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Abstract 
The RAMP project was undertaken based upon the 

observation that future computer architectures were 
likely to rely upon massive parallelism for 
performance gains, whereas past gains largely 
leveraged Moore’s Law silicon improvements.  A need 
was perceived for an emulation platform to accelerate 
architecture research and multicore/manycore 
software engineering, specifically compiler and 
parallel programming endeavors.  The RAMP Blue 
effort is a conventional direct RTL implementation of a 
message-passing machine.  The system consists of 
768– 1008 MicroBlaze cores in 64–84 Virtex-II Pro 70 
FPGAs on 16–21 BEE2 boards, surpassing the 
milestone of 1000 cores in a standard 42U rack. An 
architecture based on point-to-point channels and 
switches using a combination of custom and generic 
hardware provides the basic functionality; virtual-cut-
through dimensional routing on one of two hybrid 
topologies with virtual channels provides the 
connectivity. A control network with a tree topology 
provides management and debugging capabilities. A 
software infrastructure consisting of GCC, uClinux 
and UPC enables running off-the-shelf applications 
and scientific benchmarks.  Earlier papers documented 
core and infrastructure elements; this publication 
describes the system-building effort and evolution of 
the emulation vision based upon subsequent insights 
and experience gleaned from the larger systems. 
 
1. RAMP Vision 
 

In 2005, an inflection point occurred in computer 
development: future products from all major 
microprocessor manufacturers were henceforth to be 
single-chip multiprocessors, and anticipated 
performance improvements would be derived almost 
exclusively from software-specified parallelism.  This 
development represented a fundament shift in an 

industry which had benefited from three decades of 
Moore’s Law.  

A group of like-minded researchers, in discussing 
this development at the ISCA conference of 2005, 
perceived three immediate issues with the traditional 
development practice: 

1. Prototyping any new architecture takes 
approximately four years and many millions of 
dollars. 

2. Software engineers are ineffective until 
functional hardware becomes available since 
simulators are too slow to support development 
activities. 

3. Feedback from software engineers based upon 
current production hardware arrives too late in 
overlapping hardware development cycles to 
affect the succeeding generation, and instead 
will be reflected in future generations. 

 
In order to address these concerns, a platform 

which would allow far more rapid evolution than 
traditional approaches was required.  FPGA 
technology had achieved the capacity and speed to 
enable a 1024-processor system in only a few dozen 
FPGAs at very modest cost per processor. Leveraging 
this fact, RAMP researchers sought to establish a 
community around a common hardware and software 
infrastructure, in turn allowing a pooling of resources 
to build a far more productive environment than could 
be achieved by disparate efforts. By operating a full 
RTL model at high-speed, researchers could have 
much higher confidence in the accuracy of their results 
and the feasibility of their approach.  

Several prototype systems were subsequently built, 
and as anticipated, are exhibiting sufficient 
performance to interest the wider research community, 
including compiler researchers, operating system 
developers, and distributed system designers. Previous 
experience has shown that software researchers are 
only inspired to work with new computer architectures 



when such hardware prototype is available.  
Additionally, by reflecting rapid hardware evolution in 
direct response to software developers feedback, 
RAMP, unlike conventional chip fabrication, can “tape 
out” every day and exhibit a near-continual state of 
flux.  

RAMP is a research platform, and can therefore 
offer capabilities not present in any commercial 
multiprocessor. As an example, RAMP can 
demonstrate exactly reproducible behavior, wherein 
every processor’s memory references and interrupts 
would happen at exactly the same clock cycle on every 
run. RAMP is thus finding value for many forms of 
software experimentation, as well as aiding in software 
debugging.  

A key philosophy of RAMP is to provide a 
common hardware solution, as opposed to having 
many institutions build and maintain their own FPGA 
boards and accompanying software.  RAMP stated as a 
goal that any site should be able to obtain a copy of the 
hardware at modest cost, and then download a fully-
functioning large-scale multiprocessor including 
hardware design and software environment; currently 
each PI on the project is equipped with RAMP-1 board 
hardware, and individual project designs are beginning 
to be shared freely between various efforts, which in 
turn acts to lower the barrier to entry for access to a 
multiprocessor research capability. Beginning with the 
RAMP-2 (BEE3) platform, dramatic expansion is 
anticipated in the set of individuals and departments 
who can participate in this new wave of architecture 
and software research.  Both parallel software and 
multiprocessor architecture are critical research areas, 
and RAMP is providing the means to foster and 
support a much richer interaction between these 
communities.  

RAMP represents a heretofore unavailable 
combination of speed, accuracy, repeatability, and 
adaptability in a large-scale multiprocessor 
development platform. Several sub-efforts are 
underway, designated by colors: White, Red, Gold, 
and Purple.  Within the overall RAMP project, Blue is 
oriented toward the most traditional direct RTL 
implementation.  Blue has a stated target of a scalable, 
multi-board FPGA-based system that would allow 
construction of up to a 1024-CPU multiprocessor—this 
size selected as an interesting target because many 
problems that are invisible at 32 processors and 
awkward at 128 become glaring at 1024. Furthermore, 
this scale challenge holds across the entire architecture, 
network, operating system, and applications 
disciplines. This milestone was reached and is being 
disseminated to the software community for further 
studies specific to the above-mentioned disciplines. 

