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Compaction: Introduction
After P&R, the layout is functionally complete
Some vacant space may still be present in the layout

Due to non-optimality of P&R
Compaction = removing vacant space

Improves cost, performance, and yield
Key for high-performance full-custom layouts
Standard cells – only channel heights may be 
minimized

But channel compactors are near-optimal
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Layout Compaction
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Compaction: Introduction
Compaction tries to minimize total layout area while

Retaining speed
Respecting violating design rules and designer-

specified constraints
Three ways to minimize the layout area

Reducing inter-feature space
Check spacing design rules

Reducing feature size
Check size rules

Reshaping features
Electrical connectivity must be preserved
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Cross-Section of CMOS Technology

Jan Rabaey
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Design Rules

Interface between designer and process engineer
Guidelines for constructing process masks
Unit dimension: Minimum line width

scalable design rules: lambda parameter
absolute dimensions (micron rules)

Jan Rabaey
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CMOS Process Layers
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Intra-Layer Design Rules
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Via’s and Contacts
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Different Approaches to Compaction
One dimensional vs. two-dimensional compaction
1-D compaction

Components moved only in x- or y-direction
Efficient algorithms available

2-D compaction
Components may be moved both in x- and y-direction
More effective compaction
NP-hard

Determining how x and y should interact to reduce area is 
hard!

Historical interest: Constraint-graph based compaction vs. virtual 
grid based compaction

Virtual grid methods are fast and simple. Results in larger area.
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Historical interest: Virtual Grid Compaction

5 10 150 12 5 10 150 9
Every features is assumed to lie on a virtual grid line
Required to stay at grid locations during compaction – no distortion of topology
Compact by finding min possible spacing between each adjacent pair of grids

Min spacing is given by worst-case design-rule for any feature on the grid
Advantage: algorithm is simple and fast
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Constraint-based Compaction

Early tools: Floss, Cabbage, SLIP, SLIM, Sticks

5 10 150 95 10 150 12

Group
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Layout Constraints
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For a given layout instance, all features may be described by a set 
of placement constraints
These layout constraints are imposed by design rules

Min spacing (separation) design rules
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Expressing constraints
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d ≥ origin + 1

c ≥ b + 2
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Assuming a left-to-right ordering, can capture constraints by non-equalities
Example: if c is to the right of b, and they have to be 2 units apart: c ≥ b + 2
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Constraint Graph Generation
Constraint graph generation is the most time-consuming 
part of constraint-based compaction, approached naively 
O(n2)

In the worst case, there may be a design rule between 
every shape of layout

In reality only a small local subset of constraints are 
needed
First generate connectivity (grouping) constraints
In generating separation constraints, need to define a set of 
non-redundant constraints
Shadow-propagation algorithm
Scan-line algorithm
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How do we solve these constraints?
c
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What is a mathematically efficient way to solve these constraints?
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Use graphical structure
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We can construct a constraint graph to capture layout constraints

K. Keutzer/R. Newton 22

Problem formulation - 1
Use a labeled directed
graph 
G = <V,E>
Vertices layout objects
Edges represent 
constraints between 
vertices
Labels represent 
constraint values
Now what do we do 
with this?
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Hint: What problem does this remind you of?
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Problem formulation - 1
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Use a labeled 
directed graph 
G = <V,E>
Vertices layout 
objects
Edges represent 
constraints between 
vertices
Labels represent 
constraint values
Now what do we do 
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Problem formulation - 2
Goal of 1-D compaction is to generate a minimum 
width layout
Determination of minimum width is equivalent to 
solving a longest path problem
The longest path from source to a vertex is the 
coordinate of the vertex
In practical layouts, the constraints graphs are very 
local

Most edges represent very local constraints in the 
layout

Theoretically, run time is O(|V|+|E|)
Practically, run time is close to linear in |V|, the size 
of the layout!



Page 13Copyright © Kurt Keutzer

K. Keutzer/R. Newton 25

Problem formulation - 3
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Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>))
if all incoming edges of w have been traversed

add w to W
}
Longest path(G)

Forward_prop(Origin)
}

0

Origin

(FLOSS, Cho, Korenjak,
Stocton 1976 )
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Algorithm Execution -1
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Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>)) 

if all incoming edges of w have been traversed
add w to W

}
Longest path(G)

Forward_prop(Origin)
}
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Algorithm Execution - 2
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Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>)) 

if all incoming edges of w have been traversed
add w to W

}
Longest path(G)

Forward_prop(Origin)
}
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Algorithm Execution - 3
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Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>))

if all incoming edges of w have been traversed
add w to W

}
Longest path(G)

Forward_prop(Origin)
}
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Algorithm Execution - 4

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15
.20

.20

.6

Z

Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>))

if all incoming edges of w have been traversed
add w to W

}
Longest path(G)

Forward_prop(Origin)
}

O

0

0

0

Origin

.1

1.1

.8 .95

K. Keutzer/R. Newton 30

Does graph always have a solution?
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What if we added this edge?
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Graph does not always have a solution
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Check for cycles in a graph G = <V,E,constraints,Origin> (Origin is the super-source of the graph)
depth_first_search(v){

if visited(v) == TRUE
then

return ``ERROR, CYCLE IN GRAPH WITH PATH THROUGH v’’
else

visited(v) = TRUE
for each edge <v,w> from v

depth_first_search( w)
}
check_for_cycles(G){

depth_first_search(Origin)
}
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x ≥ f + .1

