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ABSTRACT
Online labor markets, such as Amazon’s Mechanical
Turk, have been used to crowdsource simple, short tasks
like image labeling and transcription. However, expert
knowledge is often lacking in such markets, making it
impossible to complete certain classes of tasks. In
this work we introduce an alternative mechanism for
crowdsourcing tasks that require specialized knowledge or
skill: communitysourcing — the use of physical kiosks to
elicit work from specific populations. We investigate the
potential of communitysourcing by designing, implementing
and evaluating Umati: the communitysourcing vending
machine. Umati allows users to earn credits by performing
tasks using a touchscreen attached to the machine. Physical
rewards (in this case, snacks) are dispensed through
traditional vending mechanics. We evaluated whether
communitysourcing can accomplish expert work by using
Umati to grade Computer Science exams. We placed Umati
in a university Computer Science building, targeting students
with grading tasks for snacks. Over one week, 328 unique
users (302 of whom were students) completed 7771 tasks
(7240 by students). 80% of users had never participated in
a crowdsourcing market before. We found that Umati was
able to grade exams with 2% higher accuracy (at the same
price) or at 33% lower cost (at equivalent accuracy) than
traditional single-expert grading. Mechanical Turk workers
had no success grading the same exams. These results
indicate that communitysourcing can successfully elicit high-
quality expert work from specific communities.
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Figure 1. With Umati, the communitysourcing vending machine, users
complete tasks on a touchscreen and receive non-monetary rewards.

INTRODUCTION
Crowdsourcing, the division and assignment of tasks to
large, distributed groups of online users, has the potential
to create new jobs, improve the efficiency of labor markets,
and enable a wide variety of new applications. Researchers
have demonstrated compelling new systems enabled by
crowdsourcing, including applications that assist the blind
with visual tasks [8] and that help writers to copy-edit
prose [7]. Many crowdsourcing efforts leverage microtask
markets, which provide platforms for posting and finding
short tasks – frequently seconds to minutes long. One of
the best-known markets, Amazon Mechanical Turk (MTurk),
attracts thousands of employers [15] and has had hundreds of
thousands of worker accounts [30].

One limitation of microtask markets is the difficulty of
accessing groups with domain-specific skills or knowledge.
The short work durations and small rewards attract specific
user demographics [30], limiting the variety of knowledge
and expertise available. In contrast, vertical online com-
munities (such as graphic design site 99Designs [1] and Q&A
site Stack Overflow [25]) successfully gather experts, but they
must either focus on building and maintaining a community
of volunteers [25], or on enticing experts with high rewards
for complex tasks. These hurdles limit the potential for
crowdsourcing of expert work.

To enable crowdsourcing of expert work for short duration
tasks, we introduce the concept of communitysourcing.
Communitysourcing deploys tasks on physical kiosks in
specific locations that attract the right “crowds” (while
repelling the wrong ones), and in contexts where people have



Figure 2. In our study, Umati was deployed in a public hallway. Students
and other building occupants graded CS exam questions on Umati.

idle time (“cognitive surplus” [31]). Communitysourcing
leverages the specific knowledge and skills of the targeted
community; in return, it provides context- and community-
specific rewards that users value more than money.

To explore the potential of communitysourcing, we asked the
following research questions:

• Can communitysourcing successfully enlist new user
groups in crowd work?

• Can communitysourcing outperform existing crowd-
sourcing methods for expert, domain-specific tasks?

• How does communitysourcing compare to traditional
forms of labor, in terms of quality and cost?

We explored these questions by designing, implementing and
evaluating a specific communitysourcing instance: Umati:
the communitysourcing vending machine (see Figure 1). We
built Umati by modifying a commercial vending machine. On
Umati, instead of inserting money, users select and perform
tasks on a high-resolution touch screen. Earned credits can be
used to choose and buy items — an internal computer controls
the motors that operate each of the vending arms.