This shared artifact consists of hardware and a 
collection of RTL (”gateware”) available in both 
conventional HDL as well as Ramp Design language 
(RDL).  

 
2. Emulation Technologies 
 

Early computer architecture research relied upon 
convincing argument or basic analytical models to 
justify design decisions. Beginning in the early 1980’s 
computers became fast enough that simple simulations 
of architectural ideas were possible. Since the 1990’s, 
computer architecture research has come to rely 
extensively on software simulation. Numerous 
sophisticated software simulation frameworks exist, 
including SimpleScalar [1], SimOS [2], RSIM [3], 
Simics [4], ASIM [5] and M5 [6]. As the field’s 
research focus shifts to multi-core, multi-threading 
systems, a new generation of multiprocessor full-
system simulators—with accurate OS and I/O 
support—have recently emerged (e.g., [7], [8], [9]). 
Software simulation has significantly changed the 
computer architecture research field; it is relatively 
easy to use and can be parallelized effectively using 
separate program instances to simultaneously explore 
the design space of architectural choices.  

Nevertheless, even when evaluating uniprocessor 
architectures, software simulation is slow to generate a 
single datapoint. Detailed simulations of out-of-order 
microprocessors typically execute at kilo-instructions 
per second. In the case of the multiprocessor 
simulation, the performance bottleneck is magnified 
since the simulators slow down as the number of cores 
rises. A number of researchers have explored 
mechanisms to speed up simulations. One approach 
relies upon modifying the inputs used to benchmarks 
in order to reduce their total running time [10], though 
the difficulty emerges of finding a set of inputs that 
accurately mirrors the execution profile of a full run of 
an application. In another approach, researchers 
recognized that the repetitive nature of program 
execution could be exploited to only run a detailed 
microarchitectural model on a subset of the full 
program run. The first technique to exploit this was 
basic block vectors [11], which determines a small set 
of the whole program code path that provides 
representative behavior. Later researchers proposed 
techniques that repeatedly sample program execution 
to find demonstrably accurate subsets [12]. The 
drawback of both these approaches to subsetting a full 
run is that the full application must be run at least once 
to prepare the samples and associated state 
checkpoints. Gathering these sample points is slow, 



and this approach is only feasible if the application 
benchmarks and inputs are to remain unchanged over 
the course of many architecture experiments, to allow 
reuse of the canned execution samples.  

As previously discussed, it is now widely accepted 
that the challenges facing the field will find solutions 
only by innovating in both hardware and software. The 
addition of new architectural features requires the 
development of new application software, languages, 
compilers, libraries, and operating systems. Even for a 
fixed architecture, application code should be retuned 
for any given set of architectural parameters (cache 
size, memory latency, etc) to enable a fair comparison. 
Interactive development of software for multiprocessor 
research is intractable using software-based 
architectural simulators. In order to engage software 
researchers, proposed new architecture designs must 
be fast enough to be usable for real software 
development.  

The possibility of FPGA prototyping and 
simulation acceleration has piqued the interest of 
computer architects for as long as the technology 
existed. FPGAs can be reconfigured to model the 
components in a target processor design and the 
resulting logic can be clocked at tens of MHz. 
Unfortunately, until recently, this avenue has met only 
limited success due to the restrictive capacity of earlier 
generation FPGAs and the relative ease of simulating 
uniprocessor systems in software. An early example of 
a large-scale FPGA prototyping effort was RPM [13]. 
The RPM system enabled flexible evaluation of the 
memory subsystem, but was limited in scalability (8 
processors) and did not execute OS code. The renewed 
interest in FPGA emulation is due to the growth of 
FPGA capacity to the point where a complex CPU 
including double-precision floating-point units and 
caches can comfortably fit on a single FPGA, vastly 
simplifying model development and raising emulation 
speed. For the simpler processors anticipated in next-
generation “manycore” architectures, several cores can 
be mapped to a single FPGA and emulation speeds of 
around 100MHz have been demonstrated [14]. Current 
FPGA capacity provides the capability for a much 
needed, scalable research vehicle for full-system 
multiprocessor research.  

Cost rules out a large SMP for most researchers. 
Also, although an SMP can be used to run 
multiprocessor applications natively, this does not 
allow experimentation with different architectural 
configurations or the addition of new features. 
Furthermore, when executing natively on real 
hardware it is difficult to observe, reproduce, and 
measure low-level system interactions. A large cluster 
is cheaper way of obtaining multiple hardware cores 

and can be used to model a multiprocessor system, but 
is cumbersome and costly to manage and provides only 
limited observability, reproducibility, and 
configurability.  

