
1

Introduction to Classification:
Likelihoods, Margins, Features, and Kernels

Dan Klein
UC Berkeley

nlp.cs.berkeley.edu

Acknowledgements

 Many slides adapted from previous tutorials
with Christopher Manning and Ben Taskar

 Includes several diagrams used or adapted
from Ray Mooney, Andrew Moore, Mike Collins

2

Introduction
 Much of NLP can be seen as making decisions

 About structured analyses (sequences, trees, graphs)
 On the basis of multiple information sources (words, word classes,

tree configurations, etc)

 Widespread adoption of discriminative methods
 Use of arbitrary features
 Various formulations: maxent, SVM, perceptron
 Common use: local discriminative decisions, possibly chained
 Newer: global methods which exploit model structure (CRFs, max-

margin networks)

 This tutorial will cover the core ideas behind:
 Part I: Basic Linear Classification
 Part II: Kernels and Structure

 Non-goals: not an overview of NLP applications, not at all
complete coverage of the huge literature on classification!

Outline

 Part I: Basic Linear Classification
 Multiclass linear decision rules
 Approaches: perceptron, maximum likelihood,

maximum margin
 Advantages / disadvantages / tradeoffs

 Part II: Kernels and Structure
 Kernels and kernelization of classifiers
 Basic structured classification

3

Example: Text Classification

 We want to classify documents into categories

 Classically, do this on the basis of words in the document, but
other information sources are potentially relevant:
 Document length
 Average word length
 Document’s source
 Document layout

… win the election …

… win the game …

… see a movie …

SPORTS

POLITICS

OTHER

DOCUMENT CATEGORY

Some Definitions

INPUTS

OUTPUTS

FEATURE
VECTORS

… win the election …

SPORTS, POLITICS, OTHEROUTPUT
SPACE

SPORTS

SPORTS “win” POLITICS “election”
POLITICS “win”

TRUE
OUTPUTS

POLITICS

Either x is implicit,
or y contains x

Sometimes, we want Y
to depend on x

4

Block Feature Vectors
 Sometimes, we think of the input as having features,

which are multiplied by outputs to form the candidates

… win the election …

“win” “election”

Non-Block Feature Vectors
 Sometimes the features of candidates cannot be

decomposed in this regular way
 Example: a parse tree’s features may be the

productions present in the tree

 Different candidates will thus often share features
 We’ll return to the non-block case later

S
NP VP

VN N

S
NP VP

N V N

S
NP VP

NP

N N

VP

V

NP

N

VP

V N

5

Linear Models: Scoring

 In a linear model, each feature gets a weight w

 We compare hypotheses on the basis of their linear scores:

Linear Models: Prediction Rule
 The linear prediction rule:

 We’ve said nothing about where weights come from!

6

Binary Decision Rule

 Heavily studied case: binary classification
 Simplifed: only class “1” has features

 Decision rule is a hyperplane
 One side will be class 1
 Other side will be class 0

BIAS : -3
free : 4
money : 2
the : 0
...

0 1
0

1

2

free

m
on

ey

SPAM

HAM

Multiclass Decision Rule

 If more than two
classes:
 Highest score wins
 Boundaries are more

complex
 Harder to visualize

 There are other ways: e.g. reconcile pairwise decisions

7

Learning Classifier Weights
 Two broad approaches to learning weights

 Generative: work with a probabilistic model of the data,
weights are (log) local conditional probabilities
 Advantages: learning weights is easy, smoothing is well-

understood, backed by understanding of modeling

 Discriminative: set weights based on some error-
related criterion
 Advantages: error-driven, often weights which are good for

classification aren’t the ones which best describe the data

 We’ll mainly talk about the latter

Example: Stoplights

Lights Working Lights Broken

P(g,r,w) = 3/7 P(r,g,w) = 3/7 P(r,r,b) = 1/7

Working?

NS EW

NB Model

Reality

NB FACTORS:
 P(w) = 6/7
 P(r|w) = 1/2
 P(g|w) = 1/2

 P(b) = 1/7
 P(r|b) = 1
 P(g|b) = 0

8

Example: Stoplights

 What does the model say when both lights are red?
 P(b,r,r) = (1/7)(1)(1) = 1/7 = 4/28
 P(w,r,r) = (6/7)(1/2)(1/2) = 6/28 = 6/28
 P(w|r,r) = 6/10!

