
Page 1Copyright © Kurt Keutzer

Layout Compaction

Prof. Kurt Keutzer
Prof. A. R. Newton

UC Berkeley
Prof. M. Orshansky
UCB U of Texas

K. Keutzer/R. Newton 2

RTL Design Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library

physical
design

layout

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Module
Generators

Manual
Design

Page 2Copyright © Kurt Keutzer

K. Keutzer/R. Newton 3

Physical Design: Overall Flow
Read Netlist

Initial Placement

Placement
Improvement

Cost Estimation

Routing Region
Definition

Global Routing

Input

Placement

Routing

Output
Compaction/clean-up

Routing Region
Ordering

Detailed Routing

Cost Estimation

Routing
Improvement

Write Layout Database

FloorplanningFloorplanning

K. Keutzer/R. Newton 4

Layout Compaction
Read Netlist

Initial Placement

Placement
Improvement

Cost Estimation

Routing Region
Definition

Global Routing

Input

Placement

Routing

Output
Compaction/clean-up

Routing Region
Ordering

Detailed Routing

Cost Estimation

Routing
Improvement

Write Layout Database

FloorplanningFloorplanning

Page 3Copyright © Kurt Keutzer

K. Keutzer/R. Newton 5

Compaction: Introduction
After P&R, the layout is functionally complete
Some vacant space may still be present in the layout

Due to non-optimality of P&R
Compaction = removing vacant space

Improves cost, performance, and yield
Key for high-performance full-custom layouts
Standard cells – only channel heights may be
minimized

But channel compactors are near-optimal

K. Keutzer/R. Newton 6

Layout Compaction

Page 4Copyright © Kurt Keutzer

K. Keutzer/R. Newton 7

Compaction: Introduction
Compaction tries to minimize total layout area while

Retaining speed
Respecting violating design rules and designer-

specified constraints
Three ways to minimize the layout area

Reducing inter-feature space
Check spacing design rules

Reducing feature size
Check size rules

Reshaping features
Electrical connectivity must be preserved

K. Keutzer/R. Newton 8

Cross-Section of CMOS Technology

Jan Rabaey

Page 5Copyright © Kurt Keutzer

K. Keutzer/R. Newton 9

Design Rules

Interface between designer and process engineer
Guidelines for constructing process masks
Unit dimension: Minimum line width

scalable design rules: lambda parameter
absolute dimensions (micron rules)

Jan Rabaey

K. Keutzer/R. Newton 10

CMOS Process Layers

Layer

Polysilicon

Metal1

Metal2

Contact To Poly

Contact To Diffusion

Via

Well (p,n)

Active Area (n+,p+)

Color Representation

Yellow

Green

Red
Blue

Magenta
Black

Black
Black

Select (p+,n+) Green

Jan Rabaey

Page 6Copyright © Kurt Keutzer

K. Keutzer/R. Newton 11

Intra-Layer Design Rules

Metal2 4

3

10

9
0

Well

Active
3

3

Polysilicon
2

2

Different PotentialSame Potential

Metal1 3

3
2

Contact
or Via

Select
2

or
6

2
Hole

Jan Rabaey

K. Keutzer/R. Newton 12

Transistor Layout

1

2

5

3

Tr
an

si
st

or

Jan Rabaey

Page 7Copyright © Kurt Keutzer

K. Keutzer/R. Newton 13

Via’s and Contacts

1

2

1

Via

Metal to
Poly ContactMetal to

Active Contact

1

2

5

4

3 2

2

Jan Rabaey

K. Keutzer/R. Newton 14

Different Approaches to Compaction
One dimensional vs. two-dimensional compaction
1-D compaction

Components moved only in x- or y-direction
Efficient algorithms available

2-D compaction
Components may be moved both in x- and y-direction
More effective compaction
NP-hard

Determining how x and y should interact to reduce area is
hard!

Historical interest: Constraint-graph based compaction vs. virtual
grid based compaction

Virtual grid methods are fast and simple. Results in larger area.

