
RAMP Blue: Implementation of a Manycore 1008 Processor FPGA System

D. Burke, J. Wawrzynek, K. Asanović, A. Krasnov, A. Schultz, G. Gibeling, P.-Y. Droz
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA, USA

email:{drburke,johnw,krste,akrasnov,alschult,gdgib}@eecs.berkeley.edu, droz@ssl.berkeley.edu

Abstract
The RAMP project was undertaken based upon the

observation that future computer architectures were
likely to rely upon massive parallelism for
performance gains, whereas past gains largely
leveraged Moore’s Law silicon improvements. A need
was perceived for an emulation platform to accelerate
architecture research and multicore/manycore
software engineering, specifically compiler and
parallel programming endeavors. The RAMP Blue
effort is a conventional direct RTL implementation of a
message-passing machine. The system consists of
768– 1008 MicroBlaze cores in 64–84 Virtex-II Pro 70
FPGAs on 16–21 BEE2 boards, surpassing the
milestone of 1000 cores in a standard 42U rack. An
architecture based on point-to-point channels and
switches using a combination of custom and generic
hardware provides the basic functionality; virtual-cut-
through dimensional routing on one of two hybrid
topologies with virtual channels provides the
connectivity. A control network with a tree topology
provides management and debugging capabilities. A
software infrastructure consisting of GCC, uClinux
and UPC enables running off-the-shelf applications
and scientific benchmarks. Earlier papers documented
core and infrastructure elements; this publication
describes the system-building effort and evolution of
the emulation vision based upon subsequent insights
and experience gleaned from the larger systems.

1. RAMP Vision

In 2005, an inflection point occurred in computer
development: future products from all major
microprocessor manufacturers were henceforth to be
single-chip multiprocessors, and anticipated
performance improvements would be derived almost
exclusively from software-specified parallelism. This
development represented a fundament shift in an

industry which had benefited from three decades of
Moore’s Law.

A group of like-minded researchers, in discussing
this development at the ISCA conference of 2005,
perceived three immediate issues with the traditional
development practice:

1. Prototyping any new architecture takes
approximately four years and many millions of
dollars.

2. Software engineers are ineffective until
functional hardware becomes available since
simulators are too slow to support development
activities.

3. Feedback from software engineers based upon
current production hardware arrives too late in
overlapping hardware development cycles to
affect the succeeding generation, and instead
will be reflected in future generations.

In order to address these concerns, a platform

which would allow far more rapid evolution than
traditional approaches was required. FPGA
technology had achieved the capacity and speed to
enable a 1024-processor system in only a few dozen
FPGAs at very modest cost per processor. Leveraging
this fact, RAMP researchers sought to establish a
community around a common hardware and software
infrastructure, in turn allowing a pooling of resources
to build a far more productive environment than could
be achieved by disparate efforts. By operating a full
RTL model at high-speed, researchers could have
much higher confidence in the accuracy of their results
and the feasibility of their approach.

Several prototype systems were subsequently built,
and as anticipated, are exhibiting sufficient
performance to interest the wider research community,
including compiler researchers, operating system
developers, and distributed system designers. Previous
experience has shown that software researchers are
only inspired to work with new computer architectures

when such hardware prototype is available.
Additionally, by reflecting rapid hardware evolution in
direct response to software developers feedback,
RAMP, unlike conventional chip fabrication, can “tape
out” every day and exhibit a near-continual state of
flux.

RAMP is a research platform, and can therefore
offer capabilities not present in any commercial
multiprocessor. As an example, RAMP can
demonstrate exactly reproducible behavior, wherein
every processor’s memory references and interrupts
would happen at exactly the same clock cycle on every
run. RAMP is thus finding value for many forms of
software experimentation, as well as aiding in software
debugging.

A key philosophy of RAMP is to provide a
common hardware solution, as opposed to having
many institutions build and maintain their own FPGA
boards and accompanying software. RAMP stated as a
goal that any site should be able to obtain a copy of the
hardware at modest cost, and then download a fully-
functioning large-scale multiprocessor including
hardware design and software environment; currently
each PI on the project is equipped with RAMP-1 board
hardware, and individual project designs are beginning
to be shared freely between various efforts, which in
turn acts to lower the barrier to entry for access to a
multiprocessor research capability. Beginning with the
RAMP-2 (BEE3) platform, dramatic expansion is
anticipated in the set of individuals and departments
who can participate in this new wave of architecture
and software research. Both parallel software and
multiprocessor architecture are critical research areas,
and RAMP is providing the means to foster and
support a much richer interaction between these
communities.

RAMP represents a heretofore unavailable
combination of speed, accuracy, repeatability, and
adaptability in a large-scale multiprocessor
development platform. Several sub-efforts are
underway, designated by colors: White, Red, Gold,
and Purple. Within the overall RAMP project, Blue is
oriented toward the most traditional direct RTL
implementation. Blue has a stated target of a scalable,
multi-board FPGA-based system that would allow
construction of up to a 1024-CPU multiprocessor—this
size selected as an interesting target because many
problems that are invisible at 32 processors and
awkward at 128 become glaring at 1024. Furthermore,
this scale challenge holds across the entire architecture,
network, operating system, and applications
disciplines. This milestone was reached and is being
disseminated to the software community for further
studies specific to the above-mentioned disciplines.

