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ABSTRACT
In a setting of economic and infrastructural collapse, the
inability to manufacture and maintain computing resources
will be an enormous limitation on the continued use of tech-
nology. The concept of “rot” exists for both hardware and
software, referring to a slow loss of functionality over time.
Given a desire to maintain technological capability, we raise
a variety of questions about technology use in such a sce-
nario. How long will current hardware last through repair,
robust construction, and good maintenance practices? What
would software development and maintenance entail without
today’s Internet infrastructure? What can be done to keep
our software stable and usable for as long as possible in the
face of viruses, storage degradation, and other threats? We
present rough estimates of the expected longevity of desk-
top and laptop hardware for various levels of maintenance,
and hypothesize that software degradation, not hardware
degradation, will be the limiting factor in determining how
long devices will remain usable for computing tasks involv-
ing any exposure to external files or networks. We propose
both physical and social strategies to guard against both
modes of degradation.

CCS Concepts
•Security and privacy → Human and societal aspects of
security and privacy; •Hardware → Aging of circuits and
systems; •Software and its engineering → Software cre-
ation and management;
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1. INTRODUCTION
Computing resources are integral to the fabric of our mod-

ern society. Medical records are stored and accessed elec-
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tronically, weather is predicted using computational mod-
els, and people have access to high-bandwidth long-distance
communications infrastructure at their fingertips. In an
infrastructural collapse, computing and all of the services
which rely on its affordances would be put in jeopardy. In
the event that large-scale electronics manufacturing were to
suddenly halt, or a region were to be cut off from the global
supply chain, computing devices would become precious re-
sources whose functionality would need to be carefully main-
tained. Furthermore, without reliable power generation and
distribution, long distance communication over the Inter-
net as we know it today would likely not exist, even if the
hardware itself could be maintained. Lack of connectivity
would render all modern network-based services and soft-
ware maintenance infrastructure defunct. Conservation of
existing distributed hardware and software resources would
need to continue until we either learned as a society to recre-
ate their functional equivalents in a more sustainable way,
or learned to do without them.

1.1 Assumptions
The production of modern computing resources rests on

massive technical, social, and economic infrastructures. In
this work, we explore a scenario where: 1) the manufacture
or acquisition of new integrated circuits (ICs) is prohibitively
difficult, perhaps due to a lack of raw materials, accessible
production facilities or energy to run them, a disrupted sup-
ply chain, or any combination which we believe likely in the
event of collapse; and 2) long distance networking and infor-
mation sharing becomes difficult with the decay of Internet
infrastructure due to the same factors as above.

In their work discussing a minimal set of devices and pro-
tocols required to reproduce the functionality of the Inter-
net, Raghavan and Hasan detail the extensive network of
resource dependencies involved in hardware device manu-
facture, and recommend reducing these dependencies [41].
However, we assume most communities will not have specially-
architected computing devices designed for the loss of present-
day manufacturing infrastructure. Most people’s only re-
course upon failure of hardware components will be to repair
them, or procure replacements from those manufactured be-
fore collapse.

Hardware alone does not make a modern computing plat-
form; we also anticipate a slew of challenges related to main-
taining the correctness of software and user data, especially
due to malware infections and “bit rot” on storage media
not designed for decades of integrity. Even in the absence of



global connectivity, we expect malware to remain an issue
as long as computers engage in networking and file transfer
over any medium. Furthermore, long-term connectivity loss
and lack of a centralized trust infrastructure break many
fundamental assumptions made in software design, making
development, distribution, and verification of new software
much more difficult. We hypothesize a dramatic reduction in
the authoring and dissemination of software after collapse,
to the point where patches and security fixes are no longer
widely available.

Finally, we suggest technologies, practices, and social in-
frastructures yet to be developed that could mitigate the
risks collapse imposes on keeping both software and the
hardware it runs on functioning in an environment adver-
sarial to users and developers.

2. MITIGATING HARDWARE RISK

2.1 Computing Usage and Environment
We consider two usage scenarios which may characterize

either end of a spectrum of computer lifetimes. In scenario
one, dedicated computers are set aside for the operation of
critical services, such as weather modeling or database ac-
cesses, and are kept in a controlled environment such as a
clean room to consciously maximize longevity. Scenario two
is that of a personal computer, probably a portable laptop,
used as is typical today without any special protection from
the elements. We use the two scenarios to separately reflect
on the inherent effects of computational load and external
environmental effects such as impact, water damage, or par-
ticle intrusion.