We tested Umati with a Computer Science exam grading
task. Grading exams is a time consuming, high-volume
job that requires significant domain expertise for consistent,
correct scoring of open-ended questions. Grading can also
be partitioned into many small tasks. We placed Umati in
the primary hallway in our Science building and filled it with
snacks (see Figure 2). Exams covered introductory Computer
Science topics in programming languages, algorithms, and
data structures. Umati successfully targeted a specific pop-
ulation (81% of users were trained in Computer Science or
Electrical Engineering) and achieved significant throughput:
328 participants graded 7771 exam answers in one week, for
approximately $200 of snacks. Umati attracted new workers:
80% of participants had never participated in crowdsourcing
before. We compared communitysourced grades against
grades from a set of ten experts. Umati was able to exceed
the accuracy of traditional single-expert grading (80.3% to
78.3% at the same price) or, alternatively, lower cost by 33%
(at the same accuracy). For comparison, we also recruited
graders on Mechanical Turk; these workers could not grade

Figure 3. Communitysourcing occupies a unique position in the design
space of crowdsourced work: it enables short, high-volume tasks that
require high levels of expertise.

accurately (< 25% agreement with our experts). Our results
suggest that communitysourcing can exceed traditional expert
performance in domains where online crowdsourcing fails.

In this paper, we begin with a discussion of related work
and describe the design space of communitysourcing. We
motivate the choice of an exam grading task, then describe
the implementation of Umati. We follow with a detailed
evaluation of the system and conclude with a summary of our
results and pointers to future work.

RELATED WORK
Communitysourcing touches on prior work in crowdsourcing,
location-based computing, and kiosk systems. Our experi-
mental task also relates to prior efforts in peer grading. We
discuss each area in turn.

Crowdsourcing
Crowdsourcing and human computation are active areas
of research inquiry; recent surveys describe a range of
approaches [21, 28]. Projects have investigated incentives
and game mechanics to motivate workers [35], new
applications enabled by crowdsourcing [7, 8, 36], tools to
develop crowdsourcing applications [22], and algorithms
to coordinate crowd work [5, 6, 20]. Researchers have
also contributed methodologies for conducting experiments
using online labor [13, 19]. Much recent work focuses on
increasing the complexity of work products created by a pool
of unskilled workers through redundant microtasks. While
communitysourcing also targets tasks of short duration,
it recruits domain experts through appropriate choice of
location and incentive (see Figure 3).

The dominant strategy to elicit expert responses or expert
work online has been to build narrow, domain-specific
communities. Topical communities of unpaid volunteers
can provide high-quality answers to technical questions.
However, creating successful online communities is an
uncertain, labor-intensive proposition that requires leadership
and constant monitoring [25]. Some online platforms succeed
in eliciting paid expert work through competitions, e.g.,
InnoCentive for pharmaceutical research [2]; 99Designs
for graphic design [1]; or TopCoder for programming [4].
Competitions are not appropriate for high-volume work
because they strive to find the single best solution among
the submissions. Communitysourcing can provide higher
throughput by engaging many experts in short tasks.



Location-based Computing and Kiosks
Researchers have investigated the role of physical location
in crowdsourcing. In participatory sensing [12], people col-
lect and report data about their environment. For example,
Creek Watch [18] uses GPS coordinates to crowdsource local
watershed measurements. Multiple mobile start-up com-
panies are delivering questions and tasks to members in a
given location [11, 23]. In these systems, users first have
to sign up for the service and agree to have their location
tracked. Communitysourcing attracts people who already
frequent a particular locale through a kiosk interface.

Computer-based kiosks have long been used for self-service
ticketing, banking, and location-specific information, e.g., in
museums [17]. Kiosks have also been deployed in rural areas
and developing countries for Internet access, for unsupervised
education [27, 32], and to aid communities in reconciliation
after civil unrest [33]. Research has focused on security
of such public systems [9] and on facilitating information
transfer between kiosks and other computing devices [14, 16].
To our knowledge, Umati is the first kiosk that elicits work
and rewards workers with physical items.

Education and Grading
Grading open-ended exams is an intrinsically subjective
process. One common mechanism for consistently and
efficiently grading open-ended questions is peer assessment.
Students grading other students can lead to positive impacts
on learning and attitude [24, 34]. Peer assessment is usually
restricted to students within a particular course, and is
prescribed by course staff. In Computer Science, prior work
has investigated web-based peer review of assignments [10].
Averages of redundant peer scores are strongly correlated
with teachers’ scores [29]. Umati generalizes peer assessment
beyond course boundaries: it enlists volunteers and provides
physical rewards to incentivize participation.

DESIGN CONSIDERATIONS FOR COMMUNITYSOURCING
Successful communitysourcing depends on careful selection
of tasks, locations, and incentives. This section discusses
important design considerations for each category.