This shared artifact consists of hardware and a
collection of RTL (”gateware”) available in both
conventional HDL as well as Ramp Design language
(RDL).

2. Emulation Technologies

Early computer architecture research relied upon
convincing argument or basic analytical models to
justify design decisions. Beginning in the early 1980’s
computers became fast enough that simple simulations
of architectural ideas were possible. Since the 1990’s,
computer architecture research has come to rely
extensively on software simulation. Numerous
sophisticated software simulation frameworks exist,
including SimpleScalar [1], SimOS [2], RSIM [3],
Simics [4], ASIM [5] and M5 [6]. As the field’s
research focus shifts to multi-core, multi-threading
systems, a new generation of multiprocessor full-
system simulators—with accurate OS and I/O
support—have recently emerged (e.g., [7], [8], [9]).
Software simulation has significantly changed the
computer architecture research field; it is relatively
easy to use and can be parallelized effectively using
separate program instances to simultaneously explore
the design space of architectural choices.

Nevertheless, even when evaluating uniprocessor
architectures, software simulation is slow to generate a
single datapoint. Detailed simulations of out-of-order
microprocessors typically execute at kilo-instructions
per second. In the case of the multiprocessor
simulation, the performance bottleneck is magnified
since the simulators slow down as the number of cores
rises. A number of researchers have explored
mechanisms to speed up simulations. One approach
relies upon modifying the inputs used to benchmarks
in order to reduce their total running time [10], though
the difficulty emerges of finding a set of inputs that
accurately mirrors the execution profile of a full run of
an application. In another approach, researchers
recognized that the repetitive nature of program
execution could be exploited to only run a detailed
microarchitectural model on a subset of the full
program run. The first technique to exploit this was
basic block vectors [11], which determines a small set
of the whole program code path that provides
representative behavior. Later researchers proposed
techniques that repeatedly sample program execution
to find demonstrably accurate subsets [12]. The
drawback of both these approaches to subsetting a full
run is that the full application must be run at least once
to prepare the samples and associated state
checkpoints. Gathering these sample points is slow,

and this approach is only feasible if the application
benchmarks and inputs are to remain unchanged over
the course of many architecture experiments, to allow
reuse of the canned execution samples.

As previously discussed, it is now widely accepted
that the challenges facing the field will find solutions
only by innovating in both hardware and software. The
addition of new architectural features requires the
development of new application software, languages,
compilers, libraries, and operating systems. Even for a
fixed architecture, application code should be retuned
for any given set of architectural parameters (cache
size, memory latency, etc) to enable a fair comparison.
Interactive development of software for multiprocessor
research is intractable using software-based
architectural simulators. In order to engage software
researchers, proposed new architecture designs must
be fast enough to be usable for real software
development.

The possibility of FPGA prototyping and
simulation acceleration has piqued the interest of
computer architects for as long as the technology
existed. FPGAs can be reconfigured to model the
components in a target processor design and the
resulting logic can be clocked at tens of MHz.
Unfortunately, until recently, this avenue has met only
limited success due to the restrictive capacity of earlier
generation FPGAs and the relative ease of simulating
uniprocessor systems in software. An early example of
a large-scale FPGA prototyping effort was RPM [13].
The RPM system enabled flexible evaluation of the
memory subsystem, but was limited in scalability (8
processors) and did not execute OS code. The renewed
interest in FPGA emulation is due to the growth of
FPGA capacity to the point where a complex CPU
including double-precision floating-point units and
caches can comfortably fit on a single FPGA, vastly
simplifying model development and raising emulation
speed. For the simpler processors anticipated in next-
generation “manycore” architectures, several cores can
be mapped to a single FPGA and emulation speeds of
around 100MHz have been demonstrated [14]. Current
FPGA capacity provides the capability for a much
needed, scalable research vehicle for full-system
multiprocessor research.

Cost rules out a large SMP for most researchers.
Also, although an SMP can be used to run
multiprocessor applications natively, this does not
allow experimentation with different architectural
configurations or the addition of new features.
Furthermore, when executing natively on real
hardware it is difficult to observe, reproduce, and
measure low-level system interactions. A large cluster
is cheaper way of obtaining multiple hardware cores

and can be used to model a multiprocessor system, but
is cumbersome and costly to manage and provides only
limited observability, reproducibility, and
configurability.