Our motivation for this separation is that many types of
damage come from the external environment and can be
almost entirely prevented through stringent environmental
control and limited device mobility. For example, dust and
dirt on electrical components can prevent proper cooling,
increasing their chance of failure. Humidity or spilled water
can corrode circuits or cause shorts that lead to component
damage. Accidental impact due to dropping or jostling dur-
ing transport may result in mechanical damage to the screen,
keyboard, ports, fans, and the chassis, opening additional
entry points for dust, dirt, and water. Strict control of the
material computing environment and avoidance of machine
transport mitigate many of these risks. We argue that envi-
ronmental control can increase device longevity at the cost
of losing some of the social functions of computing permitted
by mobility today.

2.2 Computation-limited Components
Computational loads themselves contribute to physical

wear on many components, leading to performance degrada-
tion and eventual failure with regular use of the computing
resource. Storage drives are one such component. A casual
study of Internet forums on computer repair suggests that
hard drive replacement is one of the most common repairs
performed on consumer machines, for a variety of reasons
ranging from mobility-related damage to performance dete-
rioration from component wear over time.

The industry standard for manufacturers to provide esti-
mated lifetimes for HDDs has historically been Mean Time
Between Failures (MTBF) or Mean Time To Failure (MTTF),
measured in hours of uptime. Common MTTF ratings for
modern consumer-grade hard drives range from 100,000 to

1,000,000 hours, which represents roughly 100 years of con-
tinuous use. In reality, however, real world data has shown
that modern consumer HDDs fail at rates of around 2-5%
per year, with an observed acceleration to around 10% after
the first four to six years [5, 6, 49]. A generous estimate
at the original 2-5% puts the half-life of a HDD at 13.5 to
34 years; with the increased failure rate from 5% to 10%
after the first 6 years, the half-life is 9.7 years. Furthermore,
these empirical failure rates were measured in datacenters,
where the drives would have been largely protected from un-
predictable power fluctuations and physical damage. Power
outages are known to cause “head crashing” in HDDs, where
the mechanical disk head snaps back to a starting position
upon loss of power and potentially scratches the disk platter
[29]. Since HDDs are considered very difficult to repair with
common tools, we propose that when worn out or damaged
(perhaps every 10-20 years), they will need to be replaced.

SSD manufacturers typically provide lifetimes in terms of
number of writes to the drive, since molecular wear occurs
with each write on the flash memory gate storing the writ-
ten value. For example, one 120 GB Samsung SSD has a
lifetime of 100 terabytes written. At the typically cited es-
timated “average” workstation usage of 10 GB per day, this
SSD has a lifetime of about 28 years, with lifetime scaling
roughly linearly with the size of the drive [1]. Therefore,
we propose that a SSD will only need to be replaced every
20-30 years at this stock workload, though performance will
decrease steadily throughout the drive’s lifetime as cells fail,
and may drop below that required by the user. Write inten-
sive workloads will naturally lead to much faster SSD failure
depending on the nature of the workload.

Parts with moving components other than HDDs, such
as optical drives and fans, are also susceptible to wear over
time, but have been less well studied. MTBF values for con-
sumer CPU fans are typically specified in the 30-50,000 hour
range, or 3.4-5.7 years, though high-end CPU fans can be
found with listed MTBFs of 28 years [37]. However, unlike
HDDs, fans are amenable to cleaning, lubrication, and re-
pair, and may not need to be replaced as often with regular
maintenance [13].

Finally, some components age over time via chemical pro-
cesses. One common repair is the replacement of electrolytic
capacitors in a power supply unit (PSU) or on a mother-
board, due to the slow evaporation of the electrolyte result-
ing in decreased capacitance. Typical consumer electrolytic
capacitors are rated to run for 2000 hours at either 85C or
105C; depending on the type, at a working temperature of
45C they will have a lifetime of around 3.7 or 14.6 years of
continuous use, respectively, with the lifetime highly depen-
dent on temperature [15]. Unfortunately, unused electrolytic
capacitors have a shelf life of only 2-3 years, due to degra-
dation of the aluminum oxide layer insulating the capacitor
foil. They may be usable after “reformation,” in which a DC
voltage is applied to the capacitor over a period of days or
weeks to restore the aluminum oxide layer [42]. A better so-
lution might be to replace the electrolytics with a few smaller
but longer-lasting ceramic capacitors (lifetime 100+ years)
in parallel and a resistor in series to mimic the properties of
the electrolytic capacitor [55].

Also, after just a few years depending on environmen-
tal conditions such as temperature, thermal grease applied
between a CPU and heatsink may solidify and crack, intro-
ducing air gaps that decrease the effectiveness of cooling.



