the cache line associated With the memory loca

tion from one of a plurality of transactional coherency
states associated With the Transaction operating state to
the conventional MESI coherency protocol.

14. The computer readable medium of claim 9, Wherein the
code is further operable to:

process MESI coherency protocol messages received from
other processors.

15. The computer readable medium of claim 14, Wherein
processing of MESI coherency protocol messages causes
updates to the cache line to be aborted.

16. A system for performing memory operations in a com
puting system, comprising:

means for transitioning a cache line associated With a
memory location from a conventional MESI coherency
protocol to one of a plurality of transactional coherency
states associated With a Transaction operating state of a
processor;

means for performing updates to the cache line associated
With the memory location, the updates to the cache line
not being visible to other processors in the computing
system;

means for identifying the cache line With a transaction
coherency state according to the update performed.

20

25

30

10
17. The system of claim 16, further comprising:
means for transitioning to a Commit operating state;
means for making any changes to the cache line visible to

other processors in the computing system.
18. The system of claim 17, further comprising:
means for transitioning the cache line from one of the

plurality of transactional states to the conventional
MESI protocol;

means for transitioning to a Normal operating state upon
making changes to the cache line visible to other pro
cessors and performing the cache line transition.

19. The system of claim 16, further comprising:
means for receiving an event causing an abort of the cache

line update;
means for transitioning to an Abort operating state in

response to the event.
20. The system of claim 19, further comprising:
means for discarding any changes made to the cache line;
means for transitioning the cache line associated With the
memory location from one of a plurality of transactional
coherency states associated With the Transaction oper
ating state to the conventional MESI coherency proto
col.

21. The computer readable medium of claim 16, Wherein
the code is further operable to:

process MESI coherency protocol messages received from
other processors.

22. The computer readable medium of claim 21, Wherein
processing of MESI coherency protocol messages causes
updates to the cache line to be aborted.