Task Selection
Communitysourcing is best suited for short-duration, high-
volume tasks that require specialized knowledge or skills
which are specific to a community, but widely available
within that community. Simple tasks without expertise
requirements (e.g., address verification or text transcription)
are a better fit for generic crowdsourcing platforms like
Mechanical Turk. Low-volume, long-duration expert jobs
(like graphic design or programming) are better served by
vertical online markets.

Some representative tasks well-suited for a community-
sourcing approach include grading exams in academia,
bug and tech support triage in technology companies, fact
checking for journalism, and community-specific market
research in bars or specialty shops. Short task durations
enable users to work on a kiosk without ergonomic issues,
and enable many user to participate. Public kiosks can

potentially attract a large number of users, supporting, as well
as requiring, a high task volume.

Location Selection
A communitysourcing system must target those locations
where the required skills are prevalent. The locations
must also repel those without the required knowledge. For
instance, placing a kiosk in a bar could potentially target
young men with market research tasks – but the kiosk would
also be accessible by young women. A better location to
exclusively target men would be their restroom at the bar.

The targeted community must also have some “cognitive
surplus” [31] available for doing work. Practically, this means
placing the kiosk in an area where people have spare time,
e.g., in lounges, government office waiting rooms, or airports.

Reward Selection
Rewards must be interesting and valuable to the targeted
community in the given location. For instance, airport
travelers may value Wifi Internet access. In contrast, Wifi
access has lower utility on a college campus, where free
Internet is readily available. While cash is an obvious re-
ward (consider an ATM-like kiosk), it has been shown that
individuals can value items more than money in specific
contexts and locations [26].

COMMUNITYSOURCING IN ACTION
For our deployment, we chose exam grading as an
experimental task, a university department as the location,
and snacks as rewards. This section briefly justifies these
design choices in light of the earlier design guidelines for
communitysourcing.

Task: Grading exams is a painful, high-volume task for
teaching staff. An individual student answer can be graded
quickly, but large courses with hundreds of students generate
thousands of answers. While people outside an academic
discipline are unlikely to possess the requisite knowledge
to grade open-ended problems, redundant peer grades are
strongly correlated with expert scores [29], suggesting that
students can grade each others’ assignments and exams.

Location: College campuses commonly assign buildings
to disciplines (departments). These buildings rarely attract
visitors outside the discipline. Our Computer Science (CS)
building supports mainly CS classes, along with a few
unrelated events. We placed our kiosk in front of the major
lecture hall in the CS building, an area where students often
wait for class to begin, maximizing the cognitive surplus.

Reward: Food is the most common reward given to
entice students to participate in campus events. Companies
commonly provide pizza to bring students to recruitment
events; teachers bring candy to class sections to entice
participation. We decided to use snacks as our reward. This
choice also impacted the physical design of our kiosk. The
most common system for distributing snacks is the ubiquitous
vending machine; it is familiar and clearly communicates the
nature of the rewards being distributed.



Figure 4. Umati uses an internal laptop to control a touchscreen, USB
card reader, and the vending motors. Users complete tasks on the
touchscreen for rewards from the machine.

These design decisions guided our implementation of Umati:
the communitysourcing vending machine, as described in the
next section.

UMATI: SYSTEM IMPLEMENTATION
The Umati system comprises custom vending hardware; a
generic software platform for work tasks; and specific task
user interfaces. We describe each in turn.

Hardware: Hacking a Vending Machine
Umati is a modified commercial vending machine (specifi-
cally, a 1986 Snackshop 4600, Figure 1). We removed all
legacy vending equipment (the bill exchanger, coin reader,
keypad interface, analog motor-control circuit boards),
leaving just the vending shelves and dispensing mechanism.
We installed a touchscreen and keycard reader on the front of
the machine, which provide the primary user interface (see
Figure 4). Users must first swipe their magnetic strip ID card
(given to all students, faculty, and staff on campus); card IDs
enable Umati to distinguish users, though our prototype does
not link card IDs to users’ names. Users complete tasks on
the touch screen interface which is connected to an internally
mounted laptop.