It is unclear from our research exactly when this happens
or whether it can be prevented; however, if detected before
any damage occurs to the CPU, the hardened grease can be
removed with an organic solvent and reapplied. If damage
does occur to the CPU, a replacement chip must be procured
and substituted, which may be possible or prohibitively dif-
ficult depending on whether the CPU is socketed or soldered
directly to the motherboard.

2.3 Environmental Management
In order to maintain a longevity-friendly environment for

computers in scenario one, the units would ideally be kept
in a clean-room-like environment, with air filtering, rigorous
entry and exit protocols, low humidity, and cool tempera-
tures to avoid overheating [30]. Regular maintenance, such
as cleaning of parts vulnerable to dust such as fans, could
also prevent avoidable damage. Finally, one of the most
important features of this environment would be a clean,
reliable source of power to prevent surges and outages that
would damage either the computing devices or the equip-
ment being used to maintain favorable environmental con-
ditions for its survival.

2.3.1 Power Management
Computing will only be possible with some power source,

whether via intermittent grid electricity or an off-grid so-
lution. An exploration of the space of power systems that
could provide clean, reliable power for computing devices
is out of the scope of this paper, but we describe one such
minimal, off-grid system to show that it would be feasible
to build and maintain.

The following system is based on current solutions for off-
grid power used in RVs and boats: A constant-voltage DC
power source such as a solar panel charges a 12V battery
system, either a 12V car/marine lead-acid battery or pairs
of 6V go-kart/motorcycle lead-acid batteries, with a simple
low voltage indicator (made from LEDs and resistors, with
no IC). A 12V DC car/marine PSU draws power from the
batteries, and powers the computer. When the sun is shin-
ing, the solar panels charge the batteries up to their “full”
voltage via constant-voltage (CV) charging; as the computer
runs, it drains the batteries until the low voltage indication,
at which point the user should turn the system off until the
sun is shining again.

Each part of this system is essential: the solar panels pro-
duce power, the batteries handle input dropouts, and the
PSU takes the slightly-fluctuating DC input and produces
clean power at multiple voltages. Common warranties on
modern solar panels guarantee an output of no less than
80% of the rated power over the first 25 years of use. How-
ever, with a typical degradation rate of 0.5% a year, the out-
put should not fall below 80% for the first 44.5 years [32].
Typical lead-acid car batteries last 0.5-4 years inside a car
depending on usage, but would last longer in more favorable
temperatures and avoiding deep discharge while attached to
a solar panel [26]. Sealed lead-acid (or VRLA) batteries last
up to 10 years without maintenance, and even after sulfation
are regularly revived and reused [40]. We expect commonly
available DC/DC PSUs to also have electrolytic capacitors,
and therefore similar lifetimes to AC/DC PSUs; to extend
their lifetime, the same capacitor replacements as described
above would be required. Therefore, we conclude that com-
puting would likely not be limited by a lack of mains power;

it would be feasible to maintain a power system that would
last the lifetime of a computer and inflict minimal damage
on its hardware.

If an inverter (with a standard life expectancy 10 years
[48]) were added to the system, a standard AC PSU could
be used instead of a DC one, and lead-acid batteries could
be skipped for an off-the-shelf uninterruptible power supply
(UPS) system (with a life expectancy of 3-5 years [51]). It
would also be feasible to reconstruct the function of a UPS
with a charging circuit, lead-acid battery, and an inverter,
which would likely be more robust and have a longer shelf life
than a UPS. Many options exist for powering computation
according to need and hardware availability at the time.

2.4 Mobility-limited Components
For a baseline failure rate for mobile computing, we refer

to a Consumer Reports study in 2015 that claimed mod-
ern consumer laptops have a 10-20% chance of failure over
the first three years of ownership, with a median of 18%
[54]. The median half-life computed from this value is 10.47
years, although as we have explored in previous sections,
the annual failure rate of hardware tends to accelerate with
age. According to an older study by SquareTrade in 2009
[46], which cited a higher failure rate of 30% over the first
three years, about a third of laptop failures were due to ac-
cidents as opposed to malfunction. As hardware reliability
has improved with SSD proliferation, this proportion has
likely risen. Specific repair challenges are detailed below.

Mobile laptops tend to suffer damage from exposure to
heat, dust, dirt, and water (especially containing salt). To
repair corrosion and/or shorted electronics due to water
damage, the corroded metal can be removed using isopropyl
alcohol, and the electronics can be replaced by soldering.
However, this kind of repair takes considerable care, effort,
and expertise, especially with the tight integration and de-
creasing size of hardware components in modern laptops.

