
SonicBOOM: The 3rd Generation Berkeley Out-of-Order
Machine

Jerry Zhao
jzh@berkeley.edu

University of California, Berkeley

Ben Korpan
bkorpan@berkeley.edu

University of California, Berkeley

Abraham Gonzalez
abe.gonzalez@berkeley.edu

University of California, Berkeley

Krste Asanovic
krste@berkeley.edu

University of California, Berkeley

ABSTRACT
We present SonicBOOM, the third generation of the Berkeley Out-
of-Order Machine (BOOM). SonicBOOM is an open-source RTL
implementation of a RISC-V superscalar out-of-order core and is
the fastest open-source core by IPC available at time of publication.

SonicBOOM provides a state-of-the-art platform for research in
high-performance core design by providing substantial microarchi-
tectural improvements over BOOM version 2. The most significant
performance gains are enabled by optimizations to BOOM’s ex-
ecution path and a redesign of the instruction fetch unit with a
new hardware implementation of the state-of-the-art TAGE branch
predictor algorithm. Additionally, SonicBOOM provides the first
open implementation of a load-store unit that can provide mul-
tiple loads per cycle. With these optimizations and new features,
SonicBOOM can achieve 2x higher IPC on SPEC CPU benchmarks
compared to any prior open-source out-of-order core. Addition-
ally, SonicBOOM achieves 6.2 CoreMark/MHz, making it the fastest
currently available open-source core by IPC.

CCS CONCEPTS
• Computer systems organization → Superscalar architec-
tures.

KEYWORDS
superscalar, out-of-order, microarchitecture, branch-prediction, open-
source, RISC-V

1 INTRODUCTION
As the need for general-purpose computing power increases, the
deployment of high-performance superscalar, out-of-order cores
has expanded beyond datacenters andworkstations, intomobile and
edge devices. In addition, the recent disclosure of microarchitectural
timing attacks [12, 14] on speculating cores injects a new concern
into the design space. Architects must now consider security, in
addition to power, performance, and area, when evaluating new
designs.

For those studying these problems, an open-source hardware
implementation of a superscalar out-of-order core is an invalu-
able resource. Compared to open-source software models of high-
performance cores, like gem5 [5], MARSSx86 [18], Sniper [9], or
ZSim [22], an open-source hardware implementation provides nu-
merous advantages. Unlike a software model, a hardware imple-
mentation can demonstrate precise microarchitectural behaviors,

Figure 1: 4-wide fetch, 8-wide issue configuration
of SonicBOOM. This configuration is performance-
competitive with an AWS Graviton core.

execute real applications for trillions of cycles, and empirically
provide power and area measurements. Furthermore, an open hard-
ware implementation provides a baseline platform as a point of
comparison for new microarchitectural optimizations.

While the growth in the number of open-source hardware de-
velopment frameworks in recent years may seem to provide the

Figure 2: BOOM pipeline across BOOMv1, BOOMv2, and BOOMv3 (SonicBOOM)

solution to this problem [2, 4], most of these frameworks only pro-
vide support for simple in-order cores, like Rocket [3], Ariane [31],
Black Parrot [21], or PicoRV32 [29]. Without a full-featured, high-
performance implementation of a superscalar out-of-order core,
these frameworks cannot generate modern mobile or server-class
SoCs.

Although there has also been an explosion in the number of
open-source out-of-order cores in recent years, these fail to address
the demand for an open high-performance implementation. Neither
BOOMv2 [11], riscy-OOO [32], nor RSD [17] demonstrate substan-
tial performance advantages over open-source in-order cores. The
lack of features like 64-bit support, compressed-instruction support,
accurate branch prediction, or superscalar memory accesses, in
some of these designs further inhibits their usefulness to architects
interested in studying application-class cores.

To address these concerns, we developed the third generation
of the BOOM core, named SonicBOOM. Table 1 displays how
SonicBOOM demonstrates improved performance and extended

Table 1: Comparison of open-source out-of-order cores.