The most practical alternative to date has been
software simulation, and indeed that has been the
vehicle of choice for most architecture research in the
last decade. For multiprocessor target systems,
simulation speed in total instructions per second
diminishes as more target cores are simulated and as
operating system effects are included. Further, when
detailed timing and power models are incorporated,
software simulation slows dramatically. Although
techniques to reduce input sizes and sample an
application run can reduce simulation time, they are
only usable when the software is not changing, and the
credibility of results based on simulations of 1000
processor systems running small snippets of reduced-
size applications is unclear. Parallelizing simulation
runs (e.g., when performing a parameter sweep) can
provide increased simulation throughput, but the
amount of memory, and hence cost, of each node in a
host compute cluster rises rapidly (each host compute
node must have sufficient memory to model an entire
target system). As mentioned above, software
developers rarely use software simulators since they
run too slowly, and neither sampling nor parallelizing
across independent runs helps with software
development, which is primarily constrained by the
latency to complete a single run with a new version of
the application code.

An unexpected result is that is has proven difficult
to parallelize the software simulation of a parallel
target system to take advantage of a multiprocessor
host system, even if the software simulator is well
structured [15]. For detailed cycle-level models, each
component must communicate data with each other
component on every clock cycle, and this degree of
synchronization and communication results in poor
performance on current multiprocessors, which were
designed to run single-threaded applications well
(perhaps future multicore systems will have better
synchronization and communication primitives, and
hence improve their ability to run simulations of
proposed new multicore designs).

A few groups have completed custom chip
prototypes of their proposed architectural ideas. This is
an expensive option that experience has shown takes
around five years to complete a working prototype of a
given set of architectural mechanisms. Although this
provides a highly credible proof of concept, there is
usually limited ability to experiment with the choices
made (although most research prototypes typically
include more support for experimentation than a

commercial design). Also, the design budget
limitations usually result in a prototype that is
considerably slower than a contemporary commercial
product.

Architecture-level FPGA emulation provides a
compromise between these alternatives. It is so much
cheaper than custom hardware that small groups can
afford highly scalable systems; it is as flexible as
simulators so that the state of the art in parallel
computing can be rapidly evolved; and it is so much
faster than simulators that software researchers can be
tempted to explore new hardware ideas. The credibility
of FPGA emulation can be much higher than for
software simulation, both because entire applications
can be run under complete software stacks and also
because the model construction is more similar to
hardware design and can actually reuse hardware
designs as part of a model. Surprisingly, modern
FPGA designs have clock rates only around 2–4 times
slower than contemporary custom chip research
prototypes. This is mainly due to the fact that off-the-
shelf FPGAs use process technology that is two or
three generations ahead of that available for research
prototypes and FPGA designs can be completed more
rapidly and moved more easily to new technologies.

A related, but somewhat different approach is the
use of FPGAs and special hardware to accelerate gate-
level emulation for chip verification. This provides a
useful tool for chip verification, but operates at too low
a level to be useful for early stage architecture
exploration. In order to span the range of possibilities,
RAMP Blue was developed which more closely
resembles this approach in concept. In contrast, the
style of FPGA emulation being proposed for RAMP
White, and especially RAMP Gold, is at a higher-level
of design representation, which reduces the FPGA
capacity requirements, increases emulation throughput,
and reduces the design effort required to experiment
with a new design.

3. Berkeley Emulation Engines

From the outset, there was a common desire to not
begin the RAMP project by designing yet another
FPGA board, but to rather adopt (at least for initial
research needs) the Berkeley Emulation Engine (BEE2
[16]) for the RAMP-1 system. In that capacity, the
BEE2 has served well as the platform of the early
RAMP machine prototypes and greatly informed the
feature list for the next generation board. The follow-
on BEE3 hardware platform, which has completed the
design and prototyping phase and entering production,
is based on a board design employing Virtex-5 FPGA

architecture, which is two FPGA generations newer
that the BEE2 component Virtex II Pro. The new
RAMP-2 hardware (BEE3) is scheduled to enter full-
scale production by 2H 2008, and contains numerous
features and capabilities specific to the RAMP project.

The genus platform, the BEE1, was primarily
designed to serve as an ASIC emulator and test bed for
circuit design [17] to fulfill an ongoing need at the
Berkeley Wireless Research Center. The platform
demonstrated significant usefulness outside of the
original domain, however, and it became obvious that
inclusion of certain features in future versions would
prove fruitful.

The BEE2 is the second generation multiple FPGA
board, and intentionally targets an increased range of
applications such as real-time signal processing,
scientific computing, and high performance
reconfigurable computing. This broader domain is
reflected in the BEE2’s architecture, which is shown in
Figure 1. As the RAMP effort began, packaging the
BEE2 for high-density computing became important.
Hence, the 2U chassis and mechanical components,
along with a high-efficiency internal power supply
were designed and fabricated dictated by RAMP
requirements.

The main board contains five Xilinx Virtex- II Pro
FPGAs with footprints capable of handling the largest
parts then available (70 and 100 series) for maximum
I/O capability. Internally, the Virtex-II Pro 70 contains
a substantial number of general purpose reconfigurable
logic (33,088 slices with a total of 66,176 4-LUTs and
flip-flops), built in multipliers (328 18x18 bit), large
SRAM block RAMs (328 dual-ported 18 Kb SRAM),
highly configurable I/O pins, high-speed serial
transceivers (20 MGT channels), and two hard
PowerPC cores with built-in L1 cache and a peak core
clock of 400 MHz.