Another limit to longevity is that laptop batteries are con-
sumables with a lifetime of 2-5 years, and need to be replaced
for the continuation of mobile use, though said replacement
is trivial to perform when the part is available [3].

Repetitive physical handling due to mobility can lead to
mechanical constraint wear on case screws, tape, and glue
(especially after multiple repair-related disassemblies). Lap-
top form factors tend to differ significantly between models,
so if the chassis is cracked or falls apart due to being handled
roughly or dropped, a replacement may have to be fabricated
from some renewable material such as wood (which has been
proposed for laptop chassis in some renewable designs [21]).

On the other hand, while the chassis and peripherals may
be flimsy or complicated to replace, laptops are designed
to be compatible with a large variety of spare peripherals
such as external monitors and USB mice and keyboards. A
laptop may theoretically remain usable for computation long
after the chassis has been replaced by a box housing just the
motherboard, storage drive, and peripheral connectors.

Ruggedization against foreign particle entry might also
help mitigate exposure to the elements. Specifically designed
ruggedized computing devices are costly but available ac-
cording to military specifications [58] for applications such
as warfighting or construction. At the most basic level of
protective design, a HDD in a laptop can be replaced with a
SSD before mobile use in order to avoid mechanical damage
to the storage drive, and potential errors in stored data.



Table 1: Summary of Recommended Replacement Parts and Estimated Lifetimes
(H) in the Estimated Life column indicates that the value is a half-life computed from other ratings.

Estimated
Limited by Part Life (yrs) Notes

Computation

Ceramic capacitors 100+ (MLCCs) Could replace electrolytic capacitors
SSD 20–30 120 GB SSD at 10 GBW/day
HDD 9.7–13.5 (H) At 5% baseline failure/yr
Electrolytic capacitors 3.7–14.6 Affects PSU, motherboard, AC/DC adapters
CPU fans 3.4–5.7 Longer life with cleaning/lubrication/repair
Thermal grease 2+ Depends on temp and conditions

Mobility
Aggregate of device parts 10.47 (H) Based on Consumer Reports study
Peripherals Variable Screens/monitors, keyboards, mice
Li-ion batteries 2–5 Computer technically works without batteries

Power

Solar panels 50+ ≥ 80% of rated power output for first 25 yrs
DC/DC PSU 3.7–14.6 Assumed limited by electrolytic capacitors
Inverter 10 Standard for solar inverters
Sealed lead-acid battery 10 Easy to repair with standard tools
UPS 3–5 May also be built w/ lead-acid battery
Unsealed lead-acid battery 0.5-4 Easy to repair with standard tools

2.5 Resources for Repair
In order to sustain the repairs mentioned above, replace-

ment parts must either be kept in stock by the device owner,
or available through a procurement network. For the mobility-
limited scenario, we discussed needing HDDs or SSDs, fans,
electrolytic capacitors, PSUs, thermal grease, and possibly
CPUs. Additional parts would be desired for the mobile sce-
nario, including Li-ion batteries, screens or external moni-
tors, keyboards, mice and other peripherals, and AC/DC
adapters and cords if AC mains power was still available.
See Table 1 for a summary of commonly required parts. The
question remains whether all of the the replacement compo-
nents will have shelf lives long enough to be usable for repairs
after fifty or a hundred years. For example, SSDs packed for
long term storage in a temperate environment, with desic-
cant, and away from radiation, are likely to remain in good
condition after 15 years or more, because integrated circuits
are expected to last as long under the same circumstances
[31]. However, not much work has been done on measuring
their shelf life for longer periods.

Just as important for successful repairs would be human
resources with the skills needed to perform them, such as
soldering and use of a multimeter. Without intentional
teaching and community retention of these skills even in a
generation of less computing ubiquity than we have today,
the skills could be lost to many communities. Social net-
works or institutions of people interested in computer repair
could be invaluable for sourcing parts and maintaining skills
needed to keep computing alive until devices and power are
no longer scarce.

3. MITIGATING SOFTWARE RISK
Software degradation is less predictable than hardware

degradation and subject to different challenges under col-
lapse. While software does not “wear out” like hardware, it
can be slowly corrupted over time, often has external de-
pendencies, and is still subject to contamination from the
outside environment.