Sonic
BOOM

BOOMv2 riscy-
OOO

RSD

ISA RV64GC RV64G RV64G RV32IM
DMIPS
/MHz

3.93 1.91 ? 2.04

SPEC06 IPC 0.86 0.42 0.48 N/A
Branch Pre-
dictor

TAGE GShare Tourney GShare

Dec Width 1-5 1-4 2 2
Mem Width 16b/cycle 8b/cycle 8b/cycle 4b/cycle
HDL Chisel3 Chisel2 BSV+CMD System

Verilog

functionality compared to prior open-source out-of-order cores.
Furthermore, the configuration of SonicBOOM depicted in Figure
1 is the fastest publicly available open-source core (measured
by IPC at time of publication).

2 BOOM HISTORY
We describe prior iterations of the BOOM core, and how the devel-
opment history motivated a new version of BOOM. Figure 2 depicts
the evolution of the BOOM microarchitecture towards SonicBOOM.

2.1 BOOM Version 1
BOOM version 1 (BOOMv1) was originally developed as an edu-
cational tool for UC Berkeley’s undergraduate and graduate com-
puter architecture courses. BOOMv1 closely followed the design
of the MIPS R10K [30], and featured a short, simple pipeline, with
a unified register file and issue queue. BOOMv1 was written in
the Chisel hardware description language, and heavily borrowed
existing components of the Rocket in-order core in its design, in-
cluding the frontend, execution units, MMU, L1 caches, and parts of
the branch predictor. While BOOMv1 could achieve commercially-
competitive performance in simulation, its design had unrealisti-
cally few pipeline stages, and was not physically realisable.

2.2 BOOM Version 2
BOOM version 2 (BOOMv2) improved the design of BOOMv1 to
be more suitable for fabrication and physical design flows. In or-
der to be physically realizable, BOOMv2 added several pipeline
stages to the frontend and execution paths, resolving critical paths
in BOOMv1. In addition, the floating point register file and execu-
tion units were partitioned into an independent pipeline, and the
issue queues were split into separate queues for integer, memory,
and floating-point operations. BOOMv2 was fabricated within the
BROOM test chip in TSMC 28nm [6].

2.3 BOOM Version 3
BOOM version 3 (SonicBOOM) builds upon the performance and
physical design lessons from previous BOOM versions in order
to support a broader set of software stacks and address the main
performance bottlenecks of the core while maintaining physical
realizability. We identify key performance bottlenecks within the
instruction fetch unit, execution backend, and load/store unit. We
also provide new implementations of many structures which, in
BOOMv2, were borrowed from the Rocket in-order core. New im-
plementations in SonicBOOM were designed from the ground-up
for integration within a superscalar out-of-order core.

3 INSTRUCTION FETCH
BOOMv2’s instruction fetch unit was limited by the lack of sup-
port for compressed 2-byte RISC-V (RVC) instructions, as well as a
restrictivly tight coupling between the fetch unit and the branch
predictors. SonicBOOM addresses both of these issues, with a new
frontend capable of decoding RVC instructions, and a new advanced
pipelined TAGE-based branch predictor.

3.1 Compressed Instructions
The C-extension to the RISC-V ISA [28] provides additional support
for compressed 2-byte forms of common 4-byte instructions. Since
this extension substantially reduces code-size, it has become the
default RISC-V ISA subset for packaged Linux distributions like
Fedora and Debian. These distributions additionally include thou-
sands of pre-compiled software packages, providing a rich library
of applications to run without requiring complex cross-compilation
flows.

To support the growing community-driven ecosystem of pre-
packaged RISC-V software, SonicBOOM includes a new superscalar
fetch unit which supports the C-extension. SonicBOOM’s new fetch
unit decodes a possible 2-byte or 4-byte instruction for every 2-byte
parcel. An additional pipeline stage after the frontend-decoders
shifts the decoded instructions into a dense fetch-packet to pass
into the SonicBOOM backend.

3.2 Branch Prediction
Branch prediction is a critical component contributing to the perfor-
mance of out-of-order cores. Hence, improving branch prediction
accuracy in SonicBOOM was a first-order concern. The tight in-
tegration between the fetch unit, branch target buffer (BTB), and
branch predictor within BOOMv2 restricted the addition of new
features and optimizations within the fetch pipeline. Bug fixes and
new features to the fetch unit frequently degraded branch predictor
accuracy between BOOMv1 and BOOMv2.