Rewards are dispensed through programmatic control of the
vending mechanisms. The shelves use metal spirals driven
by DC motors. The motor leads form a row-column matrix:
when a particular row lead is powered and a column lead
grounded, the motor at the intersection of row and column
spins, dispensing an item. We attached the row-column end
points to relays controlled by an Arduino microcontroller, and
programmed the microcontroller to respond to vend requests
from the laptop over a serial link. Motors spin uniformly
enough to vend items with open-loop control, powering
motors for a fixed amount of time.

Figure 5. Umati’s UI, clockwise from top left: introductory attract
screen, task selection, survey task, grading task, image labeling task,
and vending interface.

Software: Maximizing a Small Touch Screen
We developed the Umati software using Python and the
PyQt4 UI toolkit. Umati’s architecture was designed as a
generic task platform: each task and its user interface are
written as plug-ins to a work management system. As a result,
Umati supports many task types besides exam grading.

When the machine is idle, it displays an attract screen: a
looping video demonstrating how to log in by swiping an
ID card (see Figure 5). After swiping, users are presented
with the Task Selection screen, allowing them to choose their
task. If there is just one available task, the selection screen is
bypassed and users are immediately presented with that task.
The user’s earned credits are shown in the top left, and stored
across work sessions. When a user wishes to cash in their
credits, they switch to the Vending interface which provides a
software keypad to select the tray of the desired item.

Tasks
We have implemented a variety of tasks for Umati: math
tests, CS GRE questions, surveys, exam grading, and image
labeling. Some of these task interfaces are shown in Figure 5.
For our evaluation, we tested just two: surveys and grading.

Surveys: The survey task constructs an interface from
an external XML file that defines questions and multiple
choice answer sets. For our deployment, Umati had a
basic demographic survey which collected age, department,
educational status, and prior exposure to crowdsourcing.
Every user was required to complete this survey before
starting another task on Umati.



Figure 6. The Umati grading interface shows a question, an answer key,
and an image of a student response. Workers assign points with a slider.

Grading: The grading interface presents three panels of
information simultaneously to the participant: the question,
the instructor’s answer key, and a student answer (see
Figure 6). Each panel can be opened and closed using toggle
buttons on the top row, to maximize the limited screen space.
Each panel also allows panning by dragging and zooming by
double-tapping. Grades are gathered on a numeric scale: the
user enters the grade using a slider widget. Upon submission,
Umati presents another student answer to the same question,
if one is available. This allows a user to memorize the
question and answer key, accelerating their grading of student
answers. It also supports grading privacy, as graders cannot
easily grade all of a specific student’s answers. Users cannot
grade the same exam answer twice.

Spam Detection: Incorrect or low-quality responses
(“spam”) are common for crowdsourcing; workers often
complete tasks quickly and with little thought in order to
maximize their earnings. To account for this tendency,
Umati implements a simple spam detection system. Each
task definition includes “gold standard” tasks, comprised
of a task with a known correct response. If a user fails
two of these tasks, that user is logged out and their ID
is blacklisted from future use. Inserting such checks is
a well-established technique for improving the quality of
crowdsourced work [19].

EVALUATION
Our evaluation sought to answer three primary research
questions about communitysourcing: Can it enlist new
user groups in crowd work? Can it outperform existing
crowdsourcing methods? And can it match more traditional
approaches, in terms of cost and accuracy?

Study Design
We created a set of Computer Science exams with answers.
Three groups of participants graded the exams: users of
our vending machine (Umatiers), Mechanical Turk workers
(Turkers), and a group of former or potential Computer
Science teaching assistants (Experts).

Exam Corpus
We created a custom exam from prior mid-term questions
of our Computer Science department’s second-semester
undergraduate course, CS2. The exam was comprised of 13
questions covering basic complexity theory, object-oriented
programming, search algorithms, and bit operations. Eight
undergraduate students were recruited as test-takers. These
students had recently completed CS2 or were enrolled at the
time of the study. Students completed the exam on paper. For
our gold standard tasks, we added an exam completed using
the instructor’s grading rubric, giving us question/answer
pairs that are always correct. These answers were used for our
spam detection algorithm. 105 sample exam answers were
generated in total. Test-takers received either a 5 USD gift
card, or could make an equivalent charitable donation.