Algorithm breaks down because of cycles
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First Elaboration - Equality Constraints -1
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Inequality constraints capture min spacing design rules
Need also to capture grouping constraints

Features from same circuit component
Need to be moved together

Grouping constraints are described by equality constraints
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First Elaboration - Equality Constraints -2
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Reflecting Equality Constraints

e ≥ c + 1
c ≥ e - 1

I I

I
I

≥ 1 ≥ 2 ≥ 1

≥ 3
≥ 2

≥ 1

b

origin

c

e
d

≥ -1

What challenges does this pose to our algorithm?
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Dealing With Legitimate Cycles 
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Can we use the longest path algorithm on graphs with legitimate 
negative-edge cycles?
Topological longest path algorithm can’t handle them.
Can use a Bellman / Moore algorithm for general graphs

Run time is O(|V|*|E|)
Run time of topological longest path algorithm on DAG is O(|V|+|E|)
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Alternative Approach to Equality Constraints

e =  c + 1
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Handle equality constraints independently
Build independent graph for equality constraints
Express inequality constraints between designated representatives
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Handling Equality Constraints

origin = x + 1

origin = y + 1
v =  w + 2

w =  u – 2 i.e. u = w + 2
z = y  + 1
origin = z + 2

u =  t - 3 i.e. or  t = u + 3

origin

x y

1 1

z
1

2

v

w

t

2 -3

u
-2

0

-3
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Handling Equality Constraints

v =  w + 2
origin

x y

1 1

z

2

v

w

t

2 -3

u

0

w =  x + 2

w (v - 2) = x (origin - 1) + 2
v – 2 = origin - 1 + 2 

v  = origin + 3

3

2

Generally, this 
is known as the 
union-find 
algorithm

w =  u - 2 or u = w + 2

u =  t - 3  or  t = u + 3

origin = x + 1

origin = y + 1

y = z  + 1
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Constraint-Based Compaction 
Approach: Overview

Build constraint graph
if equality constraint

add to equality constraint graph
if inequality constraint

find distinguished representatives of each vertex in constraint
add constraint between distinguished representatives

Check for cycles in inequality constraint graph
If cycles exist terminate with error

Solve equality constraint graph
Solve inequality constraint graph
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Compaction Enhancements

1-D constraint-based compaction problem can be formulated optimally 
and computationally efficiently
In real circuits what we want is often more complex than can be 
captured in simple linear inequalities of the form: 

e ≥ c + 1
Or equalities of the form:

u =  t – 3
For example:

Wirelength minimization
Spacing, slack distribution
Jog introduction

Improving area minimization using:
1 ½ D compaction
2D compaction
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Enhancements: Sliding/Spacing Terminals

Python, Sparks
(requires use of upper as well as lower-bound constraints)

5 10 150 75 10 150 12
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Wire-Length Minimization

Features not on the critical path will be pulled towards a layout edge 
because they are given their minimal legal spacing
May lead to increased wire length and slower circuit performance
Can re-distribute ‘slack’ (the available empty space) to the features 
not on the critical path

I

I

≥ 1
≥ 1

≥ 3
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Jogs in “Wires”

Cabbage, SLIP, Dumbo

5 10 150 12 5 10 150 6
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One-and-a-half Dimensional Compaction

G D

C

E F

A B

G D C F

A nill B

G D

C

E F

A B

G D E F

A B
C

C compacted up C compacted down If we could just
bump C over
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One-and-a-half Dimensional Compaction
Key idea: provide enough lateral movements to 
blocks during compaction to resolve interferences
Algorithm starts with a partially compacted layout 
(two applications of 1-D compaction)
Maintain two lists – floor and ceiling
Floor is a list of blocks visible from the top, ceiling is 
the list of blocks visible from the bottom
Select the lowest block in the ceiling and move it to 
the floor maximizing the gap between floor and 
ceiling.
Continue until all blocks have been moved from 
ceiling to floor.
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1-Dimensional Compaction in 2D

X then Y 1D Compaction Y then X 1D Compaction
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True Two-Dimensional Compaction

Two dimensional compaction is NP Hard (C. K. Wong, 1984)
Choosing how two dimensions should interact to produce optimal is hard
Can formulate as integer-linear programming problem

Worst-case complexity is exponential

2D Compaction
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What makes 2-D compaction hard?

Two dimensional compaction is NP Hard (C. K. Wong, 1984)
Choosing how two dimensions should interact to produce optimal is hard
Can formulate as integer-linear programming problem

Worst-case complexity is exponential

2D Compaction
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Choices

a ≥ b + 1

5 10 150
12 5 10 150 6

a ≥ b + 1

b

a a

b
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Background Material

Handout:
Chapter 2: entitled Images of Algorithms and Techniques for 
VLSI Layout Synthesis, Kluwer Academic Publishers, 1989.
pages 6 - 30..

Algorithmic background:
Introduction to Algorithms, T. Cormen, C. Lesierson, R. Rivest, 
The MIT Press, Second Printing, 1996.

depth-first search 477-485
shortest paths 514-578 (probably overkill for our purposes)
union-find algorithm (disjoint forest implementation 448)