SonicBOOM’s fetch pipeline was redesigned with a more general
and flexible interface to a pipelined hierarchical branch predictor
module. Compared to BOOMv2, SonicBOOM supports a single-
cycle next-line predictor, and also provides substantial machinery
for managing branch predictor state, local histories, and global
histories.

The branch predictor was re-written to integrate cleanly with the
superscalar banked fetch unit in BOOM. In BOOMv2, the banked
ICache was partnered to an unbanked branch predictor, resulting in
frequent aliasing of branches between the even/odd ICache banks

in the predictor memories. The final result was that the branch
predictor capacity was effectively halved in BOOMv2, as the mis-
configuration forced the predictor to learn two entries (one for each
bank) for some branches. In SonicBOOM, the branch predictor is
banked to match the ICache.

Additionally, SonicBOOM rectifies the minimum 2-cycle redirect
penalty in BOOMv2 by adding a small micro BTB (uBTB). This uBTB
(sometimes called "next-line-predictor", or "L0 BTB") redirects the
PC in a single cycle from a small fully-associative buffer of branch
targets, drastically improving fetch throughput on small loops.

The most significant contribution to overall core performance is
the inclusion of a high-performance TAGE [24] branch predictor,
with a speculatively updated and repaired global-history vector driv-
ing predictions. Unlike BOOMv2, SonicBOOM carefully maintains a
superscalar global history vector across speculative fetches and mis-
speculation, enabling more accurate predictions. The SonicBOOM
predictors were also redesigned to be superscalar, as we observed
aliasing between branches in the same fetch-packet significantly
degraded prediction accuracy for those branches in BOOMv2.

SonicBOOM additionally provides new repair mechanisms to
restore predictor state after misspeculation. Specifically, the loop
predictor and return-address-stack (RAS) are snapshotted and re-
paired on mispredict [26]. Compared with the original unrepaired
RAS from BOOMv2, the SonicBOOM RAS achieves 10x fewer mis-
predicts, with 98% prediction accuracy on ret instructions.

SonicBOOM also changed the branch resolution mechanism. In
BOOMv2, only a single branch per cycle could be resolved, as branch
units must read the single-ported fetch-PC queue to determine a
branch target. We observed that this limitation limited scalabil-
ity towards wider frontends with high-throughput trace caches,
as branch-dense code might include multiple branches in a fetch
packet. In SonicBOOM, we add support for superscalar branch reso-
lution, withmultiple branch-resolution units. An additional pipeline
stage is inserted after writeback to only read the fetch-PC queue
to determine the target address for the oldest mispredicted branch
in a vector of resolved branches. While this increases our branch-
to-branch latency to 12 cycles, the additional scheduling flexibility
provided by multiple branch units overall improved performance
on relevant workloads, as the schedulers could more aggressively
schedule branches, instead of waiting for a single branch unit to
become available.

4 EXECUTE
Weprovide twomajor new features in SonicBOOM’s execute pipeline.
Support for the RoCC accelerator interface enables integration of
custom accelerators into the BOOM pipeline. The short-forwards
branch (SFB) optimization improves IPC by recoding difficult-to-
predict branches into internal predicated microOps.

4.1 RoCC Instructions
The Rocket Custom Coprocessor interface (RoCC) was originally
designed as a tightly-integrated accelerator interface for the Rocket
in-order core. When implemented, the Rocket in-order core will
send the operands and opcodes of any custom accelerator instruc-
tion through the RoCC interface to the accelerator, which can write

data directly into core registers. Additionally, the accelerator can
also access ports to the L1, L2, outer memory, and MMU.

The design of the RoCC interface has proven to be very use-
ful for accelerator research. A wide variety of tightly-integrated
accelerators have been designed for this interface, accelerating a
diverse set of tasks including machine learning [7], vector computa-
tion [13], garbage collection [15], page fault handling [20], memory
copying [16], and cryptography [23].

Nevertheless, some of the workloads accelerated by these accel-
erators have been limited by the performance of the host Rocket
core, as the host core must be able to fetch and issue enough instruc-
tions to saturate the accelerator. We implemented support for the
RoCC interface in SonicBOOM to provide a platform for accelerator
research on top of high performance out-of-order cores. Unlike
Rocket, SonicBOOM speculatively decodes RoCC instructions and
holds their operands in a “RoCC queue” until they pass the archi-
tectural commit point, at which time they can be issued into the
accelerator. As a result, SonicBOOM can more aggressively drive a
custom RoCC accelerator, compared to the Rocket core.