The most practical alternative to date has been 
software simulation, and indeed that has been the 
vehicle of choice for most architecture research in the 
last decade. For multiprocessor target systems, 
simulation speed in total instructions per second 
diminishes as more target cores are simulated and as 
operating system effects are included. Further, when 
detailed timing and power models are incorporated, 
software simulation slows dramatically. Although 
techniques to reduce input sizes and sample an 
application run can reduce simulation time, they are 
only usable when the software is not changing, and the 
credibility of results based on simulations of 1000 
processor systems running small snippets of reduced-
size applications is unclear. Parallelizing simulation 
runs (e.g., when performing a parameter sweep) can 
provide increased simulation throughput, but the 
amount of memory, and hence cost, of each node in a 
host compute cluster rises rapidly (each host compute 
node must have sufficient memory to model an entire 
target system). As mentioned above, software 
developers rarely use software simulators since they 
run too slowly, and neither sampling nor parallelizing 
across independent runs helps with software 
development, which is primarily constrained by the 
latency to complete a single run with a new version of 
the application code. 

An unexpected result is that is has proven difficult 
to parallelize the software simulation of a parallel 
target system to take advantage of a multiprocessor 
host system, even if the software simulator is well 
structured [15]. For detailed cycle-level models, each 
component must communicate data with each other 
component on every clock cycle, and this degree of 
synchronization and communication results in poor 
performance on current multiprocessors, which were 
designed to run single-threaded applications well 
(perhaps future multicore systems will have better 
synchronization and communication primitives, and 
hence improve their ability to run simulations of 
proposed new multicore designs).  

A few groups have completed custom chip 
prototypes of their proposed architectural ideas. This is 
an expensive option that experience has shown takes 
around five years to complete a working prototype of a 
given set of architectural mechanisms. Although this 
provides a highly credible proof of concept, there is 
usually limited ability to experiment with the choices 
made (although most research prototypes typically 
include more support for experimentation than a 



commercial design). Also, the design budget 
limitations usually result in a prototype that is 
considerably slower than a contemporary commercial 
product.  

Architecture-level FPGA emulation provides a 
compromise between these alternatives. It is so much 
cheaper than custom hardware that small groups can 
afford highly scalable systems; it is as flexible as 
simulators so that the state of the art in parallel 
computing can be rapidly evolved; and it is so much 
faster than simulators that software researchers can be 
tempted to explore new hardware ideas. The credibility 
of FPGA emulation can be much higher than for 
software simulation, both because entire applications 
can be run under complete software stacks and also 
because the model construction is more similar to 
hardware design and can actually reuse hardware 
designs as part of a model. Surprisingly, modern 
FPGA designs have clock rates only around 2–4 times 
slower than contemporary custom chip research 
prototypes. This is mainly due to the fact that off-the-
shelf FPGAs use process technology that is two or 
three generations ahead of that available for research 
prototypes and FPGA designs can be completed more 
rapidly and moved more easily to new technologies.  

A related, but somewhat different approach is the 
use of FPGAs and special hardware to accelerate gate-
level emulation for chip verification.  This provides a 
useful tool for chip verification, but operates at too low 
a level to be useful for early stage architecture 
exploration.  In order to span the range of possibilities, 
RAMP Blue was developed which more closely 
resembles this approach in concept. In contrast, the 
style of FPGA emulation being proposed for RAMP 
White, and especially RAMP Gold, is at a higher-level 
of design representation, which reduces the FPGA 
capacity requirements, increases emulation throughput, 
and reduces the design effort required to experiment 
with a new design. 

 
3. Berkeley Emulation Engines 
 

From the outset, there was a common desire to not 
begin the RAMP project by designing yet another 
FPGA board, but to rather adopt (at least for initial 
research needs) the Berkeley Emulation Engine (BEE2 
[16]) for the RAMP-1 system. In that capacity, the 
BEE2 has served well as the platform of the early 
RAMP machine prototypes and greatly informed the 
feature list for the next generation board. The follow-
on BEE3 hardware platform, which has completed the 
design and prototyping phase and entering production, 
is based on a board design employing Virtex-5 FPGA 

architecture, which is two FPGA generations newer 
that the BEE2 component Virtex II Pro. The new 
RAMP-2 hardware (BEE3) is scheduled to enter full-
scale production by 2H 2008, and contains numerous 
features and capabilities specific to the RAMP project. 

The genus platform, the BEE1, was primarily 
designed to serve as an ASIC emulator and test bed for 
circuit design [17] to fulfill an ongoing need at the 
Berkeley Wireless Research Center.  The platform 
demonstrated significant usefulness outside of the 
original domain, however, and it became obvious that 
inclusion of certain features in future versions would 
prove fruitful.  

The BEE2 is the second generation multiple FPGA 
board, and intentionally targets an increased range of 
applications such as real-time signal processing, 
scientific computing, and high performance 
reconfigurable computing. This broader domain is 
reflected in the BEE2’s architecture, which is shown in 
Figure 1.   As the RAMP effort began, packaging the 
BEE2 for high-density computing became important.  
Hence, the 2U chassis and mechanical components, 
along with a high-efficiency internal power supply 
were designed and fabricated dictated by RAMP 
requirements. 