Figure 1

On the board, each of the FPGAs is mapped to four
independent 72-bit DDR2 banks, capable of a peak
throughput of 3.4 GBps per channel. Four of the

FPGAs are designated as “user” FPGAs, and are
connected in a ring topology with a peak throughput of
5 GBps between each adjacent pair. The fifth FPGA,
termed the “control” FPGA, is connected in a star
topology with each user FPGA with a peak
communication capability of 2.5 GBps. Individual user
FPGAs also have four sets of bonded multi-gigabit
transceiver (MGTs) forming four independent 10 Gbps
high-speed serial I/O channels off-board, while the
control FPGA has two of the bonded channels. The
bonded high-speed serial channels run to CX4
connectors which allow Infiniband, 10 Gb Ethernet, or
simple point-to-point XAUI based connections over
fiber or copper cables

The RAMP2 platform will be based on the BEE3,
the third generation Berkeley FPGA based computer
system. The module was designed as a collaboration
between UC Berkeley and Microsoft Research and will
be manufactured and supported by BEEcube, Inc.

The BEE3 design was specifically optimized for
system emulation and simulation acceleration of multi-
processor computer systems, FPGA based
computational acceleration in High Performance
Computing (HPC), high speed digital signal processing
(e.g. Radio Astronomy, SETI), ASIC/SoC real-time
emulation, and DSP/Communication algorithm real-
time prototyping. The BEE3 utilizes devices from the
Xilinx 65nm FPGA family: each 2U rack-mount BEE3
module consists of four Virtex-5 LXT/SXT/FXT
FPGA chips, along with up to 64GB DDR2 DRAM
and eight 10Gigabit Ethernet interfaces for inter-
module communication. In addition, up to 4 PCI
Express x8 connections allow a maximum of 16GB per
second full-duplex data communication between each
BEE3 module and a front-end host computer. At a
power consumption of less than 400 watts, each BEE3
module can provide over 4 trillion integer operation
per second, or emulate over 64 RISC processor cores
concurrently at a several hundred MHz rate. Each of
the four FPGA provides significant capability
improvement over the BEE2 (Figure 2):

• Dual channel DDR2-400/533/667 RDIMMs,
two DIMMs per channel, with a maximum of
4GB DRAM capacity per DIMM, for a total of
16GB total per FPGA.

• Dual 10GBase-CX4 Ethernet interfaces.
• A single PCI-Express x8 end-point slot.
• Direct 40 LVDS high-speed connection to

external multi-GHz analog converter devices,
such as ADC and DAC.

• A number of system management components
include Gigabit Ethernet, RTC/EEPROM,
RS232 serial port, and SD Card.

Figure 2

Prior to the production release, single-chip

development boards are utilized to accelerate IP design
in parallel with BEE3 hardware efforts (ML505 and
V5 XUP). Moreover, the lower-cost and lower
capacity hardware provides a means for external
collaboration and participation by outside entities on a
low-risk trial basis. Because both the BEE3 and
ML505 use the same Virtex 5 FPGA components, any
gateware designs are completely fungible, albeit with
some capacity constraints.

4. RAMP Hardware

RAMP Blue, first of five emulation platforms
explored, is an direct-RTL/RDL emulated message-
passing machine which can be used to run parallel
applications written for the Message-Passing Interface
(MPI) standard, or for partitioned global address space
languages such as Unified Parallel C (UPC). Although
MPI is not an ideal candidate for manycore
communication, this choice eased implementation and
permitted execution of existing codes, which was a
primary goal. RAMP Blue can also be used to model a
networked server cluster. In tangible realizations of the
RAMP hardware, there have been three major system
rollouts: 768, 1008, and 256 core (production grade).
RAMP Blue is an exemplar of a classical RTL direct-
mapped approach and has proven to be a rapidly
evolving, highly scalable, and very successful
demonstration vehicle. What follows is a brief
overview of the physical apparatus.

The first RAMP Blue prototype was developed at
UC Berkeley in August 2006, shown in Figure 3. It
comprises a collection of RAMP-1 boards housed in

preliminary 2U chassis and assembled in a standard
19” rack with external supplies. Physical connection
among the eight boards is through 10 Gbps Infiniband
cables (light blue cables Figure 3).

Figure 3

 The RAMP-1 boards are wired in an all-to-all
configuration with a direct connection from each board
to all others through 10 Gbps links. System
configuration, debugging, and monitoring are through
a 100 Mbps Ethernet switch with connection to the
control FPGA of each board (dark blue wires in the
figure). For system management and control, each
board runs a full-featured Linux kernel on one
PowerPC 405 hard core embedded in the control
FPGA. Initial target applications include the UPC
versions of the NASA Advanced Supercomputing
(NAS) Parallel Benchmarks. The four user FPGAs per
RAMP-1 board are configured to hold a collection of
100MHz Xilinx MicroBlaze soft processor cores
running uCLinux. This initial version mapped eight
processor cores per FPGA. The first prototype, with 32
user FPGAs, emulates a 256-way cluster system. The
number of processor cores is scaled up through several
means. More RAMP-1 boards were added—the simple
all-to-all wiring configuration will accommodate up to
17 boards. More cores are desirable per FPGA—this
configuration of eight processor cores per FPGA only
consumed 40% of the FPGA’s logic resources. Ideally,