4.2 Short-forwards Branch Optimizations
A frequent code pattern is a data-dependent branch over a short ba-
sic block. The data-dependent branches in these sequences are often
challenging to predict, and naive execution of these code sequences
would result in frequent branch mispredictions and pipeline flushes.

While the base RISC-V ISA does not provide conditional-move or
predicated instructions, which can effectively replace unpredictable
short-forwards branches, we observe that we can dynamically op-
timize for these cases in the microarchitecture. Specifically, we
introduce additional logic to detect short-forwards in fetched in-
structions, and decode them into internal “set-flag” and “conditional-
execute” micro-ops. This is similar to the predication support in
the IBM Power8 microarchitecture [25].

The “set-flag” micro-op replaces the original “branch” micro-
op, and instead writes the outcome of the branch to a renamed
predicate register file. Renaming the predicate register file is neces-
sary to support multiple in-flight short-forwards-branch sequences.
The “conditional-execute” micro-ops read the predicate register
file to determine whether to execute their original operation, or to
perform a copy operation from the stale physical register to the
destination physical register. In the example in Figure 3, the short
basic block consisting of two mv instructions are internally recoded
as "conditional-moves" within SonicBOOM, while the unpredictable
bge branch can be recoded as a "set-flag" operation.

C Assembly Executed MicroOps
i n t max = 0 ;
i n t maxid = −1;
f o r (i = 0 ; i < n ; i ++) {

i f (x [i] >= max) {
max = x [i] ;
maxid = i ;

}
}

l oop :
lw x2 , 0 (a0)
bge x1 , x2 , s k i p
mv x1 , x2
mv a1 , t 0

s k i p :
add i a0 , a0 , 4
add i t0 , t0 , 0 x1
j loop :

loop :
lw x2 , 0 (a0)
s e t . ge x1 , x2
p .mv x1 , x2
p .mv a1 , t 0

add i a0 , a0 , 4
add i t0 , t0 , 0 x1
j loop :

Figure 3: Short forwards branch appearing in a loop to find
the max of an array. The C source, assembly, and decoded
𝜇OPs are shown.

We observe that this optimization provides up to 1.7x IPC on
some code sequences. As an example, SonicBOOM achieves 6.15
CoreMark/MHz with the SFB optimization enabled, compared to
4.9 CoreMark/MHz without.

5 LOAD-STORE UNIT AND DATA CACHE

Figure 4: SonicBOOM load-store-unit, rewritten to optimize
for superscalar, speculative, and out-of-order memory oper-
ations.

In order tomaximize RTL re-use, BOOMv1 and BOOMv2 used the
L1 data-cache implementation of the Rocket in-order core. However,
we observed that this reliance on a L1 data-cache designed for an
in-order core incurred substantial performance penalties.

The interface to Rocket’s L1 data-cache is only 1-wide, limiting
throughput. On a wide superscalar core, this limitation is a signifi-
cant performance bottleneck, blocking the wide fetch and decode
pipeline on a narrow load-store pipeline.

Furthermore, Rocket’s L1 data cache cannot perform any opera-
tions speculatively, as any cache refill would irrevocably result in a
cache eviction and replacement. This results in significant cache
pollution from misspeculated accesses, when used in the BOOM
core.

Finally, Rocket’s L1 data cache blocks load refills on cache evic-
tion. Although the access latency to the L2 is only 14 cycles, the
access time as measured from the core was 24 cycles, due to the
additional cycles spent evicting the replaced line.

To address these problems, SonicBOOM includes a new load-
store unit and L1 data cache, depicted in Figure 4.

5.1 Dual-ported L1 Data Cache
To support dual issue into SonicBOOM’s memory unit, the new
design stripes the data cache across two banks. The new L1 data
cache supports dual accesses into separate banks, as each bank is
still implemented as 1R1W SRAMs.

While an alternative implementation using 2R1W SRAMs can
achieve similar results, we observe that even-odd banking is suffi-
cient in our core to relieve the data-cache bottleneck and enables
physical implementation with simple SRAM memories. Common
load-heavy code sequences, such as restoring registers from the
stack, or regular array accesses, generate loads that evenly access
both even and odd pointers.