Common Grading Instructions
Graders in all conditions were asked to assign 0 to 4 points
for each question. The Instructor’s answer key was used
as the grading rubric. The rubric provided no instructions
for assigning partial credit. While all questions required
computer science knowledge to produce a correct answer,
they varied in the amount of knowledge required to assess
that answer. Some were simple, requiring only basic pattern
matching for identifying correct answers. Others were open-
ended, requiring a deeper understanding of the underlying
material. Assigning partial credit for incomplete answers
always required domain-specific knowledge.

For the exam we tested, five questions were simple, while
eight were open-ended. An example open-ended question and
grading rubric follows:

Q: Briefly explain the difference between a (Java) instance variable
and a (Java) class variable.

A: Each object has its own distinct copy of an instance variable. But
all the objects in a class share just one ’copy’ of a class variable.

Paper exams had a defined answer box for each question. We
used Shreddr [3] to extract scanned answers from the exams.
These images of answers were shown in the grading interface
(Figure 6). Three sets of participants then graded the exams:
1) Umati users, 2) Mechanical Turk users, and 3) experts
recruited from a pool of qualified students. These conditions
are described in more detail below.



Grading on Umati
We deployed Umati outside the main Computer Science
lecture hall for one week. This lecture hall is primarily
used for undergraduate courses, although graduate students,
staff, faculty and visitors also frequent this centrally located
ground-floor area. Users received no other introduction to the
system or tasks besides the looping video instructing them to
swipe their card.

The machine was loaded with $200 worth of candy. Users
earned one credit per graded answer, and five for completing
the survey. Most items were priced at 20 credits (with some
priced at 10 and 30). In a small pilot study, we found
that users completed roughly 20 tasks in five minutes. We
estimated that five minutes was the maximum amount of time
users would be willing to spend in front of a vending machine
at any one time. Candy was purchased from a local bulk
wholesale store at an average of 45 cents per item. At this
price, Umatiers were paid 2.25 cents per answer, in candy.

Grading on Mechanical Turk
Workers on Amazon’s Mechanical Turk (Turkers) graded the
same exam questions and answers, on a web interface that
was similar to the Umati touch screen interface; workers
saw the question, the answer key, and the student’s answer.
Each Human Intelligence Task (HIT) consisted of grading
all 9 answers to the same question (8 students and the
experimenter’s gold standard), paying 23 cents (2.6 cents /
answer). We posted 130 HITs on Turk, obtaining 10 sets of
grades for each student answer.

Turkers answered the same gold standard questions as Umati
users, and we applied a similar spam detection algorithm.
We present two sets of results: 1) all Turkers (regardless
of gold standard performance); and 2) the subset of Turkers
that passed the spam filter (failing at most one gold standard
question). As with Umati, any answers provided before a
second failed question are used in our analysis.

After a first set of workers completed our grading HITs,
we also attempted to recruit more knowledgeable Turkers
through a qualification test. Workers had to pass the test
before they could grade exam answers. The test comprised
five multiple choice questions on computational complexity
and Java. For example:

What is the Big-O run-time of the following algorithm?
function(arg1, arg2):

return arg1+arg2

A: O(1) B: O(logn) C: O(n) D: O(nlogn) E: O(n2)

For these qualified Turkers we offered 25 cents per set of 9
grades (2.8 cents /answer).

Grading By Experts
Ten former or potential CS teaching assistants graded the
exam corpus on paper. These graders included: one graduate
instructor for CS 2, one high-scoring undergraduate (received
an A in CS 2), and eight CS PhD students. All had prior
teaching experience. Each participant was paid 25 USD in
Amazon credit to grade all 105 answers.

At our university, only graduate students are allowed to grade
exams. Graduate students earn over 38 dollars per hour, when
including basic tuition and fee remission. On average, experts
graded 115 answers per hour, for an effective rate of 34 cents
per answer. All of the expert graders passed the gold-standard
spam detection algorithm, as should be expected.

Measures
Grading is inherently subjective — even experts can disagree.
To enable meaningful comparisons between our different
conditions, we define dependent measures that compare
grade distributions and agreement with median expert scores.

Comparing Grade Distributions
For both crowdsourced grading methods, Umati and
Mechanical Turk, we compute a Chi Squared test
statistic across the 105 exam answers to determine if the
distribution of crowdsourced grades in either condition differs
significantly from the expert distribution.

Grade Agreement
To measure the grading accuracy of our approach, we use the
median of all expert graders (median expert grade) as the
“correct” grade for a student’s answer. We then compute
grade agreement as the percentage of exam answers for
which the median Umati and Turk grades match the median
expert grade.