the target was up to 16 MicroBlaze cores per FPGA,
and 1024 cores in a system. All necessary
multiprocessor components are implemented within
the user FPGAs. In addition to the soft processor cores,
each FPGA also contains a packet network switch (one
for each core) for connection to units on the same and
other FPGAs, shared memory controllers, shared
double-precision floating-point units (FPUs), and a
shared “console” switch for connection to the control
FPGA. In RAMP Blue, each processor is assigned its
own DRAM memory space (at least 250MB per
processor). The external memory interface of the
MicroBlaze L1 cache connects to external DDR2
DRAM through a memory arbiter, as each DRAM
channel is shared among a set of MicroBlaze cores.
Since each RAMP-1 user FPGA has four independent
DRAM memory channels, four processor cores would
share one channel in the maximum-sized configuration
(16 processor cores per FPGA).

With each processor operating at 100MHz and each
memory channel signaling at a 200MHz DDR 72-bit
data rate, each processor can transfer 72 bits of data at
100 MHz, which is more than each processor core can
consume even in the maximum-sized configuration. A
simple round-robin scheme is used to arbitrate among
the cores. The processor–processor network switch
currently uses a simple interrupt-driven programmed
I/O approach. A Linux driver provides an Ethernet
interface so applications can access the processor
network via traditional socket interfaces. A next
generation network interface is planned with direct
memory access through dedicated ports into the
memory controller. A 256-core (8 per FPGA) version
of the RAMP blue prototype has been fully operational
running the NAS Parallel Benchmark suite (all class
S), since December 2006.

4.1. MicroBlaze

The processor selection process identified the
Xilinx MicroBlaze as the optimal soft core for this
project primarily based on resource utilization. The
MicroBlaze is a RISC processor optimized for
implementation in Xilinx FPGAs and having a basic
32-bit ISA, a three-stage pipeline, a 32-word register
file, and a Harvard-style direct-mapped L1 cache with
configurable size. The core can be customized to
include a single-precision FPU that shares the existing
register file, a hardware multiplier, divider and barrel
shifter, several CISC instructions, and several
exceptions. The MicroBlaze also has considerable
software support available, including a GCC backend
and a port of uClinux [18]. Access to this
infrastructure was instrumental in meeting the goal of

running off-the-shelf code and benchmarks. The
MicroBlaze supports several interfaces including the
IBM CoreConnect On-chip Peripheral Bus (OPB),
Xilinx Local Memory Bus (LMB), Xilinx CacheLink
(XCL), and Xilinx Fast Simplex Link (FSL). The FSL
is a simple FIFO-like interface that provides
unidirectional point-to-point connections, which was
particularly appropriate for this effort.

Figure 4

The FSL is used for the majority of the peripherals,
though the LMB and the OPB are required for the
dedicated block RAM, and the interrupt controller and
timer, respectively (Figure 4). The use of the FSL was
motivated by its point-to-point nature, which was a
good philosophical and syntactic match to the RAMP
Description Language (RDL) [19] for research and
debugging purposes.

4.1.1. Shared Floating-Point Unit

Most off-the-shelf applications and scientific
benchmarks targeted by RAMP Blue require double-
precision floating-point arithmetic. A double-precision
FPU is unavailable for the MicroBlaze core, and the
integrated single-precision FPU is spatially prohibitive
at 1000 slices per instantiation. Thus, a custom, shared
double-precision, FPU was designed and implemented
for those tasks.

In order to minimize the complexity of
implementing and verifying an IEEE-compliant
double-precision FPU, the arithmetic unit utilizes
existing Xilinx library LogiCORE floating-point
blocks for addition, multiplication, division, and
comparison. During operation, the FPU arbitrates
among a parametrizable number of FSL-based
MicroBlaze interfaces, one for each client. Operations
are requested as four 32-bit FSL writes, with the
control bits encoding the operation. A de-serializer
assembles the two 64-bit operands and requests the
correct functional unit. When access to the input bus is
granted, the operands are transferred into the
functional unit. Upon completion, and after output bus

access is granted, the result is transferred to the
serializer. Two 32-bit FSL reads by the MicroBlaze
then return the 64-bit result. Exceptions are returned
as silent NaN values. Figure 5 shows an overview of
this architecture.

Figure 5

In addition to good fabric utilization, the shared
FPU also improves computational efficiency. In this
case of a heavily pipelined FPU and a lightly pipelined
blocking MicroBlaze, providing each core with a
dedicated FPU would result in idle compute cycles.
This implementation allows multiple MicroBlaze cores
to leverage FPU pipelining by using multi-threading,
achieving high overall utilization of the shared
resource.