The main board contains five Xilinx Virtex- II Pro 
FPGAs with footprints capable of handling the largest 
parts then available (70 and 100 series) for maximum 
I/O capability. Internally, the Virtex-II Pro 70 contains 
a substantial number of general purpose reconfigurable 
logic (33,088 slices with a total of 66,176 4-LUTs and 
flip-flops), built in multipliers (328 18x18 bit), large 
SRAM block RAMs (328 dual-ported 18 Kb SRAM), 
highly configurable I/O pins, high-speed serial 
transceivers (20 MGT channels), and two hard 
PowerPC cores with built-in L1 cache and a peak core 
clock of 400 MHz.  

 
Figure 1 

On the board, each of the FPGAs is mapped to four 
independent 72-bit DDR2 banks, capable of a peak 
throughput of 3.4 GBps per channel. Four of the 



FPGAs are designated as “user” FPGAs, and are 
connected in a ring topology with a peak throughput of 
5 GBps between each adjacent pair. The fifth FPGA, 
termed the “control” FPGA, is connected in a star 
topology with each user FPGA with a peak 
communication capability of 2.5 GBps. Individual user 
FPGAs also have four sets of bonded multi-gigabit 
transceiver (MGTs) forming four independent 10 Gbps 
high-speed serial I/O channels off-board, while the 
control FPGA has two of the bonded channels. The 
bonded high-speed serial channels run to CX4 
connectors which allow Infiniband, 10 Gb Ethernet, or 
simple point-to-point XAUI based connections over 
fiber or copper cables 

The RAMP2 platform will be based on the BEE3, 
the third generation Berkeley FPGA based computer 
system. The module was designed as a collaboration 
between UC Berkeley and Microsoft Research and will 
be manufactured and supported by BEEcube, Inc.  

The BEE3 design was specifically optimized for 
system emulation and simulation acceleration of multi-
processor computer systems, FPGA based 
computational acceleration in High Performance 
Computing (HPC), high speed digital signal processing 
(e.g. Radio Astronomy, SETI), ASIC/SoC real-time 
emulation, and DSP/Communication algorithm real-
time prototyping.   The BEE3 utilizes devices from the 
Xilinx 65nm FPGA family: each 2U rack-mount BEE3 
module consists of four Virtex-5 LXT/SXT/FXT 
FPGA chips, along with up to 64GB DDR2 DRAM 
and eight 10Gigabit Ethernet interfaces for inter-
module communication. In addition, up to 4 PCI 
Express x8 connections allow a maximum of 16GB per 
second full-duplex data communication between each 
BEE3 module and a front-end host computer. At a 
power consumption of less than 400 watts, each BEE3 
module can provide over 4 trillion integer operation 
per second, or emulate over 64 RISC processor cores 
concurrently at a several hundred MHz rate. Each of 
the four FPGA provides significant capability 
improvement over the BEE2 (Figure 2):  

• Dual channel DDR2-400/533/667 RDIMMs, 
two DIMMs per channel, with a maximum of 
4GB DRAM capacity per DIMM, for a total of 
16GB total per FPGA.  

• Dual 10GBase-CX4 Ethernet interfaces.  
• A single PCI-Express x8 end-point slot.  
• Direct 40 LVDS high-speed connection to 

external multi-GHz analog converter devices, 
such as ADC and DAC.  

• A number of system management components 
include Gigabit Ethernet, RTC/EEPROM, 
RS232 serial port, and SD Card. 

 

 
Figure 2 

 
Prior to the production release, single-chip 

development boards are utilized to accelerate IP design 
in parallel with BEE3 hardware efforts (ML505 and 
V5 XUP). Moreover, the lower-cost and lower 
capacity hardware provides a means for external 
collaboration and participation by outside entities on a 
low-risk trial basis. Because both the BEE3 and 
ML505 use the same Virtex 5 FPGA components, any 
gateware designs are completely fungible, albeit with 
some capacity constraints.   
 
4. RAMP Hardware 
 

RAMP Blue, first of five emulation platforms 
explored, is an direct-RTL/RDL emulated message-
passing machine which can be used to run parallel 
applications written for the Message-Passing Interface 
(MPI) standard, or for partitioned global address space 
languages such as Unified Parallel C (UPC).  Although 
MPI is not an ideal candidate for manycore 
communication, this choice eased implementation and 
permitted execution of existing codes, which was a 
primary goal.  RAMP Blue can also be used to model a 
networked server cluster. In tangible realizations of the 
RAMP hardware, there have been three major system 
rollouts: 768, 1008, and 256 core (production grade). 
RAMP Blue is an exemplar of a classical RTL direct-
mapped approach and has proven to be a rapidly 
evolving, highly scalable, and very successful 
demonstration vehicle. What follows is a brief 
overview of the physical apparatus.  

The first RAMP Blue prototype was developed at 
UC Berkeley in August 2006, shown in Figure 3. It 
comprises a collection of RAMP-1 boards housed in 



preliminary 2U chassis and assembled in a standard 
19” rack with external supplies. Physical connection 
among the eight boards is through 10 Gbps Infiniband 
cables (light blue cables Figure 3).  