3.1 Limits on Development and Distribution
In a scenario where power and manufacturing infrastruc-

ture have degraded, the Internet would likely cease to ex-
ist as well, which poses an enormous number of threats to
modern software functionality. Firstly, software distribution
would mostly cease, as would the distribution of bug fixes
and security patches. Secondly, cloud infrastructure would
not be available, which would suspend all web services imme-
diately, and render renewable-license software void with no
means to renew at the end of the license period. Finally, soft-
ware development would slow to a crawl without the current
development ecosystem, which has co-evolved with increas-
ing societal connectivity. Unfortunately, software develop-
ment would be needed as a crucial line of defense against
malicious software (malware) infection, another significant
threat to computing discussed below.

Rapid innovation in software today depends heavily on
web-based tools for easy long-distance discussion, techni-
cal search, and software distribution. Without communi-
cation tools, online documentation, and cloud-hosted code
repositories such as github and npm to facilitate collabora-
tion, developers would have to work and learn individually
through time consuming experimentation, likely replicating
each other’s code [38].

3.1.1 Solutions for Developer Collaboration
Collaboration through distributed version control tools

would be possible without the Internet, but would require ei-
ther co-location of developers or the establishment a highly
reliable developer network. From our discussion on hard-
ware above, we believe that tightly integrated mobile com-
puting platforms like modern laptops will fail faster than sta-
tionary desktops and servers with easily replaceable compo-
nents. The eventual depletion of mobile computing resources
will make it increasingly difficult to gather people and their
computers in a single location. Therefore, it may be cru-
cial to establish communication channels, file sharing prac-
tices, and communities for maintaining software engineering
knowledge before the breakdown of mobile computing.

These communications could be as simple as broadcast-



ing code over radio, which was done in Finland in 1985 as
part of an effort to stimulate interest in computing [28].
Another strategy could be to establish decentralized com-
munication networks over sneakernet with cryptographically
assured messaging, or point to point wireless systems as in-
spired by community networks and ham radio [14]. Regard-
less of communication medium, person to person network-
ing will be an important part of post-collapse computing,
without centralized Internet communities to establish repu-
tation and put developers in initial contact with one another.
When remote collaboration becomes infeasible, computing
centers could be established to bring software engineers to
the same physical location to allow in-person collaboration.

3.2 Data Decay over Time
High barriers to verified file sharing also create challenges

to maintaining correct copies of data, including software. All
data is vulnerable to subtle faults of the underlying hardware
it is stored on, including in-memory bit flips [17, 53] and
on-disk file corruption [18]. The widely deployed Windows
operating system does not implement error correction codes
in its default filesystem, and commodity consumer hardware
eschews error correction-enabled memory for lower cost and
higher performance. Over time flaws will accumulate; while
corruption to non-essential files could be harmless, corrup-
tion of key files in the operating system or critical user appli-
cations could cause irrecoverable failure of the overall com-
puting resource. In our well-resourced world we can ignore
these issues because it is easy to reinstall an application,
and software lifetimes are relatively short. However, in a
collapse scenario, everyday users must take on the burdens
of data management and preservation that are left to data
center administrators and archivists today.

3.3 Trust Breakdown
A fundamental but relatively invisible piece of modern

software infrastructure is the ubiquitously available public
key infrastructure (PKI). Centralized certificate authorities
sign and validate website secure socket layer (SSL) creden-
tials, software packages, and system updates to give end
users a reasonable way to validate their authenticity. While
nothing in the cryptographic principles of PKI requires cen-
tralization, it does require a root of trust upon which chains
of trust can be built to validate third parties. In an environ-
ment with extremely limited connectivity, it will be difficult
for content creators to obtain digital signatures that will be
trusted by all the end users that content may eventually
reach. Most SSL certificates distributed with browsers and
operating systems have expiration dates, beyond which key
invalid errors will be thrown by the validating software. As
seen in Figure 1, all root certificates on a currently up to date
system will be invalid in 30 years. While users can continue
to rely on expired keys, they will have to override warnings
and run the risk of long-held keys being compromised with
no way to get replacements.

A systematic breakdown of the current signing infrastruc-
ture will further complicate the problem of software authen-
ticity verification and increase the chances that normal users
encounter malware through compromised content. Without
an understanding of how PKI operates users will have a dif-
ficult time handling the remnants of the current implemen-
tation and making the right choices with regards to trust
and system security that are handled transparently today.
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Figure 1: Valid Certificates vs. Time
Measured from expiration dates on installed SSL root

certificates on an up to date Ubuntu 16.10 system.