4.1.1. uClinux Operating System

Each MicroBlaze core runs an instance of uClinux
to achieve the goal of running GCC-compiled, off-the-
shelf applications. uClinux is a variant of the Linux
kernel designed for microcontrollers without memory-
management units. As a consequence, uClinux
provides neither virtual memory nor memory
protection. However, most of the kernel support for
device drivers, networking and file systems is present
under uClinux. The POSIX API is fully supported with
the exception of the fork() and brk() system calls, and
an extensive user application and library distribution is
also available. Both the kernel and the user
applications build successfully using the GCC
MicroBlaze backend provided by the open source
community. In order to meet the goal of running
standard scientific benchmarks, the NAS Parallel
Benchmarks (NPB) suite [20] were selected and
implemented in the Unified Parallel C (UPC)
framework [21]. UPC was elected over the more
common MPI because it functions at a higher level,
and because this particular UPC implementation was
developed at UC Berkeley, making the authors
available for ready consultation.

The most challenging part of porting the UPC
framework to a new platform is ensuring that its
communication layer, Global-Address-Space
Networking (GASNet) [22], works properly with both
the kernel and the underlying communication
hardware. GASNet provides message-passing conduits

implemented over specific networking hardware or
generic UDP sockets, with RAMP Blue using the latter
mechanism for simplicity. Future RAMP systems
should gain a significant amount of performance by
implementing custom Remote DMA (RDMA) network
hardware and a corresponding GASNet conduit. Such
an implementation will decouple computation and
communication and eliminate the overhead associated
with the UDP/IP stack and uClinux networking.

5. Network

5.1.1. Crossbar

In RAMP Blue, messages are passed along a
custom network composed of intra-FPGA, intra-BEE2
and inter-BEE2 links. High-level design choices were
made to simplify the network design and
implementation:

• Routing: Packets are statically (non-adaptively)
source routed at each hop in the network, with
broadcast not supported.
• Topology: Chip-level crossbar embedded in a
board-level mesh embedded in a system-level all-
to-all graph, or chip-level crossbar embedded in a
system-level 3D mesh.
• Packet Format: The gateware is oblivious to
packet format except for the route header, added by
the source and stripped by the packet buffers. For
compatibility, the packet format is Ethernet II
encapsulated in a small amount of control
information.
• Delivery Guarantees: Delivery is guaranteed
end-to-end in software. The gateware does not
perform check summing or re-transmission.
• Flow Control: Virtual cut-through, blocking only
if the next buffer is unavailable.

Network Gateware

The switch is comprised of two basic elements: a
buffer unit and a crossbar switch. Buffer units store a
single packet at each hop in the network and make
requests to the switch for the next hop. Each buffer
unit uses a single BRAM to provide buffering for an
MTU of up to 2048 bytes and exposes FSL read and
write interfaces with additional signals used for
arbitration. Packets are tagged with start and end
control bits, allowing for error tolerance. The crossbar
switch unit is fully parameterized in the number of
ports, data width, and latency. Adjusting the data width
trades performance for resource utilization, balancing
between overall performance optimization and a
reduced design place-and-route cycle. For each output

buffer unit, the switch arbitrates among the inputs
servicing that output using a starvation-free round-
robin policy. Upon winning arbitration, the entire
packet is transmitted.

Reliability and Deadlock

To simplify the implementation, the amount of
error checking in the network is sufficient only to
guarantee the proper operation of the network itself.
Bit errors in the route header 58 can result in misrouted
packets. We rely on de-serialization and next-hop
checking to discard such packets in the network and
destination checking to discard such packets at the
endpoint. Corrupted start or end bits can also result in
discarded packets. The low bit error rates observed in
the lab suggest that these should be relatively rare
occurrences.

Multi-processor networks admit the possibility of
deadlock, which occurs when all buffers in a cycle
become full. With virtual cut-through, a common
solution is to partition the buffers and place a partial
ordering on them [23]. Another popular method is to
use virtual channels [24]. In RAMP Blue, the all-to-all
topology requires a combination of these methods to
avoid deadlock in all cases. A partial ordering on the
buffers is enforced using dimensional routing, with
sufficient dimensions provided by virtual channels.
The cost of this implementation is two additional
receive buffers on the intra-board links out of a total of
38 buffers and a corresponding increase in the
crossbar-switch ports.

MicroBlaze Interface

Each MicroBlaze core exposes a network-visible
FSL interface. Packets are transmitted by first testing
buffer unit availability with a tentative non-blocking
FSL write, and then upon success, copying the balance
of the packet without blocking. When a packet is
available for receiving, the buffer generates an
interrupt, instructing the MicroBlaze to copy the
packet using a series of FSL reads. This interface is
simple to implement, but suffers from low-
performance. A future design using a small DMA
engine is expected to greatly improve the performance
of the entire RAMP Blue system. The network driver
is almost exactly the same as the driver used for the
control-network link. The driver provides an Ethernet-
device abstraction to the operating system, pre-pending
the source route before dispatch. The source routes are
computed in a distributed fashion and conveyed to the
driver using custom ioctl system calls by a
parameterized network-setup program running on each
individual node at boot time. The routes are thus static

and not adaptive to link failure, such as an
unanticipated cable disconnection.