 We’ll guess that (r,r) indicates lights are working

 Imagine if P(b) were boosted higher, to 1/2:
 P(b,r,r) = (1/2)(1)(1) = 1/2 = 4/8
 P(w,r,r) = (1/2)(1/2)(1/2) = 1/8 = 1/8
 P(w|r,r) = 1/5!

 Non-generative values can give better classification

Linear Models: Naïve-Bayes
 (Multinomial) Naïve-Bayes is a linear model, where:

y

d1 d2 dn

9

How to pick weights?
 Goal: choose “best” vector w given training data

 For now, we mean “best for classification”

 The ideal: the weights which have greatest test set
accuracy / F1 / whatever
 But, don’t have the test set
 Must compute weights from training set

 Maybe we want weights which give best training set
accuracy?
 Hard discontinuous optimization problem
 May not (does not) generalize to test set
 Easy to overfit

Though, min-error
training for MT

does exactly this.

Minimize Training Error?
 A loss function declares how costly each mistake is

 E.g. 0 loss for correct label, 1 loss for wrong label
 Can weight mistakes differently (e.g. false positives worse

than false negatives or Hamming distance over structured
labels)

 We could, in principle, minimize training loss:

 This is a hard, discontinuous optimization problem

10

Linear Models: Perceptron
 The perceptron algorithm

 Iteratively processes the training set, reacting to training errors
 Can be thought of as trying to drive down training error

 The (online) perceptron algorithm:
 Start with zero weights
 Visit training instances one by one

 Try to classify

 If correct, no change!
 If wrong: adjust weights

Examples: Perceptron

 Separable Case

11

Examples: Perceptron

 Separable Case

Perceptrons and Separability

 A data set is separable if some
parameters classify it perfectly

 Convergence: if training data
separable, perceptron will
separate (binary case)

 Mistake Bound: the maximum
number of mistakes (binary case)
related to the margin or degree of
separability

Separable

Non-Separable

12

Examples: Perceptron

 Non-Separable Case

Examples: Perceptron

 Non-Separable Case

13

Issues with Perceptrons

 Overtraining: test / held-out accuracy
usually rises, then falls
 Overtraining isn’t quite as bad as

overfitting, but is similar

 Regularization: if the data isn’t
separable, weights often thrash
around
 Averaging weight vectors over time

can help (averaged perceptron)
 [Freund & Schapire 99, Collins 02]

 Mediocre generalization: finds a
“barely” separating solution

Problems with Perceptrons

 Perceptron “goal”: separate the training data

1. This may be an entire
feasible space

2. Or it may be impossible

14

Linear Separators

 Which of these linear separators is optimal?

Objective Functions

 What do we want from our weights?
 Depends!
 So far: minimize (training) errors:

 This is the “zero-one loss”
 Discontinuous, minimizing is NP-complete
 Not really what we want anyway

 Maximum entropy and SVMs have other
objectives related to zero-one loss

15

Classification Margin (Binary)

 Distance of xi to separator is its margin, mi

 Examples closest to the hyperplane are support vectors
 Margin of the separator is the minimum m

m

Classification Margin

 For each example xi and possible mistaken candidate y, we
avoid that mistake by a margin mi(y) (with zero-one loss)

 Margin of the entire separator is the minimum m

 It is also the largest for which the following constraints
hold

16

 Separable SVMs: find the max-margin w

 Can stick this into Matlab and (slowly) get an SVM
 Won’t work (well) if non-separable

Maximum Margin

Why Max Margin?
 Why do this? Various arguments:

 Solution depends only on the boundary cases, or support vectors
(but remember how this diagram is broken!)

 Solution robust to movement of support vectors
 Sparse solutions (features not in support vectors get zero weight)
 Generalization bound arguments
 Works well in practice for many problems

Support vectors

17

Max Margin / Small Norm

 Reformulation: find the smallest w which separates data

 scales linearly in w, so if ||w|| isn’t constrained, we can
take any separating w and scale up our margin

 Instead of fixing the scale of w, we can fix = 1

Remember this
condition?