The status quo is to use a single expert grader, not the median
of multiple graders. To investigate the relationship between
grading accuracy and the cost of recruiting additional graders,
we randomly sample (with replacement) subsets from each
distribution of graders (expert, Umati, and Turk). For
instance, we sample a single expert grader from the expert
distribution, and compare that to the median expert grade for
all exam answers. Similarly, we also sample subpopulations
(for instance, seven Turkers), take the median of their grade
distribution, and compare that to the (“correct”) median
expert grade for all exam answers. This is repeated 1000
times to compute the subgroup grade agreement (e.g.,
between seven Turkers and all ten experts).

Results
We report descriptive usage results, comparisons of the
experimental conditions, and qualitative observations.

Umati Users
328 participants graded 7771 exam answers on Umati in
one week. Figure 7 shows self-reported demographic data
from the survey. The users were primarily undergraduate
computer scientists. 80% of Umati users had never previously
participated in any online crowdsourcing activity (showing
that Umati engaged new users in crowdsourcing). Users who
successfully completed at least one task had a median usage
time of 4 minutes, completing an average of 16 tasks. The
most active user (or group, see below) worked continuously
for more than an hour, completing 85 tasks in a row. Several
users completed all 105 of the grading tasks. 61 users (19%)
were blacklisted by the system for failing gold standard tasks.



Figure 7. Descriptive statistics for one week of Umati use.

The high failure rate may be a consequence of the machine’s
novelty: users may have explored the interface without
understanding the consequences of incorrect answers.

81% (268) of Umati users majored in Computer Science or
Electrical Engineering; both groups are required to take CS
2. Our system was able to effectively engage our target
population and complete a large number of tasks. This
demonstration of Umati’s ability to target crowdsourcing
work to hundreds of unique, expert users over the span of
just one week is a primary result of our work. We also note
that these numbers were achieved despite limited resources:
twice, our vending machine was emptied of snacks in less
than two days; we refilled once. Effectively, the machine ran
for four of the seven days.

Mechanical Turk Users
We gathered 1050 grades in three days using Mechanical
Turk. 46 unique Turkers graded exams, with 16 (35%)
failing the spam detection (incorrectly grading two or more
gold standard questions). While we offered higher wages
to workers who passed the CS qualification, no workers
successfully qualified during our experiment. We conclude
that a qualification exam is not an efficient mechanism
for attracting workers with computer science knowledge on
Mechanical Turk.

Comparing Grade Distributions
We computed the distribution of grades for each exam answer
from experts, Turkers and Umatiers. These distributions were
summed across all responses, and across all answer items,
to produce the statistic used to test the potential differences
between response distributions.

Chi Squared tests find a significant difference between the
expert and either Turker score distribution (PTURK < .001
and PTURKNoSpam

< .001). We see no such significant
difference between the experts and Umati users (0.263 <
PUMATI < .997) 1. This suggests that the Umatiers, on
aggregate, grade similarly to experts; Turkers do not.

1The 105 survey items allowed for 5 score options, zero to four.
Each individual answer’s distribution then has 4 degrees of freedom
(knowing the probability mass in bins 0 through 3 fixes the amount
of mass in bin 4). From this, we know the number of degrees of
freedom for the overall Chi Squared test is at least 4×105 = 420 and
at most 5×105−1 = 524, depending on the amount of dependence
between the student answers. This provides us with bounds on the
p-values of each experiment.

Figure 8. Agreement between conditions and the median of the 10 expert
graders. Umati users’ response distributions were much closer to the
experts than distributions of Mechanical Turk users.

Figure 9. Comparing grade agreement between the the experts and our
test conditions. Umatiers and single experts often agreed with the pool
of experts. Turkers were consistently random.

Comparing Grades
Umati users agreed with the experts’ median grade 85% of
the time (Figure 8). In comparison, Turkers only agreed with
experts 19% of the time; this figure increases only slightly to
21% with spam filtering. 2

Figure 9 shows how different graders diverged from the
grades of all expert graders. Boxes along the diagonal show
agreement with experts. Individual experts and Umatiers
agree strongly with all experts on assigning full credit or
no credit. Single experts appear to have less variance than

2Random guesses have an expected agreement of 20% on a five-
point scale.