5.1.2 Network Topology

Board-to-board connections are implemented using
copper 10GBASE-CX4 cables, which provide full-
duplex 10 Gbps links between FPGAs. Although
having a theoretic high bandwidth, the latency of these
links (tens to hundreds of cycles) is large relative to
that of intra-board LVCMOS links (two to three
cycles).

Figure 6

For up to 16 BEE2 modules, an all-to-all topology
was favored, with each module having one high-speed
serial connection to every other module. The primary
advantage of this topology is that it minimizes the
number of inter-board links along any communication
path, thereby optimizing latency and reliability. The
path from any one soft core to another requires at most
four intra-board (two on each board) and one inter-
board links. The FPGA and port assignments are
rotated between chassis so as to use only vertically
routed cables, however due to port limitations, this
scheme does not scale beyond 17 modules.

For over 18, and up to the maximum 21 modules
(Figure 6) which can be physically accommodated, a
3D-mesh topology is employed; the FPGA and port

assignments are again rotated in order to match the
constraints of the rack and incorporate only vertically
routed cabling.

6. Results

With respect to the highest-density, single-FPGA
implementation, a full 12-core RAMP Blue design
consumes 32,991 slices (99%), 61,891 LUTs (93%),
37,198 flip-flops (56%), and 181 block RAMs (55%).
These results assume the following processor options:
90 MHz core clock, no optional functional units, all
optional exceptions, 2 KB I-Cache, 8 KB D-Cache,
LMB block RAM, and OPB peripherals.

Because the BEE2 system board clock is 100 MHz,
it was expedient to inject the 90 MHz clocking signal
from external hardware, which could prove
cumbersome for external collaborators. An optimized
8-core (numbered circles in figure) version was
developed for the production release, and the relaxed
constraints enabled use of the on-board clocking tree
(Figure 7).

Figure 7

1

3 2 FP

4

5 X-bar 6

8 7

The infrastructure consists of three DDR2 controllers,
four XAUI blocks, double-precision FPU, and 8-bit

network buffers and crossbar switch. Based on these
results, it is anticipated that a configuration with 16
MicroBlaze cores and four DDR2 controllers is
feasible with extensive optimizations.

The synthetic Whetstone benchmark indicated an
FPU performance of 2.5 to 3 MFLOPS, corresponding
to an overall system performance of 2–3 GFLOPS for
768–1008 MicroBlaze cores. Although Whetstone is
not a realistic benchmark, it is useful in noting the
difference in performance between the software-
emulated and the hardware-accelerated FPUs. In this
test, it showed a speedup of 15 for scores of 200
KFLOPS and 3 MFLOPS, respectively. We used the
Netperf benchmark [25] to determine the performance
of the MicroBlaze-to-MicroBlaze network for user
code running under uClinux. Netperf tests bulk-
transfer throughput and round-trip response time using
both TCP and UDP. There is no significant variation in
either throughput or response time for the different link
combinations for single communicating pairs. In
contrast, as the payload size grows, there is a clear
increase in round-trip response time. This result
suggest that the software overhead of transmitting and
receiving is dominating the effects of latency in
different links, even with the inter-board links having a
much greater latency than the intra-board links do.
Thus, there is an urgent need for a DMA-based
network interface and driver.

Figure 8

7. Acknowledgements

The RAMP collaboration has been funded in part
by the National Science Foundation, grant number
CNS-0551739. Special thanks to Xilinx for their
continuing financial support and donation of FPGAs,
and development tools. We appreciate the financial
support provided by the Gigascale Systems Research
Center (GSRC). Thanks to IBM for their financial
support through faculty fellowships and donation of
processor cores, and to Sun Microsystems for
processor cores. This project has been a collaborative
effort between universities and companies. The other
senior investigators are David Patterson (UC
Berkeley), Mark Oskin (U Washington), Shih-Lien Lu
(Intel), Christoforos Kozyrakis (Stanford), James C.
Hoe (CMU), Derek Chiou (UT Austin), and Joel Emer
(Intel and MIT).

The goal of RAMP Blue was to create a message-
passing multi-core system, capable of running off-the-
shelf applications and scientific benchmarks, on the
BEE2 platform. The current implementation meets
these goals. RAMP Blue is currently able to run
uClinux on 768–1008 independent MicroBlaze cores
on 16–21 BEE2 boards. In operation in Figure 8, each
green dot represents a single core, and lines between
processing elements represent traffic sampled at
nominally 5%. The cores are able to run the majority
of the NAS Parallel Benchmarks and compute accurate
double-precision floating-point values.

There is an extensive list of industry and academic
friends who have given valuable feedback and
guidance. Here we especially give thanks to Arvind
(MIT) and Jan Rabaey (UCB) for their advice. The
work presented in this paper is the effort of the RAMP
students and staff: Hari Angepat, Jared Casper, Chen
Chang, Martha Mercaldi, Nju Njoroge, Andrew
Putnam, and Sewook Wee. Special thanks to Chuck
Thacker (Microsoft Research) for his contributions and
hard work on the design of the BEE3 hardware
platform.