The remaining challenge was to redesign the load-store unit to
be dual-issue, matching the L1 data cache. The load-address and

store-address CAMs were duplicated, and the TLB was dual-ported.
The final SonicBOOM load store unit can issue two loads or one
store per cycle, for a total L1 bandwidth of 16 bytes/cycle read, or 8
bytes/cycle write.

5.2 Improving L1 Performance
In SonicBOOM, a loadmiss in the L1 data-cache immediately launches
a refill request to the L2. The refill data is written into a line-fill
buffer, instead of directly into the data-cache. Thus, cache evictions
can occur in parallel with cache refills, drastically reducing ob-
served L2 hit times. When cache eviction is completed, the line-fill
buffer is flushed into the cache arrays.

The final implementation of SonicBOOM’s non-blocking L1 data
cache contains multiple independent state machines. Separate state
machines manage cache refills, permission upgrades, writebacks,
prefetches, and probes. These statemachines operate in parallel, and
only synchronize when necessary to maintain memory consistency.

We also introduce a small next-line prefetcher between the L1
and the L2. The next-line prefetcher speculatively fetches sequential
cache lines after a cache miss into the line fill buffers. Subsequent
hits on addresses within the line fill buffers will cause the cache to
write the prefetched lines into the data arrays.

SonicBOOM’s line-fill buffers can also be modified to provide
a small amount of resistance to Spectre-like attacks, which leak
information through misspeculated cache refills [8]. The line-fill
buffers can be modified to write lines into the L1 cache only if the
request for that line was determined to be correctly speculated.
Misspeculated cache refills can simply be flushed out of the L1,
preventing attacker processes from learning speculated behaviors
from L1 data-cache state.

6 SYSTEM SUPPORT
6.1 SoC Integration
SonicBOOM plugs-in within the tile interface of the Rocket Chip
SoC generator ecosystem and the Chipyard integrated SoC research
and development framework. As such, it integrates with a broad
set of open-source heterogeneous SoC components and devices, in-
cluding UARTs, GPIOs, JTAGs, shared-cache memory systems, and
various accelerators. These components include the open-source
SiFive inclusive L2 cache, the Hwacha vector accelerator [13], and
the Gemmini neural-network accelerator [7]. Within the Chipyard
framework, SonicBOOM can be integrated with additional RISC-V

Figure 5: Chipyard couples SonicBOOM with a vast ecosys-
tem of SoC components for simulation and synthesis.

cores such as Rocket [3] or Ariane [31] to generate heterogeneous
SoCs similar to modern hybrid processor architectures (ARM®

big.LITTLE®, Intel® hybrid architectures). Figure 5 depicts how
Chipyard generates a complete BOOM-based SoC from a high-level
specification.

The Chipyard framework provides SonicBOOM an integrated
emulation and VLSI implementation environment which enables
continuous performance and efficiency improvements through
short iterations of full-system performance evaluation using FPGA-
accelerated simulation on FireSim [10], as well as consistent physi-
cal design feedback through the Hammer [27] VLSI flow.

6.2 Operating System Support
SonicBOOM has been tested to support RV64GC Buildroot and Fe-
dora Linux distributions. As the highest-performance open-source
implementation of a RISC-V processor, SonicBOOM enabled the
identification of critical data-race bugs in the RISC-V Linux kernel.

The RISC-V kernel page-table initialization code requires careful
insertion of FENCE instructions to synchronize the TLB as the ker-
nel constructs the page-table entries. As high-performance cores
might speculatively issue a page table walk before a newly con-
structed page-table-entry has beenwritten to the cache, these FENCE
instructions are necessary for maintaining program correctness.
SonicBOOM’s aggressive speculation found a section of the kernel
initialization code where a missing FENCE caused a stale page-table-
entry to enter the TLB, resulting in an unrecoverable kernel page
fault. We are working on upstreaming the fix for this issue into the
Linux kernel.

6.3 Validation
Debugging an out-of-order core is immensely challenging and time-
consuming, as many bugsmanifest only in extremely specific corner
cases after trillions of cycles of simulation. We discuss two method-
ologies we used to productively debug SonicBOOM’s new features.