3.4 Malicious Software
Finally, we see malware as potentially the single largest

threat to productive computing after collapse given its volatile
nature and high risk of harm. Malware can cause varying
levels of disruption to a computing system, ranging from pas-
sive non-interference up to catastrophic data loss or even ir-
reparable hardware damage [4, 27, 33]. In developing regions
today many users cope with systems infected with malware,
but at substantial cost to productivity and security [8, 11,
23, 35]. In a collapse scenario where new, trusted copies
of data cannot be easily retrieved and systems cannot just
be wiped and reinstalled, users may have to cope with the
effects of malware infections indefinitely.

While a collapse event significant enough to impact com-
puting capability may also diminish incentives to create mal-
ware due to decreased computer usage, in some scenarios
they may actually be enhanced. For example, in a collapse
triggered by warfare, cyber weapons may be intentionally
developed and deployed by opposing factions to harm critical
infrastructure[25, 47]. Collateral damage from such weapons
could spread unchecked through the software ecosystem if no
countermeasures are in place. Malware authors also write
for a variety of other personal motivations, such as bore-
dom, which may not disappear after collapse [52]. It only
takes one developer to create and release a piece of malware,
but containing it requires coordinated effort to update the
systems of a large number of vulnerable users. Furthermore,
current malware in the wild will not cease to exist, and users
will have to contend with any malicious code deployed but
not yet patched at the time centralized update services fail.

Many types of malware have the advantage of spreading
virally through incidental contact with other systems, while
patches, not commonly spread peer to peer, will be slowed
by the destruction of centralized distribution channels [10].
Without the Internet, users would have to rely on peer-to-
peer file transfers to productively exchange megabytes of
information [50]. Direct file transfers provide no way to
verify the authenticity of received files before opening, and
without updates to malware signature databases users will
have no way to identify new malware in received files [16].

An example of the damage malware can cause can be seen
today in the computing systems in Internet cafes in develop-
ing regions [8]. The authors have also personally witnessed
the impact of malware infections on computers in public
university computer labs in Ethiopia, where users must re-
sort to unsafe security practices to share data even if they
know better. Without reliable connectivity, vulnerable USB
drives or direct ad-hoc wireless connections are the file trans-
fer mediums of choice, and without access to official distri-



bution channels the only way to acquire software and media
is often through the illegal downloading and sharing [9, 50].
Cracked software and digital rights management stripped
media is frequently contaminated and commonly becomes
a vector for malware transmission [16]. The contemporary
experiences of users in these conditions inform our expecta-
tions of a future collapse computing scenario.

3.4.1 Software Recovery
Presently only two main models currently exist for the

recovery of systems compromised by malware. The first in-
volves expert security researchers and developers character-
izing malware infections, designing a tailored removal tool,
and deploying that removal tool to infected users to restore
their systems. Experts also generate signatures of the mal-
ware to detect and prevent future infections. Severe collapse
scenarios preclude usage of this model due to a lack of con-
nectivity for experts to gather malware samples from the
broader user base and then distribute fixes. Isolated groups
of users will likely not have access to the expert resources
and time required to solve problems in this manner.

The other more extreme model, completely wiping and
restoring the computer from a new OS image, is often used
as a last resort in developed countries against rootkits or
sophisticated malware, and as a regular cleansing operation
in developing contexts where tailored fixes may not be avail-
able [8, 19]. The source image for the new operating system
install can come either from a restricted partition on the
user’s hard drive or from a dedicated piece of external instal-
lation media. On new machines commonly provided without
disk drives today, the partition approach is favored for most
users to decrease costs on the manufacturer and simplify re-
covery. However, the partition approach presents several no-
table disadvantages: since the partition is always physically
present on the computer sophisticated attacks could bypass
OS security measures and modify data on the partition to
infect the recovery image. Similarly, since the partition is
tied to the same physical disk as the running OS, failure
or corruption of that disk could damage the image. Lastly,
the image will still be vulnerable to the original exploit and
reinstalling it will not prevent future infections.

In a collapse scenario long term maintenance of reliable
backup data becomes both much more important for sys-
tem longevity and much more difficult to achieve with lim-
ited resources. Present day solutions rely on software to
manage backup images, but secure hardened backup stores
grounded in hardware would provide more assurance that
software bugs could not be exploited to gain access. Physi-
cal switches allowing read, append, or write access to hard-
ware isolated storage would help users take control of their
backup data storage reliably and explicitly.

New sophisticated attacks have been recently uncovered
that target low level device firmware on the system’s hard-
ware itself, persisting across a complete OS level restore [60,
20]. Recovering from these attacks requires either acquiring
new hardware or having access to low level firmware flash
tools as a part of the recovery process. Without planning for
such a contingency prior to collapse, users infected with this
type of malware could be unable to restore their systems to
working condition [45].