Gamma to w

18

Soft Margin Classification
 What if the training set is not linearly separable?
 Slack variables ξi can be added to allow misclassification of

difficult or noisy examples, resulting in a soft margin classifier

ξi

ξi

Maximum Margin

 Non-separable SVMs
 Add slack to the constraints
 Make objective pay (linearly) for slack:

 C is called the capacity of the SVM – the
smoothing knob

 Learning:
 Can still stick this into Matlab if you want
 Constrained optimization is hard; better methods!
 We’ll come back to this later

Note: exist other
choices of how to
penalize slacks!

19

Maximum Margin

Linear Models: Maximum Entropy

 Maximum entropy (logistic regression)
 Use the scores as probabilities:

 Maximize the (log) conditional likelihood of training data

Make positive
Normalize

Really, we should all stop calling this maximum
entropy – it’s multiclass logistic regression or a

maximum likelihood log-linear model…

20

Maximum Entropy Separators

Maximum Entropy II

 Motivation for maximum entropy:
 Connection to maximum entropy principle (sort of)
 Might want to do a good job of being uncertain on

noisy cases…
 … in practice, though, posteriors are pretty peaked

 Regularization (smoothing)

21

Maximum Entropy Separators

Maximum Entropy

22

Log-Loss

 If we view maxent as a minimization problem:

 This minimizes the “log loss” on each example

 One view: log loss is an upper bound on zero-one loss

Unconstrained Optimization
 The maxent objective is an unconstrained optimization problem

 Basic idea: move uphill from current guess
 Gradient ascent / descent follows the gradient incrementally
 At local optimum, derivative vector is zero
 Will converge if step sizes are small enough, but not efficient
 All we need is to be able to evaluate the function and its derivative

23

Derivative for Maximum Entropy

Big weights are bad

Total count of feature n
in correct candidates

Expected count of
feature n in predicted

candidates

Convexity
 The maxent objective is nicely behaved:
 Differentiable (so many ways to optimize)
 Convex (so no local optima)

Convex Non-Convex
Convexity guarantees a single, global maximum value

because any higher points are greedily reachable

24

Unconstrained Optimization
 Once we have a function f, we can find a local optimum by

iteratively following the gradient

 For convex functions, a local optimum will be global
 Basic gradient ascent isn’t very efficient, but there are

simple enhancements which take into account previous
gradients: conjugate gradient, L-BFGs

 There are special-purpose optimization techniques for
maxent, like iterative scaling, but they aren’t better

Remember SVMs…

 We had a constrained minimization

 …but we can solve for i

 Giving

25

Hinge Loss

 This is called the “hinge loss”
 Unlike maxent / log loss, you

stop gaining objective once the
true label wins by enough

 You can start from here and
derive the SVM objective

 Consider the per-instance objective:

Plot really only right
in binary case

Max vs “Soft-Max” Margin

 SVMs:

 Maxent:

 Very similar! Both try to make the true score
better than a function of the other scores
 The SVM tries to beat the augmented runner-up
 The Maxent classifier tries to beat the “soft-max”

You can make this zero

… but not this one

26

Loss Functions: Comparison

 Zero-One Loss

 Hinge

 Log

Separators: Comparison

27

Status Check

 We’ve covered:
 Basics
 What the perceptron does and how to train it
 The max margin objective (but not how to optimize it)
 The maximum entropy objective and how to optimize it

 Next:
 “Dual classification” with perceptrons
 Dual optimization, how to optimize SVMs
 Kernel methods
 Structured classification

Part II

 Kernels
 Dual algorithms
 Kernels and kernelization

 Structured classification
 Structured inputs
 Structured learning

28

Nearest-Neighbor Classification

 Nearest neighbor, e.g. for digits:
 Take new example
 Compare to all training examples
 Assign based on closest example

 Encoding: image is vector of intensities:

 Similarity function:
 E.g. dot product of two images’ vectors

Non-Parametric Classification

 Non-parametric: more examples means
(potentially) more complex classifiers

 How about K-Nearest Neighbor?
 We can be a little more sophisticated,

averaging several neighbors
 But, it’s still not really error-driven learning
 The magic is in the distance function

 Overall: we can exploit rich similarity
functions, but not objective-driven
learning

29

A Tale of Two Approaches…
 Nearest neighbor-like approaches
 Work with data through similarity functions
 No explicit “learning”

 Linear approaches
 Explicit training to reduce empirical error
 Represent data through features

 Kernelized linear models
 Explicit training, but driven by similarity!
 Flexible, powerful, very very slow

The Perceptron, Again
 Start with zero weights
 Visit training instances one by one

 Try to classify

 If correct, no change!
 If wrong: adjust weights

mistake vectors

30

Perceptron Weights

 What is the final value of w?
 Can it be an arbitrary real vector?
 No! It’s built by adding up feature vectors (mistake vectors).