6.3.1 Unit-testing. From our experience, the load-store unit and
data-cache are the most bug-prone components of an out-of-order
core, as they must carefully maintain a memory-consistency model,
while hiding the latency of loads, stores, refills, and writebacks as
fast as possible. We integrated SonicBOOM’s load/store unit and L1
data-cache with the TraceGen tool in the Rocket Chip generator,
which stress-tests the load-store unit with random streams of loads
and stores, and validates memory consistency. We additionally
developed a new tool memtrace, which analyzes the committed
sequence of loads and stores in a single-core device, and checks
for sequential consistency. These tools helped resolve several data-
cache and load/store-unit bugs that manifested only after trillion
of cycles of simulation.

6.3.2 Fromajo Co-simulation. SonicBOOM is also integrated with
the Dromajo [1] co-simulation tool. Dromajo checks that the com-
mitted instruction trace matches the trace generated by a software
architectural simulator. Fromajo integrates Dromajo with a FireSim
FPGA-accelerated SonicBOOM simulation, enabling co-simulation
at over 1 MHz, orders of magnitude faster than a software-only
co-simulation system. Fromajo revealed several latent bugs related
to interrupt handling and CSR management.

Figure 6: SonicBOOM SPEC17 IPC compared to Intel Skylake and AWS Graviton cores.

7 EVALUATION
SonicBOOM was physically synthesized at 1 GHz on a commercial
FinFET process, matching the frequency achieved by BOOMv2. We
evaluate SonicBOOM on the CoreMark, SPECint 2006 CPU, and
SPECint 2017 CPU benchmarks. For all performance evaluations,
SonicBOOM was simulated on FireSim [10] using AWS F1 FPGAs.
The FireSim simulations ran at 30 MHz on the FPGAs, and modeled
the system running at 3.2 GHz. A single-core system was simulated
with 32 KB L1I, 32 KB L1D, 512 KB L2, 4 MB simulated L3, and 16
GB DRAM.

7.1 SPECintspeed
We compare both SPEC06 and SPEC17 intspeed IPC to existing cores
for which data is available. All SPEC benchmarks were compiled
with gcc -O3 -falign-X=16, to enable most default compiler
optimizations, and to align instructions into the SonicBOOM ICache.

We compare SPEC17 intspeed IPC against IPC achieved by AWS
Graviton and Intel Skylake cores. The Graviton is a 3-wide A72-like
ARM-based core, while the Skylake is a 6-wide x86 core. SPEC17
benchmarks were compiled with gcc, with -O3 optimizations.

The results in Figure 6 show that SonicBOOM is competitive
with the Graviton core, and can even match the IPC of the Skylake
core on some benchmarks. However, we note that the difference in
ISAs between these three systems skews the IPC results.

7.2 CoreMark
We compare SonicBOOM performance on CoreMark to prior open-
source and closed-source cores. While CoreMark is not a good

Figure 7: SonicBOOM CoreMark/MHz compared to similar
cores. SonicBOOM provides almost a 2x IPC improvement
over BOOMv2.

evaluation of out-of-order core performance [19], published results
are available for many existing cores. The results in Figure 7 show
that SonicBOOM achieves superior CoreMark/MHz compared to
any prior open-source core.

8 WHAT’S NEXT
8.1 Vector Execution
Vector (or SIMD) execution remains as an optimization path, as
most high-performance architectures provide some set of vector in-
structions for accelerating trivially data-parallel code. The maturing
RISC-V Vector extensions provides a ISA specification for the imple-
mentation of an out-of-order vector-execution engine within the
BOOM core. We hope to provide an out-of-order implementation
of the Vector ISA in a future version of BOOM.

8.2 Instruction and Data Prefetchers
Both L1 instruction and data cache-misses incur significant perfor-
mance penalties in an out-of-order core. A L1 ICache miss on the
fetch-path inserts at minimum a 10-cycle bubble into the pipeline,
equivalent to a branch misprediction. Out-of-order execution may
attempt to hide the penalty of a data-cache miss, but the specu-
lation depth in SonicBOOM cannot hide misses beyond L1. As L3
hit-latency is on the order of 50 cycles, BOOM needs to speculate
50-cycles ahead to fully hide the penalty of a L1 miss. On a 4-wide
BOOM, 50-cycles ahead is 200 instructions, exhausting the capacity
of the reorder buffer.