3.4.2 Sustainable Malware Inoculation
While malware has the advantage of self-replication and

contact spread, the same principles could be applied by
trusted software sources to distribute patches organically.
As demonstrated in Ghana by the FlashPatch project [11],
it is possible to piggyback antivirus definitions onto regu-
lar file transfers over USB, reaching machines otherwise cut
off from network connectivity. The same system could be
used to transport signed OS packages or core firmware up-
dates which could be incorporated and passed on automat-
ically by end users who trust the original signing author-
ity. Such a system would require a distributed web of trust
based on strong cryptography to allow software packages to
be validated securely on remote machines that may have
never directly communicated with the creating entity. Such
a web could be built with primitives that exist today, such
as PGP signatures or another certificate framework. Addi-
tionally, long term viral distribution of OS patches would
require a user-friendly way to manage patch conflicts (imag-
ine two disconnected developers fixing the same bug) and a
way to condense layered patches to keep the space required
for their distribution in check over time. While storage is rel-
atively large and inexpensive relative to the size of required
packages, there is currently no approach for managing patch
conflicts at any level higher than the source code. Further
research would be required to enable distributed updates in
a transparent and user-friendly manner.

3.4.3 Malware-Tolerant Systems
An important aspect of sustainable defense against mal-

ware will be not only preventing infection (as it will become
increasingly unavoidable), but containing the damage that
follows. One approach to increasing system resilience in-
volves sandboxing different parts of the computer system at
a low level to provide high assurance of isolation and bet-
ter user visibility into system behavior. In security-oriented
operating systems like Qubes [57], virtualization technology
separates small parts of the operating system into isolated
zones with well defined communication permissions and pro-
tocols between them [44]. This minimizes the attack surface
exposed by each component while allowing users to catch
anomalies in communication through intelligent monitoring.
Action can then be taken to replace compromised zones be-
fore the infection spreads to the entire system and user data
is compromised. Replacing a single zone of the system is
much easier and lower-cost than restoring the entire OS. Ad-
ditionally, hypervisors enforcing virtualization security pol-
icy can be simple and minimalistic enough to be formally
verified and guaranteed to meet security specifications [7,
24, 39].

Other resilience models are possible as well, potentially
drawing from existing concepts in fault-tolerant computing
or the design of secure information systems for classified data
[36, 22]. Approximate computing techniques could even be
applied where multiple runs of a computation are attempted
in corrupted environments and results are combined intelli-
gently to catch and repair introduced errors. The high per-
formance computing community is already exploring such
techniques for large scale computing at the limits of er-
ror correcting code memory [17, 53]. As long as the “viral
load” and corruption introduced into the computation was
low enough, useful information could still be extracted from
compromised compute resources.



4. DISCUSSION

4.1 Designing Systems for Collapse
Emphasizing longevity and repairability instead of up front

cost, maximum initial performance, or low size, weight, and
power significantly changes the tradespace in designing a
computing machine [43]. Present day conditions without
limits incentivize design and construction of machines, which
while capable in the present environment, may not be ade-
quate for sustainable computing in an extremely limited col-
lapse environment. Notably, IT professionals often focus on
hardware longevity in planning for overall system longevity,
assuming the availability of valid software, global connec-
tivity, standardized architectures, and a strong network of
software developers. However, in a collapse scenario, access
to both replacement hardware and up-to-date, uncorrupted
software will become limiting system constraints.

4.1.1 User-Mediated Security
An important fundamental paradigm for collapse com-

puting will be putting control of system security back into
the hands of users, with human factors in mind. Cut off
from centralized services of security researchers and patches,
users will need the tools to take system and network secu-
rity into their own hands. Permissions based systems, like
User/Group permissions in Unix derivatives, provide some
security; however, they are often difficult for users to un-
derstand and configure correctly deprived of context, and
present too many uninformative, ignorable prompts [56, 61].
General purpose monitoring tools like file system monitors,
registry watchers, or network traffic classifiers increase sys-
tem transparency at the risk of overwhelming users with
false positive warnings and drowning attack signals in noise
from nominal system operation [61]. Ongoing work on privi-
lege elevation triage and system security transparency could
make systems better able to detect threats from noise by
adapting to expected usage patterns and local states. Once
updates cease, malware that works around rigid security
paradigms will probably proliferate, but well designed human-
in-the-loop security paradigms could continue to function as
non-technical end users modify their best practices in re-
sponse to threats evolving in the wild.