Umatiers when assigning partial credit. We reserve a careful
study of systematic biases to future work. MTurk workers’
responses have no discernible pattern, leading to a generally
centered (2/4) median score.

Price-Accuracy Trade-off
We explore the effects of assigning varying numbers of
graders on accuracy by sampling subgroups from the
distribution of experts, Turkers, and Umatiers and calculating
median agreements for these groups to all experts.

Figure 10 plots agreement as greater numbers of respondents
are considered. Individual expert graders agreed with the
median of all experts 78.3% of the time. Ten Umatiers agreed
79% of the time, but cost 33% less (10×2.3 = 23 cents/grade
vs 34 cents/grade). Mechanical Turk users never approximate
the experts, regardless of their number. In fact, Turkers
are less likely to agree with the median expert grade as the
number of respondents increases.

If we keep cost constant, Umati is more accurate than a
single expert grader (see Figure 11). Thirty-four cents
can buy one expert answer, with an accuracy of 78.3%;
or fifteen Umatiers, who have an accuracy of 80.3%.
Because result quality is achieved through multiple graders
at lower individual pay, it is easy to increase or decrease the
accuracy by adjusting the number of redundant assignments.
Additional workers can also be dynamically assigned to more
difficult or controversial cases where initial ratings diverge,
while the number of assignments can be held low for answers
that are clearly correct or incorrect.

Qualitative Observations
Throughout the week-long deployment, we observed users
to obtain feedback on usability and user experience. At
times, student interest was higher than our single machine
could handle: queues formed in front of the machine.
We noticed that groups of students often used the system
together (see Figure 2). Some groups were formed ad-hoc,
by students waiting in line. Other groups approached the
machine together. Using Umati seemed to be a social event;
groups would argue about the specific merits of different
answers. Such additional discussion is an unexpected sec-
ondary benefit: academic departments will likely welcome
increased discussion of class material by their students.
Groups would also share the rewards, for instance splitting
a bag of candy amongst the participants.

However, groups could also negatively impact grading:
student groups seemed more inclined to attempt to defraud
the system. One group attempted to pry open the door.
Queues of waiting students potentially limit the throughput
of the machine, but are hard to avoid — physical interfaces
do not scale easily. A number of users complained that
they were unjustly blacklisted. Often this was because
they had forgotten to log out. A few users reported being
removed because they were exploring and were not aware
of the repercussions. Better instructions about safeguarding
mechanisms could address these problems.

Figure 10. The accuracy of Umati users becomes comparable to a small
number of experts as more participants are involved. Here, we show the
point where Umati accuracy surpasses that of a single expert.

Figure 11. Accuracy (compared with all experts), for experts and Umati.
One expert grader costs the university approximately 34 cents/task.

DISCUSSION
In this section we discuss some important limitations of
Umati and of our particular study design. We also discuss
possible alternative strategies for communitysourcing.

Privacy and Confidentiality for Grading
Publicly displaying student answers raises obvious privacy
and confidentiality concerns. For example, handwriting
might reveal the identity of a test taker. Students may not
want peers grading their exams (though peer grading already
exists in different forms at many schools). For the experiment
described in this paper, paid participants generated exam
answers; students’ course grades were not determined by
Umati workers. In the future, Umati can be used in situations
where students have consented to this form of grading at
the outset of a course. Alternatively, Umati can be used for
many forms of assessment with lower stakes, e.g., homework
grading or practice exams.



With the current design, students may also attempt to game
the system by providing high grades to their own (or their
friend’s) answers. We limited this concern by forcing graders
to view all submissions to one question before moving on to
the next questions. Attackers thus must grade every answer
to every question in order to comprehensively cheat for just
one student. Umati also gathers the student’s ID, allowing
us to programmatically block them from grading exams for
classes they are enrolled in, or have not yet taken. To reduce
the risk of cheating and of inadvertent identification by peers,
test-takers and test-graders could also be geographically and
socially separated – for example, students on the East Coast
could grade assignments from students on the West Coast,
and vice versa.

Study Limitations
Our current study has several important limitations that
should be addressed in future work.

No Comparison to Expert Work Platforms
We compared the effectiveness of grading tasks on Umati
to Mechanical Turk. However, other crowdsourcing
technologies could potentially be useful for grading. For
instance, the computing experts on Stack Overflow [25]
should have the expertise required to assess introductory
exams. Similarly, we could hire a contractor on oDesk.