Page 8Copyright © Kurt Keutzer

K. Keutzer/R. Newton 15

Historical interest: Virtual Grid Compaction

5 10 150 12 5 10 150 9
Every features is assumed to lie on a virtual grid line
Required to stay at grid locations during compaction – no distortion of topology
Compact by finding min possible spacing between each adjacent pair of grids

Min spacing is given by worst-case design-rule for any feature on the grid
Advantage: algorithm is simple and fast

K. Keutzer/R. Newton 16

Constraint-based Compaction

Early tools: Floss, Cabbage, SLIP, SLIM, Sticks

5 10 150 95 10 150 12

Group

Page 9Copyright © Kurt Keutzer

K. Keutzer/R. Newton 17

Layout Constraints

I I

I
I

≥ 1 ≥ 2 ≥ 1

≥ 3

≥ 2

≥ 1

b

origin

c

e
d

For a given layout instance, all features may be described by a set
of placement constraints
These layout constraints are imposed by design rules

Min spacing (separation) design rules

K. Keutzer/R. Newton 18

Expressing constraints

b ≥ origin + 1

d ≥ origin + 1

c ≥ b + 2

d ≥ b + 2

e ≥ c + 1 e ≥ d + 3

c

I I

I
I

≥ 1 ≥ 2 ≥ 1
≥ 2

≥ 1

b

origin
e

d
≥ 3

Assuming a left-to-right ordering, can capture constraints by non-equalities
Example: if c is to the right of b, and they have to be 2 units apart: c ≥ b + 2

Page 10Copyright © Kurt Keutzer

K. Keutzer/R. Newton 19

Constraint Graph Generation
Constraint graph generation is the most time-consuming
part of constraint-based compaction, approached naively
O(n2)

In the worst case, there may be a design rule between
every shape of layout

In reality only a small local subset of constraints are
needed
First generate connectivity (grouping) constraints
In generating separation constraints, need to define a set of
non-redundant constraints
Shadow-propagation algorithm
Scan-line algorithm

K. Keutzer/R. Newton 20

How do we solve these constraints?
c

I I

I
I

≥ 1 ≥ 2 ≥ 1
≥ 2

≥ 1

b

origin
e

d
≥ 3

b ≥ origin + 1

d ≥ origin + 1

c ≥ b + 2

d ≥ b + 2

e ≥ c + 1 e ≥ d + 3

What is a mathematically efficient way to solve these constraints?

Page 11Copyright © Kurt Keutzer

K. Keutzer/R. Newton 21

Use graphical structure
c

I I

I
I

≥ 1 ≥ 2 ≥ 1
≥ 2

≥ 1

b

origin
e

d
≥ 3

b ≥ origin + 1

d ≥ origin + 1

c ≥ b + 2

d ≥ b + 2

e ≥ c + 1 e ≥ d + 3

1 2
1

31
2

origin
b

d
e

c

We can construct a constraint graph to capture layout constraints

K. Keutzer/R. Newton 22

Problem formulation - 1
Use a labeled directed
graph
G = <V,E>
Vertices layout objects
Edges represent
constraints between
vertices
Labels represent
constraint values
Now what do we do
with this?

W

I I

I
I≥ 0

≥ .1

≥ 0

≥ .2

≥ .1

C

origin

Y

B

≥ .1

IA

I
I

X

I
Z f

≥ 0 ≥ .2 ≥ .15

≥ .2
≥ .5

Hint: What problem does this remind you of?

Page 12Copyright © Kurt Keutzer

K. Keutzer/R. Newton 23

Problem formulation - 1

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15
.20

.20

2

Z

Use a labeled
directed graph
G = <V,E>
Vertices layout
objects
Edges represent
constraints between
vertices
Labels represent
constraint values
Now what do we do
with this?

W

I I

I
I≥ 0

≥ .1

≥ 0

≥ .2

≥ .1

C

origin

Y

B

≥ .1

IA

I
I

X

I
Z f

≥ 0 ≥ .2 ≥ .15

≥ .2
≥ .5

K. Keutzer/R. Newton 24

Problem formulation - 2
Goal of 1-D compaction is to generate a minimum
width layout
Determination of minimum width is equivalent to
solving a longest path problem
The longest path from source to a vertex is the
coordinate of the vertex
In practical layouts, the constraints graphs are very
local

Most edges represent very local constraints in the
layout

Theoretically, run time is O(|V|+|E|)
Practically, run time is close to linear in |V|, the size
of the layout!