 Can reconstruct weight vectors (the primal representation)
from update counts (the dual representation) for each i

mistake counts

Dual Perceptron
 Track mistake counts rather than weights

 Start with zero counts ()
 For each instance i

 Try to classify xi,

 If correct, no change!
 If wrong: raise the mistake count for this example and prediction

31

Dual / Kernelized Perceptron
 How to classify an example x?

 If someone tells us the value of K for each pair of
candidates, never need to build the weight vectors

Issues with Dual Perceptron
 Problem: to score each candidate, we may have to

compare to all training candidates

 Very, very slow compared to primal dot product!
 One bright spot: for perceptron, only need to consider

candidates we made mistakes on during training
 Slightly better for SVMs where the alphas are (in theory)

sparse

 This problem is serious: fully dual methods (including
kernel methods) tend to be extraordinarily slow

 Of course, we can (so far) also accumulate our weights
as we go...

32

Kernels: Who Cares?
 So far: a very strange way of doing a very

simple calculation

 “Kernel trick”: we can substitute any* similarity
function in place of the dot product

 Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break.
E.g. convergence, mistake bounds. In practice,
illegal kernels sometimes work (but not always).

Some Kernels

 Kernels implicitly map original vectors to higher
dimensional spaces, take the dot product there, and
hand the result back

 Linear kernel:

 Quadratic kernel:

 RBF: infinite dimensional representation

 Discrete kernels: e.g. string kernels, tree kernels

33

Example: Kernels

 Quadratic kernels

Non-Linear Separators
 Another view: kernels map an original feature space to

some higher-dimensional feature space where the
training set is (more) separable

Φ: y→φ(y)

34

Some Structured Kernels
 PCFG Tree Kernels

[Collins and Duffy 02]
 Function of two trees
 Measures the number of

tree fragments in common
(weighted by fragment
size)

 Computed by a dynamic
program

 Dependency Tree
Kernels [Culotta and
Sorensen 04]

 Many more…

Why Kernels?
 Can’t you just add these features on your own (e.g.

add all pairs of features instead of using the quadratic
kernel)?
 Yes, in principle, just compute them
 No need to modify any algorithms
 But, number of features can get large (or infinite)
 Some kernels not as usefully thought of in their expanded

representation, e.g. RBF or data-defined kernels [Henderson
and Titov 05]

 Kernels let us compute with these features implicitly
 Example: implicit dot product in quadratic kernel takes much

less space and time per dot product
 Of course, there’s the cost for using the pure dual algorithms…

35

Kernels vs. Similarity Functions

 Q: What does it take for a similarity
function to be a kernel?

 A: It must satisfy some technical
conditions:
 Kernel matrix must be symmetric and

positive semidefinite (e.g. self-similarity is
high)
 Note: making diagonal very large can

sometimes suffice

Dual Formulation for SVMs
 We want to optimize: (separable case for now)

 This is hard because of the constraints
 Solution: method of Lagrange multipliers
 The Lagrangian representation of this problem is:

 All we’ve done is express the constraints as an adversary which
leaves our objective alone if we obey the constraints but ruins our
objective if we violate any of them

36

Lagrange Duality

 We start out with a constrained optimization problem:

 We form the Lagrangian:

 This is useful because the constrained solution is a
saddle point of (this is a general property):

Primal problem in w Dual problem in

Dual Formulation II
 Duality tells us that

has the same value as

 This is useful because if we think of the ’s as constants, we have an
unconstrained min in w that we can solve analytically.

 Then we end up with an optimization over instead of w (easier).