Thus, both instruction and data prefetchers are vital for maintain-
ing instruction throughput in an out-of-order core.While SonicBOOM
provides a small prefetcher to fetch the next cache line after a miss
into the L1, a more robust outer-memory prefetcher that can com-
pletely hide access time to L3 or DRAM is desired.

9 CONCLUSION
SonicBOOM represents the next step towards high performance
open-source cores. Numerous performance bottlenecks introduced
by the physical design improvements for BOOMv2 were resolved,
and many new microarchitectural optimizations were implemented.
The resulting application-class core is performance-competitive
with commercially high-performance cores deployed in datacenters.
We hope that SonicBOOM will prove to be a valuable open-source
asset for computer architecture research.

ACKNOWLEDGMENTS
The information, data, or work presented herein was funded by
ADEPT Lab industrial sponsors and affiliates. Any opinions, find-
ings, conclusions, or recommendations in this paper are solely those
of the authors and does not necessarily reflect the position or the
policy of the sponsors.

REFERENCES
[1] 2019. Dromajo. https://github.com/chipsalliance/dromajo
[2] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,

Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro (2020), Accepted.

[3] Krste Asanovic, David A Patterson, and Christopher Celio. 2015. The berkeley out-
of-order machine (boom): An industry-competitive, synthesizable, parameterized
risc-v processor. Technical Report. University of California at Berkeley Berkeley
United States.

[4] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,
Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
et al. 2016. OpenPiton: An open source manycore research framework. ACM
SIGPLAN Notices 51, 4 (2016), 217–232.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[6] Christopher Celio, Pi-Feng Chiu, Krste Asanović, Borivoje Nikolić, and David
Patterson. 2019. Broom: an open-source out-of-order processor with resilient
low-voltage operation in 28-nm cmos. IEEE Micro 39, 2 (2019), 52–60.

[7] Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao, John
Wright, Colin Schmidt, Jerry Zhao, Albert Ou, Max Banister, et al. 2019. Gemmini:
An Agile Systolic Array Generator Enabling Systematic Evaluations of Deep-
Learning Architectures. arXiv preprint arXiv:1911.09925 (2019).

[8] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and Krste Asanović.
2019. Replicating and Mitigating Spectre Attacks on an Open Source RISC-V
Microarchitecture. In Third Workshop on Computer Architecture Research with
RISC-V (CARRV).

[9] Wim Heirman, Trevor Carlson, and Lieven Eeckhout. 2012. Sniper: Scalable and
accurate parallel multi-core simulation. In 8th International Summer School on
Advanced Computer Architecture and Compilation for High-Performance and Em-
bedded Systems (ACACES-2012). High-Performance and Embedded Architecture
and Compilation Network of . . . , 91–94.

[10] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
et al. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system simulation
in the public cloud. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 29–42.

[11] Donggyu Kim, Christopher Celio, David Biancolin, Jonathan Bachrach, and Krste
Asanovic. 2017. Evaluation of RISC-V RTL with FPGA-accelerated simulation. In
First Workshop on Computer Architecture Research with RISC-V.

[12] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[13] Yunsup Lee, Colin Schmidt, Albert Ou, AndrewWaterman, and K Asanovic. 2015.
The Hwacha vector-fetch architecture manual, version 3.8. 1. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-262 (2015).

[14] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).

[15] Martin Maas, Krste Asanović, and John Kubiatowicz. 2018. A hardware accelera-
tor for tracing garbage collection. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 138–151.

[16] Howard Mao, Randy H Katz, and Krste Asanović. 2017. Hardware Acceleration
for Memory to Memory Copies. (2017).

[17] Susumu Mashimo, Akifumi Fujita, Reoma Matsuo, Seiya Akaki, Akifumi Fukuda,
Toru Koizumi, Junichiro Kadomoto, Hidetsugu Irie, Masahiro Goshima, Koji
Inoue, et al. 2019. An Open Source FPGA-Optimized Out-of-Order RISC-V Soft
Processor. In 2019 International Conference on Field-Programmable Technology
(ICFPT). IEEE, 63–71.