 
Figure 3 

 The RAMP-1 boards are wired in an all-to-all 
configuration with a direct connection from each board 
to all others through 10 Gbps links. System 
configuration, debugging, and monitoring are through 
a 100 Mbps Ethernet switch with connection to the 
control FPGA of each board (dark blue wires in the 
figure). For system management and control, each 
board runs a full-featured Linux kernel on one 
PowerPC 405 hard core embedded in the control 
FPGA. Initial target applications include the UPC 
versions of the NASA Advanced Supercomputing 
(NAS) Parallel Benchmarks. The four user FPGAs per 
RAMP-1 board are configured to hold a collection of 
100MHz Xilinx MicroBlaze soft processor cores 
running uCLinux. This initial version mapped eight 
processor cores per FPGA. The first prototype, with 32 
user FPGAs, emulates a 256-way cluster system. The 
number of processor cores is scaled up through several 
means. More RAMP-1 boards were added—the simple 
all-to-all wiring configuration will accommodate up to 
17 boards. More cores are desirable per FPGA—this 
configuration of eight processor cores per FPGA only 
consumed 40% of the FPGA’s logic resources. Ideally, 

the target was up to 16 MicroBlaze cores per FPGA, 
and 1024 cores in a system. All necessary 
multiprocessor components are implemented within 
the user FPGAs. In addition to the soft processor cores, 
each FPGA also contains a packet network switch (one 
for each core) for connection to units on the same and 
other FPGAs, shared memory controllers, shared 
double-precision floating-point units (FPUs), and a 
shared “console” switch for connection to the control 
FPGA. In RAMP Blue, each processor is assigned its 
own DRAM memory space (at least 250MB per 
processor). The external memory interface of the 
MicroBlaze L1 cache connects to external DDR2 
DRAM through a memory arbiter, as each DRAM 
channel is shared among a set of MicroBlaze cores. 
Since each RAMP-1 user FPGA has four independent 
DRAM memory channels, four processor cores would 
share one channel in the maximum-sized configuration 
(16 processor cores per FPGA). 

With each processor operating at 100MHz and each 
memory channel signaling at a 200MHz DDR 72-bit 
data rate, each processor can transfer 72 bits of data at 
100 MHz, which is more than each processor core can 
consume even in the maximum-sized configuration. A 
simple round-robin scheme is used to arbitrate among 
the cores. The processor–processor network switch 
currently uses a simple interrupt-driven programmed 
I/O approach. A Linux driver provides an Ethernet 
interface so applications can access the processor 
network via traditional socket interfaces. A next 
generation network interface is planned with direct 
memory access through dedicated ports into the 
memory controller. A 256-core (8 per FPGA) version 
of the RAMP blue prototype has been fully operational 
running the NAS Parallel Benchmark suite (all class 
S), since December 2006.  
 
4.1. MicroBlaze 
 

The processor selection process identified the 
Xilinx MicroBlaze as the optimal soft core for this 
project primarily based on resource utilization. The 
MicroBlaze is a RISC processor optimized for 
implementation in Xilinx FPGAs and having a basic 
32-bit ISA, a three-stage pipeline, a 32-word register 
file, and a Harvard-style direct-mapped L1 cache with 
configurable size. The core can be customized to 
include a single-precision FPU that shares the existing 
register file, a hardware multiplier, divider and barrel 
shifter, several CISC instructions, and several 
exceptions. The MicroBlaze also has considerable 
software support available, including a GCC backend 
and a port of uClinux [18]. Access to this 
infrastructure was instrumental in meeting the goal of 



running off-the-shelf code and benchmarks. The 
MicroBlaze supports several interfaces including the 
IBM CoreConnect On-chip Peripheral Bus (OPB), 
Xilinx Local Memory Bus (LMB), Xilinx CacheLink 
(XCL), and Xilinx Fast Simplex Link (FSL). The FSL 
is a simple FIFO-like interface that provides 
unidirectional point-to-point connections, which was 
particularly appropriate for this effort.  

 
Figure 4 

The FSL is used for the majority of the peripherals, 
though the LMB and the OPB are required for the 
dedicated block RAM, and the interrupt controller and 
timer, respectively (Figure 4). The use of the FSL was 
motivated by its point-to-point nature, which was a 
good philosophical and syntactic match to the RAMP 
Description Language (RDL) [19] for research and 
debugging purposes. 

 
4.1.1. Shared Floating-Point Unit 
 
Most off-the-shelf applications and scientific 
benchmarks targeted by RAMP Blue require double-
precision floating-point arithmetic. A double-precision 
FPU is unavailable for the MicroBlaze core, and the 
integrated single-precision FPU is spatially prohibitive 
at 1000 slices per instantiation.  Thus, a custom, shared 
double-precision, FPU was designed and implemented 
for those tasks.  

In order to minimize the complexity of 
implementing and verifying an IEEE-compliant 
double-precision FPU, the arithmetic unit utilizes 
existing Xilinx library LogiCORE floating-point 
blocks for addition, multiplication, division, and 
comparison.  During operation, the FPU arbitrates 
among a parametrizable number of FSL-based 
MicroBlaze interfaces, one for each client. Operations 
are requested as four 32-bit FSL writes, with the 
control bits encoding the operation. A de-serializer 
assembles the two 64-bit operands and requests the 
correct functional unit. When access to the input bus is 
granted, the operands are transferred into the 
functional unit. Upon completion, and after output bus 

access is granted, the result is transferred to the 
serializer. Two 32-bit FSL reads by the MicroBlaze 
then return the 64-bit result.   Exceptions are returned 
as silent NaN values.  Figure 5 shows an overview of 
this architecture.  