37

Dual Formulation III

 Minimize the Lagrangian for fixed ’s:

 So we have the Lagrangian as a function of only ’s:

Coordinate Descent I

 Despite all the mess, Z is just a quadratic in each i(y)
 Coordinate descent: optimize one variable at a time

 If the unconstrained argmin on a coordinate is negative,
just clip to zero…

0 0

38

Coordinate Descent II

 Ordinarily, treating coordinates independently is a bad idea, but here
the update is very fast and simple

 So we visit each axis many times, but each visit is quick

 This approach works fine for the separable case
 For the non-separable case, we just gain a simplex constraint and

so we need slightly more complex methods (SMO, exponentiated
gradient)

What are the Alphas?
 Each candidate corresponds to a primal

constraint

 In the solution, an i(y) will be:
 Zero if that constraint is inactive
 Positive if that constrain is active
 i.e. positive on the support vectors

 Support vectors contribute to weights:

Support vectors

39

Dual Linear Classifiers
 For SVMs and Perceptrons, we ended up with exactly

the same rule:

 This form holds more generally (the Representer
Theorem gives conditions)
 Basically, components of the weight vector perpendicular to all

training examples increase the norm of w without impacting
training example scores

 E.g. one can show that all weight vectors learned by maxent
have the same form

 So we could kernelize maxent as well…

Structured Prediction
 So far: talked about candidates y as if from a fixed set of labels
 In principle, nothing at all changes if y’s have structure!
 In practice, big issues:

 Perceptron: argmax is hard because |Y| is big

 Maxent: expectations are hard because |Y| is big

 Max margin: too many constraints / alphas because |Y| is big

40

Example: Parse Reranking

 If the candidate set |Y| is small, then no problem:
 [Collins 02] Reranking with perceptron
 [Charniak and Johnson 05] Reranking with maxent

 Start with the n-best outputs of a good base parser
 Define tons of features on a parses y
 No need to even make the feature local

 Learn classifier using only these candidates
 Everything works exactly as we’ve discussed!

Example: Structured Perceptron

 Perceptron is nice: only need structured inference:

 Can do this search with a dynamic program provided
the features used decompose in appropriate local
ways [Collins 02]

 Only need to be able to do Viterbi search (and even
approximate search can work). See also [Daume et al
06])

 Online margin methods like MIRA [Crammer and
Singer 03] get some of the margin effect with similar
requirements by updating minimally

41

Example: CRFs
 For maxent, we need feature expectations:

 We can sometimes calculate these expectations with,
e.g., dynamic programs

 For sequences, conditional random fields (CRFs) do
exactly this computations [Lafferty et al 01]

 Trees work fine as well [Johnson 01]
 Much other CRF work in the ACL community!
 Good property: CRFs put probabilities over candidates

Example: Structured Margin
 For maximum margin, things are harder:

 One option: only use constraints as you find you need
them [Tsochantaridis et al 05]

 A better option: the alphas often decompose along
dynamic programming structures [Taskar et al 03, 05]

42

Summary

 Basic feature-driven classification
 Perceptron
 Maximum entropy
 Maximum margin

 Kernels and Structure

 Much, much more on this topic!

A VERY Few References
 Impossible to even start to list all the relevant work!

 Some texts:
 Large list at: http://www.kernel-machines.org/books/
 Classic: Tom Mitchell “Machine Learning,” 1997.
 Christopher Bishop, “Pattern Recognition and Machine Learning,” 2007.

 Work directly cited in the tutorial:
 Eugene Charniak and Mark Johnson, “Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative

Reranking,” ACL, 2005.
 Koby Crammer and Yoram Singer, “Ultraconservative Online Algorithms for Multiclass Problems,”

Journal of Machine Learning Research, 2003.
 Michael Collins, “Discriminative Training Methods for Hidden Markov Models: Theory and Experiments

with Perceptron Algorithms,” EMNLP, 2002.
 Michael Collins and Nigel Duffy, “Convolution Kernels for Natural Language,” NIPS, 2001.
 James Henderson and Ivan Titov, “Data-Defined Kernels for Parse Reranking Derived from Probabilistic

Models,” ACL, 2005
 Mark Johnson, “Joint and Conditional Estimation of Tagging and Parsing Models,” ACL 2001.
 John Lafferty, Andrew McCallum, and Fernando Pereira, “Conditional random fields: Probabilistic models

for segmenting and labeling sequence data,” ICML, 2001.
 Ben Taskar, Dan Klein, Michael Collins, Daphne Koller and Chris Manning, “Max-Margin Parsing,”

EMNLP, 2004.
 Ben Taskar, Carlos Guestrin and Daphne Koller “Max-Margin Markov Networks,” NIPS, 2003.
 Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun, “Large Margin

Methods for Structured and Interdependent Output Variables,” JMLR, 2005.