We are skeptical that these other engines are well suited
for short-duration, expert tasks like grading. An individual
expert (as on oDesk) is unlikely to be better or cheaper than
the student graders we compared against. Stack Overflow
workers provide the best answer to a question, disallowing
the high-volume of tasks needed for grading. However, we
have not yet tested whether these intuitions hold.

Short Deployment
A major limitation of our study is the short one-week duration
of the deployment. High initial usage led to task starvation:
we did not have enough sample tasks for graders. After one
week, each exam response had already gathered an average
of 68 grades.

While we know that the initial interest was high, we cannot
yet comment on sustained, steady-state usage of Umati. We
observed that more tasks were completed in the latter half
of our deployment, suggesting that user momentum was still
building. We are actively seeking new high-volume tasks for
future deployments.

Similarly, we cannot say how much of this initial interest
in Umati was due to the specific properties of our targeted
crowd. It may be that Computer Science students are more
excited about crowdsourcing than other groups. We hope to
resolve this by targeting different communities (with different
tasks) in the future.

Interface Affordances Limit Work Duration
We chose grading as an example communitysourcing task for
Umati in part because it could be achieved with minimal user
input. Umati’s design might preclude many other types of

work. This is primarily due to its limited input and output
affordances: a 7-inch vertical touch-screen is inefficient and
error-prone for many data-entry heavy tasks. Kiosks must
appear approachable to attract users and be robust to public
abuse. Overly complex interfaces can create challenges for
achieving these goals.

An alternative would be to divide work and reward interfaces:
experts could perform work on their own computers or
smart phones, e.g., through a web interface, and then come
to a nearby kiosk or vending machine to redeem their
rewards. In such a design, the kiosk would primarily enforce
locality and community membership. However, this design
would reduce the social visibility of the machine: in our
deployment, students were frequently attracted by watching
other students use Umati. In addition, communitysourcing
requires available cognitive surplus. There are few other
distractions in a public hallway; spare time may be more
difficult to find when competing with a myriad of ways to
spend time on the Internet. We reserve further study of these
questions for future work.

Applications of Communitysourcing to Other Problems
Our study demonstrated the value of communitysourcing for
one particular task domain and reward type. Grading is just
one example of a high-volume task that requires an expert
population; we could instead provide specialized surveys.
Snacks are just one of many possible rewards; students may
prefer video game currency to snacks. In the future, we plan
to develop alternative embodiments of communitysourcing,
and to develop a theory of how the combination of task,
location and reward affect work quality and quantity. For
example, future deployments could include: a bug triage
espresso machine in the lounge of a big technology company;
a jukebox with market research tasks at a bar; or a slot
machine in the airport with travel review tasks.

CONCLUSION
In this work we introduced the idea of communitysourcing
— the use of physical kiosks to crowdsource work from
targeted populations. Communitysourcing is achieved by: 1)
situating tasks in specific physical spaces that attract the right
“crowd” and where people have idle time and 2) providing
physical, context- and community-specific rewards that users
value more than money. These two key points invite new
expert workers to participate in short duration crowd work.

To explore the potential of communitysourcing, we designed,
implementing and evaluated a specific communitysourcing
interface for a particular expert task. Umati, the
communitysourced vending machine enabled users to earn
credit for purchasing snack items by performing grading
tasks on a touchscreen. We investigated whether Umati
can recruit new users: over one week, Umati successfully
targeted a student community, with 302 students (of 328 total)
grading 7240 (of 7771 total) exam answers. 80% of all the
users had never participated in crowdsourcing before. We
also investigated how task quality compared to both online
crowdsourcing and traditional, offline work.



We found that Umati was able to grade exams more
accurately (80.3% vs 78.3% at the same cost), or at lower
cost (23c/answer vs 34c/answer at equivalent accuracy), than
traditional single-expert grading. Workers on Mechanical
Turk were unable to successfully grade the exams.

In the future, we would like to test Umati over a longer
period of time, to observe patterns of use and investigate the
long-term prospects of expert work on kiosks. We would
also like to consider alternate communitysourcing scenarios
with varying configuration of task, location and reward; for
example, one where users could complete tasks online using
their own computers, obtaining one-time keys that can be
redeemed for credit.
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