 
Figure 5 

In addition to good fabric utilization, the shared 
FPU also improves computational efficiency. In this  
case of a heavily pipelined FPU and a lightly pipelined 
blocking MicroBlaze, providing each core with a 
dedicated FPU would result in idle compute cycles. 
This implementation allows multiple MicroBlaze cores 
to leverage FPU pipelining by using multi-threading, 
achieving high overall utilization of the shared 
resource. 

 
4.1.1. uClinux Operating System 
 

Each MicroBlaze core runs an instance of uClinux 
to achieve the goal of running GCC-compiled, off-the-
shelf applications. uClinux is a variant of the Linux 
kernel designed for microcontrollers without memory-
management units. As a consequence, uClinux 
provides neither virtual memory nor memory 
protection. However, most of the kernel support for 
device drivers, networking and file systems is present 
under uClinux. The POSIX API is fully supported with 
the exception of the fork() and brk() system calls, and 
an extensive user application and library distribution is 
also available. Both the kernel and the user 
applications build successfully using the GCC 
MicroBlaze backend provided by the open source 
community. In order to meet the goal of running 
standard scientific benchmarks, the NAS Parallel 
Benchmarks (NPB) suite [20] were selected and 
implemented in the Unified Parallel C (UPC) 
framework [21].  UPC was elected over the more 
common MPI because it functions at a higher level, 
and because this particular UPC implementation was 
developed at UC Berkeley, making the authors 
available for ready consultation.   

The most challenging part of porting the UPC 
framework to a new platform is ensuring that its 
communication layer, Global-Address-Space 
Networking (GASNet) [22], works properly with both 
the kernel and the underlying communication 
hardware. GASNet provides message-passing conduits 



implemented over specific networking hardware or 
generic UDP sockets, with RAMP Blue using the latter 
mechanism for simplicity. Future RAMP systems 
should gain a significant amount of performance by 
implementing custom Remote DMA (RDMA) network 
hardware and a corresponding GASNet conduit. Such 
an implementation will decouple computation and 
communication and eliminate the overhead associated 
with the UDP/IP stack and uClinux networking. 

 
5. Network 
 
5.1.1. Crossbar 
 

In RAMP Blue, messages are passed along a 
custom network composed of intra-FPGA, intra-BEE2 
and inter-BEE2 links. High-level design choices were 
made to simplify the network design and 
implementation:  

• Routing: Packets are statically (non-adaptively) 
source routed at each hop in the network, with 
broadcast not supported.  
• Topology: Chip-level crossbar embedded in a 
board-level mesh embedded in a system-level all-
to-all graph, or chip-level crossbar embedded in a 
system-level 3D mesh.  
• Packet Format: The gateware is oblivious to 
packet format except for the route header, added by 
the source and stripped by the packet buffers. For 
compatibility, the packet format is Ethernet II 
encapsulated in a small amount of control 
information.  
• Delivery Guarantees: Delivery is guaranteed 
end-to-end in software. The gateware does not 
perform check summing or re-transmission.  
• Flow Control: Virtual cut-through, blocking only 
if the next buffer is unavailable.   

 
Network Gateware 

The switch is comprised of two basic elements: a 
buffer unit and a crossbar switch. Buffer units store a 
single packet at each hop in the network and make 
requests to the switch for the next hop. Each buffer 
unit uses a single BRAM to provide buffering for an 
MTU of up to 2048 bytes and exposes FSL read and 
write interfaces with additional signals used for 
arbitration. Packets are tagged with start and end 
control bits, allowing for error tolerance. The crossbar 
switch unit is fully parameterized in the number of 
ports, data width, and latency. Adjusting the data width 
trades performance for resource utilization, balancing 
between overall performance optimization and a 
reduced design place-and-route cycle. For each output 

buffer unit, the switch arbitrates among the inputs 
servicing that output using a starvation-free round-
robin policy. Upon winning arbitration, the entire 
packet is transmitted. 

 
Reliability and Deadlock 

To simplify the implementation, the amount of 
error checking in the network is sufficient only to 
guarantee the proper operation of the network itself. 
Bit errors in the route header 58 can result in misrouted 
packets. We rely on de-serialization and next-hop 
checking to discard such packets in the network and 
destination checking to discard such packets at the 
endpoint. Corrupted start or end bits can also result in 
discarded packets. The low bit error rates observed in 
the lab suggest that these should be relatively rare 
occurrences.  

Multi-processor networks admit the possibility of 
deadlock, which occurs when all buffers in a cycle 
become full. With virtual cut-through, a common 
solution is to partition the buffers and place a partial 
ordering on them [23]. Another popular method is to 
use virtual channels [24]. In RAMP Blue, the all-to-all 
topology requires a combination of these methods to 
avoid deadlock in all cases. A partial ordering on the 
buffers is enforced using dimensional routing, with 
sufficient dimensions provided by virtual channels. 
The cost of this implementation is two additional 
receive buffers on the intra-board links out of a total of 
38 buffers and a corresponding increase in the 
crossbar-switch ports. 
 