Beyond the obvious functional correctness, RAMP
Blue represents a truly scalable, portable, and capable
research system fully accessible to software
developers. By being available today, compiler and
application work for thousand-core devices can being
without delay. RAMP Blue will further server as the
first step in more advanced emulation technologies
under study.

8. References

[1] D. Burger and T. M. Austin. “The Simplescalar Tool Set,
Version 2.0”, Technical Report 1342, Computer Sciences
Department, University of Wisconsin, Madison, June 1997.

[2] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
“Complete computer system simulation: The SimOS
Approach”. IEEE Parallel and Distributed Technology:
Systems and Applications, Winter 1995, 3(4):pp 34–43.

[3] V. S. Pai, P. Ranganathan, and S. V. Adve. “RSIM
Reference Manual, Version 1.0”. Technical Report 9705,
Electrical and Computer Engineering Department, Rice
University, July 1997.

[4] Virtutech, Simics.

[5] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S.
Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert, R.
Espasa, and T. Juan, “ASIM: A Performance Model
Framework”. IEEE Micro, Feb 2002.

[6] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A.
G. Saidi, and S. K. Reinhardt, “The M5 Simulator: Modeling
Networked Systems”. IEEE Micro, 2006, 26(4):pp 52–60.

[7] Simflex: Fast, Accurate & Flexible Computer
Architecture Simulation”,
 www.ece.cmu.edu/simflex/flexus.html.

[8] M.M.K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill,
and D. A. Wood, “Multifacet’s General Execution Driven
Multiprocessor Simulator (GEMS) Toolset”, Computer
Architecture News, 2005.

[9] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt,
“Network-oriented Full-system Simulation Using M5”,
Proceedings of Sixth Workshop on Computer Architecture
Evaluation using Commercial Workloads, February 2003.

[10] A. KleinOsowski and D. Lilja, “Minnespec: A New
SPEC Benchmark Workload for Simulation-based Computer
Architecture Research”, 2002.

[11] T. Sherwood, E. Perelman, and B. Calder. “Basic Block
Distribution Analysis to Find Periodic Behavior and
Simulation Points in Applications”, 2001.

[12] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe,
“Smarts: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling”, 2003.

[13] K. Oner, L. A. Barroso, S. Iman, J. Jeong, K.
Ramamurthy, and M. Dubois, “The Design of RPM: An
FPGA-based Multiprocessor Emulator”, Proc. 3rd ACM

International Symposium on Field-Programmable Gate
Arrays (FPGA’95), February 1995.

[14] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and
P.-Y. Droz. “RAMP Blue: A Message-passing Manycore
System in FPGAs”. Field Programmable Logic and
Applications, 2007 (FPL 2007). International Conference on,
27-29 Aug. 2007, pp 54-61.

[15] K. C. Barr, R. Matas-Navarro, C. Weaver, T. Juan, and
Joel Emer, “Simulating a Chip Multiprocessor with a
Symmetric Multiprocessor. Boston Area Architecture
Workshop, Providence, RI, January 2005.

[16] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2:
A High-End Reconfigurable Computing System,” IEEE
Design and Test of Computers, vol. 22, no. 2, 2005.

[17] C. Chang. “Hardware Design and Implementation of
BEE: A Real-Time Hardware Emulation Engine”, Master’s
thesis, University of California, Berkeley, 2002.

[18] J. Williams, “MicroBlaze uClinux Project Home Page,”
http://www.itee.uq.edu.au/˜jwilliams/mblaze-uclinux/.

[19] G. Gibeling, A. Schultz, J. Wawrzynek, and K.
Asanovic, “The RAMP Architecture, Language, and
Compiler,” University of California, Berkeley, Technical
Report, 2007.

[20] R. van der Wijngaart, “NAS Parallel Benchmarks
Version 2.4,” National Aeronautics and Space
Administration, Technical Report NAS-02-007, 2002.

[21] W. Carlson et al., “Introduction to UPC and Language
Specification”, Center for Computing Sciences, Institute for
Defense Analyses, 1999.

[22] R. A. Jones, “Netperf: A Network Performance
Benchmark (Revision 2.0),” Hewlett-Packard Company,
Technical Report, 1995.

[23] K. Gunther, “Prevention of Deadlocks in Packet-
Switched
Data Transport Systems,” Communications, IEEE
Transactions on [legacy, pre-1988], vol. 29, no. 4, pp. 512–
524, 1981.

[24] W. Dally and C. Seitz, “Deadlock-free message Routing
in Multiprocessor Interconnection Networks,” IEEE
Transactions on Computers, vol. 36, no. 5, 1987, pp. 547–
553.

[25] D. Bonachea, “GASNet Specification, v1.1,” Lawrence
Berkeley National Laboratory, Technical Report CSD-02-
1207, 2002.

	1. RAMP Vision
	2. Emulation Technologies
	3. Berkeley Emulation Engines
	4. RAMP Hardware
	4.1. MicroBlaze

	5. Network
	6. Results
	7. Acknowledgements