[18] Avadh Patel, Furat Afram, and Kanad Ghose. 2011. Marss-x86: A qemu-based
micro-architectural and systems simulator for x86 multicore processors. In 1st
International Qemu Users’ Forum. 29–30.

[19] David Patterson. 2019. Embench™: Recruiting for the Long Overdue and
Deserved Demise of Dhrystone as a Benchmark for Embedded Comput-
ing. https://www.sigarch.org/embench-recruiting-for-the-long-overdue-and-
deserved-demise-of-dhrystone-as-a-benchmark-for-embedded-computing/

[20] Nathan Pemberton, John D Kubiatowicz, and Randy H Katz. 2018. Enabling
Efficient and Transparent Remote Memory Access in Disaggregated Datacenters.
Technical Report.

[21] Dan Petrisko. 2020. BlackParrot: An Agile Open Source RISC-V Multicore for
Accelerator SoCs. FOSDEM 2020 (2020).

[22] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. ACM SIGARCH Computer
architecture news 41, 3 (2013), 475–486.

[23] Colin Schmidt and Adam Izraelevitz. 2015. A Fast Parameterized SHA3 Accelera-
tor. (2015).

[24] André Seznec. 2011. A new case for the TAGE branch predictor. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture. 117–
127.

[25] Balaram Sinharoy, Ron Kalla, William J Starke, Hung Q Le, Robert Cargnoni,
James A Van Norstrand, Bruce J Ronchetti, Jeffrey Stuecheli, Jens Leenstra, Guy L
Guthrie, et al. 2011. IBM POWER7 multicore server processor. IBM Journal of
Research and Development 55, 3 (2011), 1–1.

[26] Kevin Skadron, Pritpal S Ahuja, Margaret Martonosi, and Douglas W Clark. 1998.
Improving prediction for procedure returns with return-address-stack repair
mechanisms. In Proceedings. 31st Annual ACM/IEEE International Symposium on
Microarchitecture. IEEE, 259–271.

[27] Edward Wang, Adam Izraelevitz, Colin Schmidt, Borivoje Nikolic, Elad Alon, and
Jonathan Bachrach. [n.d.]. Hammer: Enabling Reusable Physical Design. ([n. d.]).

[28] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. 2011.
The risc-v instruction set manual, volume i: Base user-level isa. EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011).

[29] C Wolf. 2019. Picorv32-a size-optimized risc-v cpu.
[30] Kenneth C Yeager. 1996. The MIPS R10000 superscalar microprocessor. IEEE

micro 16, 2 (1996), 28–41.
[31] F. Zaruba and L. Benini. 2019. The Cost of Application-Class Processing: Energy

and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in
22-nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 27, 11 (Nov 2019), 2629–2640. https://doi.org/10.1109/TVLSI.2019.
2926114

[32] Sizhuo Zhang, Andrew Wright, Thomas Bourgeat, and Arvind Arvind. 2018.
Composable building blocks to open up processor design. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 68–81.

https://github.com/chipsalliance/dromajo
https://www.sigarch.org/embench-recruiting-for-the-long-overdue-and-deserved-demise-of-dhrystone-as-a-benchmark-for-embedded-computing/
https://www.sigarch.org/embench-recruiting-for-the-long-overdue-and-deserved-demise-of-dhrystone-as-a-benchmark-for-embedded-computing/
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114

	Abstract
	1 Introduction
	2 BOOM History
	2.1 BOOM Version 1
	2.2 BOOM Version 2
	2.3 BOOM Version 3

	3 Instruction Fetch
	3.1 Compressed Instructions
	3.2 Branch Prediction

	4 Execute
	4.1 RoCC Instructions
	4.2 Short-forwards Branch Optimizations

	5 Load-store Unit and Data Cache
	5.1 Dual-ported L1 Data Cache
	5.2 Improving L1 Performance

	6 System Support
	6.1 SoC Integration
	6.2 Operating System Support
	6.3 Validation

	7 Evaluation
	7.1 SPECintspeed
	7.2 CoreMark

	8 What's Next
	8.1 Vector Execution
	8.2 Instruction and Data Prefetchers

	9 Conclusion
	Acknowledgments
	References