More research could also be done towards establishing
strong user data protection in the face of system compro-
mise. Hardware enforced filesystem access could protect
critical data stores for keys or recovery images by requir-
ing explicit physical action from the user to enable reads or
writes. Hardware could also enforce backup policies, ensur-
ing that recovery copies of data always remain available, or
that attempts to destroy or modify backups are brought to
the user’s attention.

4.2 Social Mechanisms for Maintenance
Per the above analysis, we might expect computing hard-

ware and software to persist in well-maintained environ-
ments for several generations, and in mobile forms for ap-
proximately one generation. This multigenerational effort
relies upon a knowledge and culture of maintenance, and
so may fail for cultural reasons; just as we have considered
the obsolescence of computing hardware and software, so too
must we consider the obsolescence of computing culture, and
how it might persist or rot.

History offers many examples of infrastructural mainte-
nance after a collapse, but two interestingly divergent ones
are the Chinese and Roman road networks built from around
the second century BC to the third century AD, and decay-
ing thereafter. While the Roman network decayed rapidly,
contributing to cultural disconnects of the early Middle Ages,
the Chinese road network was maintained, albeit reduced
from wide roads that could handle drawn carts to narrow
ones designed for wheelbarrows [12]. This maintenance was
performed by cultural organizations such as the Taoist Yel-
low Turbans and Buddhist fraternities as a component of
their training and service. Perhaps computing could con-
tinue similarly after collapse, as public enclaves maintained
by semi-ascetic cultural organizations whose primary focus
may or may not be computing. Such a situation might lead
to a kind of software and hardware monoculture designed
for application by non-technical adherents.

For a social model more preserving of technical develop-
ment effort we can look to the history of early personal com-
puting. As hardware began to enter the mainstream, enthu-
siast groups maintained and created many of the shared un-
derstandings and technologies that allowed individuals to en-
gage with computing [59]. Were post-collapse computing to
follow this framework, much of our current technical knowl-
edge, computing heterogeneity, and software development
ecosystem might be maintained, but with informal software
distribution channels malware could be quite a burden.

Even further back in the history of computing, we recall
the development of LISP, whose fundamental lambda cal-
culus was specified in the mathematics literature [2] two
decades before it was used for computing [34]. Even as
computing collapses, a rich body of computer science lit-
erature could survive. New results in encryption, compil-
ers, and other immediately applicable research could be ar-
gued mathematically before being input to rare computing
resources. Computing could be reserved to polish and fin-
ish work already peer-reviewed, maintaining a capable and
trusted but highly restricted computing resource for the aca-
demic community.

In the discussion of PKI infrastructure above, the impor-
tance of trusted transportation was mentioned; historical
analogues for this might include the early postal systems of
Europe and the Pony Express. Such logistical businesses
could of course benefit heavily from computing themselves;
one could even imagine overlapping competitive transporta-
tion networks offering computing services and software patches
from afar, an environment which would fully explore both
hardware longevity after collapse and the dangers of mal-
ware.

Taken together, these historical examples make it clear
that along with the analyses of hardware and software, the
roles that computing might take in society are important fac-
tors for the continuation of computing after collapse. What
groups will have access to what computing resources? Will
these resources be captured and centralized by groups with
power, or maintained in a decentralized fashion? How will
the education and training necessary to fully utilize and
adapt computing to new societies be passed down from gen-
eration to generation? These questions call for the study
and creation of sustainable and resilient modern computing
cultures.



5. CONCLUSIONS AND FUTURE WORK
Collapse scenarios present existential challenges to the

preservation of computing capability in the post-collapse
context. Hardware, software, and user data all face threats
to survival in an environment with limited replacement part
availability, limited communications and power infrastruc-
ture, and limited software development capabilities. While
there are challenges to maintaining hardware in such a con-
strained scenario, they are relatively well-understood. With
sufficient replacement parts and care, a commodity com-
puter may be maintained and powered for the duration of
a temporary collapse of several decades. Software, however,
presents a set of challenges that are harder to mitigate, as
the detrimental effects of long term disconnection, software
data corruption, and malware are numerous and potentially
devastating.

Further research on computing within these limits could
directly benefit users in today’s collapse scenarios while im-
proving the survivability of computing as a whole. Signifi-
cant areas for future work include: further investigation into
the longevity and care of hardware in use and storage, to
improve the overall environmental sustainability of comput-
ing; development of flexible user-centric security paradigms
so systems can adapt to changing threats without regular
software updates; computing systems designed for secure
full recovery in the face of malware infection; and design of
distribution technologies to allow secure development and
deployment of software without a global Internet.
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