MicroBlaze Interface 

Each MicroBlaze core exposes a network-visible 
FSL interface. Packets are transmitted by first testing 
buffer unit availability with a tentative non-blocking 
FSL write, and then upon success, copying the balance 
of the packet without blocking. When a packet is 
available for receiving, the buffer generates an 
interrupt, instructing the MicroBlaze to copy the 
packet using a series of FSL reads. This interface is 
simple to implement, but suffers from low-
performance. A future design using a small DMA 
engine is expected to greatly improve the performance 
of the entire RAMP Blue system. The network driver 
is almost exactly the same as the driver used for the 
control-network link. The driver provides an Ethernet-
device abstraction to the operating system, pre-pending 
the source route before dispatch. The source routes are 
computed in a distributed fashion and conveyed to the 
driver using custom ioctl system calls by a 
parameterized network-setup program running on each 
individual node at boot time. The routes are thus static 



and not adaptive to link failure, such as an 
unanticipated cable disconnection. 
 
5.1.2 Network Topology 
 

Board-to-board connections are implemented using 
copper 10GBASE-CX4 cables, which provide full-
duplex 10 Gbps links between FPGAs. Although 
having a theoretic high bandwidth, the latency of these 
links (tens to hundreds of cycles) is large relative to 
that of intra-board LVCMOS links (two to three 
cycles).  

 
Figure 6 

For up to 16 BEE2 modules, an all-to-all topology 
was favored, with each module having one high-speed 
serial connection to every other module. The primary 
advantage of this topology is that it minimizes the 
number of inter-board links along any communication 
path, thereby optimizing latency and reliability. The 
path from any one soft core to another requires at most 
four intra-board (two on each board) and one inter-
board links. The FPGA and port assignments are 
rotated between chassis so as to use only vertically 
routed cables, however due to port limitations, this 
scheme does not scale beyond 17 modules.  

For over 18, and up to the maximum 21 modules 
(Figure 6) which can be physically accommodated, a 
3D-mesh topology is employed; the FPGA and port 

assignments are again rotated in order to match the 
constraints of the rack and incorporate only vertically 
routed cabling. 

 
6. Results 
 

With respect to the highest-density, single-FPGA 
implementation, a full 12-core RAMP Blue design 
consumes 32,991 slices (99%), 61,891 LUTs (93%), 
37,198 flip-flops (56%), and 181 block RAMs (55%). 
These results assume the following processor options: 
90 MHz core clock, no optional functional units, all 
optional exceptions, 2 KB I-Cache, 8 KB D-Cache, 
LMB block RAM, and OPB peripherals.   

Because the BEE2 system board clock is 100 MHz, 
it was expedient to inject the 90 MHz clocking signal 
from external hardware, which could prove 
cumbersome for external collaborators.  An optimized 
8-core (numbered circles in figure) version was 
developed for the production release, and the relaxed 
constraints enabled use of the on-board clocking tree 
(Figure 7). 
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The infrastructure consists of three DDR2 controllers, 
four XAUI blocks, double-precision FPU, and 8-bit 



network buffers and crossbar switch. Based on these 
results, it is anticipated that a configuration with 16 
MicroBlaze cores and four DDR2 controllers is 
feasible with extensive optimizations. 

 

The synthetic Whetstone benchmark indicated an 
FPU performance of 2.5 to 3 MFLOPS, corresponding 
to an overall system performance of 2–3 GFLOPS for 
768–1008 MicroBlaze cores. Although Whetstone is 
not a realistic benchmark, it is useful in noting the 
difference in performance between the software-
emulated and the hardware-accelerated FPUs. In this 
test, it showed a speedup of 15 for scores of 200 
KFLOPS and 3 MFLOPS, respectively. We used the 
Netperf benchmark [25] to determine the performance 
of the MicroBlaze-to-MicroBlaze network for user 
code running under uClinux. Netperf tests bulk-
transfer throughput and round-trip response time using 
both TCP and UDP. There is no significant variation in 
either throughput or response time for the different link 
combinations for single communicating pairs. In 
contrast, as the payload size grows, there is a clear 
increase in round-trip response time. This result 
suggest that the software overhead of transmitting and 
receiving is dominating the effects of latency in 
different links, even with the inter-board links having a 
much greater latency than the intra-board links do. 
Thus, there is an urgent need for a DMA-based 
network interface and driver. 

Figure 8 
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shelf applications and scientific benchmarks, on the 
BEE2 platform. The current implementation meets 
these goals. RAMP Blue is currently able to run 
uClinux on 768–1008 independent MicroBlaze cores 
on 16–21 BEE2 boards. In operation in Figure 8, each 
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Beyond the obvious functional correctness, RAMP 
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first step in more advanced emulation technologies 
under study.  

 
 
 
 



                                                                                                                                                    
8. References 
  
[1] D. Burger and T. M. Austin. “The Simplescalar Tool Set, 
Version 2.0”, Technical Report 1342, Computer Sciences 
Department, University of Wisconsin, Madison, June 1997. 
 
[2] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. 
“Complete computer system simulation: The SimOS 
Approach”. IEEE Parallel and Distributed Technology: 
Systems and Applications, Winter 1995, 3(4):pp 34–43. 
 
[3] V. S. Pai, P. Ranganathan, and S. V. Adve. “RSIM 
Reference Manual, Version 1.0”. Technical Report 9705, 
Electrical and Computer Engineering Department, Rice 
University, July 1997. 
 
[4] Virtutech, Simics.  
 
[5] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. 
Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert, R. 
Espasa, and T. Juan, “ASIM: A Performance Model 
Framework”. IEEE Micro, Feb 2002. 
 
[6] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. 
G. Saidi, and S. K. Reinhardt, “The M5 Simulator: Modeling 
Networked Systems”. IEEE Micro, 2006, 26(4):pp 52–60. 
 
[7] Simflex: Fast, Accurate & Flexible Computer 
Architecture Simulation”,  
 www.ece.cmu.edu/simflex/flexus.html.  
 
[8] M.M.K. Martin, D. J. Sorin, B. M. Beckmann, M. R. 
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, 
and D. A. Wood, “Multifacet’s General Execution Driven 
Multiprocessor Simulator (GEMS) Toolset”, Computer 
Architecture News, 2005. 
 
[9] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt, 
“Network-oriented Full-system Simulation Using M5”, 
Proceedings of Sixth Workshop on Computer Architecture 
Evaluation using Commercial Workloads, February 2003. 
 
[10] A. KleinOsowski and D. Lilja, “Minnespec: A New 
SPEC Benchmark Workload for Simulation-based Computer 
Architecture Research”, 2002. 
 
 
[11] T. Sherwood, E. Perelman, and B. Calder. “Basic Block 
Distribution Analysis to Find Periodic Behavior and 
Simulation Points in Applications”, 2001. 
 
[12] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, 
“Smarts: Accelerating Microarchitecture Simulation via 
Rigorous Statistical Sampling”, 2003. 
 
[13] K. Oner, L. A. Barroso, S. Iman, J. Jeong, K. 
Ramamurthy, and M. Dubois, “The Design of RPM: An 
FPGA-based Multiprocessor Emulator”, Proc. 3rd ACM 

 
International Symposium on Field-Programmable Gate 
Arrays (FPGA’95), February 1995. 
 
[14] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and 
P.-Y. Droz. “RAMP Blue: A Message-passing Manycore 
System in FPGAs”. Field Programmable Logic and 
Applications, 2007 (FPL 2007). International Conference on, 
27-29 Aug. 2007, pp 54-61. 
 
[15] K. C. Barr, R. Matas-Navarro, C. Weaver, T. Juan, and 
Joel Emer, “Simulating a Chip Multiprocessor with a 
Symmetric Multiprocessor. Boston Area Architecture 
Workshop, Providence, RI, January 2005. 
 
[16] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: 
A High-End Reconfigurable Computing System,” IEEE 
Design and Test of Computers, vol. 22, no. 2, 2005. 
 
[17] C. Chang. “Hardware Design and Implementation of 
BEE: A Real-Time Hardware Emulation Engine”, Master’s 
thesis, University of California, Berkeley, 2002. 
 
[18] J. Williams, “MicroBlaze uClinux Project Home Page,” 
http://www.itee.uq.edu.au/˜jwilliams/mblaze-uclinux/. 
 
[19] G. Gibeling, A. Schultz, J. Wawrzynek, and K. 
Asanovic, “The RAMP Architecture, Language, and 
Compiler,” University of California, Berkeley, Technical 
Report, 2007. 
 
[20] R. van der Wijngaart, “NAS Parallel Benchmarks 
Version 2.4,” National Aeronautics and Space 
Administration, Technical Report NAS-02-007, 2002. 
 
[21] W. Carlson et al., “Introduction to UPC and Language 
Specification”, Center for Computing Sciences, Institute for 
Defense Analyses, 1999. 
 
[22] R. A. Jones, “Netperf: A Network Performance 
Benchmark (Revision 2.0),” Hewlett-Packard Company, 
Technical Report, 1995. 
 
[23] K. Gunther, “Prevention of Deadlocks in Packet-
Switched 
Data Transport Systems,” Communications, IEEE 
Transactions on [legacy, pre-1988], vol. 29, no. 4, pp. 512–
524, 1981. 
 
[24] W. Dally and C. Seitz, “Deadlock-free message Routing 
in Multiprocessor Interconnection Networks,” IEEE 
Transactions on Computers, vol. 36, no. 5, 1987, pp. 547–
553. 
 
[25] D. Bonachea, “GASNet Specification, v1.1,” Lawrence 
Berkeley National Laboratory, Technical Report CSD-02-
1207, 2002. 
 
 


	1. RAMP Vision
	2. Emulation Technologies
	3. Berkeley Emulation Engines
	4. RAMP Hardware
	4.1. MicroBlaze

	5. Network
	6. Results
	7. Acknowledgements