Page 13Copyright © Kurt Keutzer

K. Keutzer/R. Newton 25

Problem formulation - 3

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15
.20

.20
Z

Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>))
if all incoming edges of w have been traversed

add w to W
}
Longest path(G)

Forward_prop(Origin)
}

0

Origin

(FLOSS, Cho, Korenjak,
Stocton 1976)

K. Keutzer/R. Newton 26

Algorithm Execution -1

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15
.20

.20

1
2

2

2

Z

Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>))

if all incoming edges of w have been traversed
add w to W

}
Longest path(G)

Forward_prop(Origin)
}

0

O

0

.1

0

Origin

0

0

0

Page 14Copyright © Kurt Keutzer

K. Keutzer/R. Newton 27

Algorithm Execution - 2

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15
.20

.20

.6

Z

Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>))

if all incoming edges of w have been traversed
add w to W

}
Longest path(G)

Forward_prop(Origin)
}

O

0

0

0

Origin

.1

.2

K. Keutzer/R. Newton 28

Algorithm Execution - 3

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15
.20

.20

.6

Z

Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>))

if all incoming edges of w have been traversed
add w to W

}
Longest path(G)

Forward_prop(Origin)
}

O

0

0

0

Origin

.1

.2

.8

Page 15Copyright © Kurt Keutzer

K. Keutzer/R. Newton 29

Algorithm Execution - 4

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15
.20

.20

.6

Z

Compute the longest path in a graph G = <V,E,constraints,Origin> (constraints is a set of labels, Origin is the super-
source of the DAG)

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
value(w) = max(value(w), value(v) + value(w) + constraint(<v,w>))

if all incoming edges of w have been traversed
add w to W

}
Longest path(G)

Forward_prop(Origin)
}

O

0

0

0

Origin

.1

1.1

.8 .95

K. Keutzer/R. Newton 30

Does graph always have a solution?

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15
.20

.20

.6

Z

O

0

0

0

Origin

.1

1.1

1.3 .95

.1

x ≥ f + .1

What if we added this edge?

Page 16Copyright © Kurt Keutzer

K. Keutzer/R. Newton 31

Graph does not always have a solution

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15
.20

.20

.6

Z

Check for cycles in a graph G = <V,E,constraints,Origin> (Origin is the super-source of the graph)
depth_first_search(v){

if visited(v) == TRUE
then

return ``ERROR, CYCLE IN GRAPH WITH PATH THROUGH v’’
else

visited(v) = TRUE
for each edge <v,w> from v

depth_first_search(w)
}
check_for_cycles(G){

depth_first_search(Origin)
}

O

0

0

0

Origin

.1

1.1

.8 .95

.1

x ≥ f + .1

Algorithm breaks down because of cycles

K. Keutzer/R. Newton 32

First Elaboration - Equality Constraints -1

I I

I
I

≥ 1 ≥ 2

≥ 3
≥ 2

≥ 1

b

origin

c

e
d

e = c + 1

1

Inequality constraints capture min spacing design rules
Need also to capture grouping constraints

Features from same circuit component
Need to be moved together

Grouping constraints are described by equality constraints

Page 17Copyright © Kurt Keutzer

K. Keutzer/R. Newton 33

First Elaboration - Equality Constraints -2

I I

I
I

≥ 1 ≥ 2 ≥ 1

≥ 3
≥ 2

≥ 1

b

origin

c

e
d

e ≥ c + 1
c ≥ e - 1

So what?==

≥ -1

e = c + 1

K. Keutzer/R. Newton 34

Reflecting Equality Constraints

e ≥ c + 1
c ≥ e - 1

I I

I
I

≥ 1 ≥ 2 ≥ 1

≥ 3
≥ 2

≥ 1

b

origin

c

e
d

≥ -1

What challenges does this pose to our algorithm?

1 2

1
31

2
origin

b

d
e

c -1

Page 18Copyright © Kurt Keutzer

K. Keutzer/R. Newton 35

Dealing With Legitimate Cycles

C

B

f

X

Y

W

0

.5.1

.1

.2

0

0

.1

A

.15

.20

.20

.6

Z

O

0

0

0

Origin

.1

1.1

1.3 .95

-.15

z ≥ f - .15

Can we use the longest path algorithm on graphs with legitimate
negative-edge cycles?
Topological longest path algorithm can’t handle them.
Can use a Bellman / Moore algorithm for general graphs

Run time is O(|V|*|E|)
Run time of topological longest path algorithm on DAG is O(|V|+|E|)

K. Keutzer/R. Newton 36

Alternative Approach to Equality Constraints

e = c + 1

I I

I
I

≥ 1 ≥ 2 ≥ 1

≥ 3
≥ 2

≥ 1

b

origin

c

e
d

≥ -1

Handle equality constraints independently
Build independent graph for equality constraints
Express inequality constraints between designated representatives

b

d

1 3

31
2

origin

e
e

c

I

I
I

≥ 1

≥ 3
≥ 2

≥ 1

b

origin
e

d

≥ 2 I = 1
c

Page 19Copyright © Kurt Keutzer

K. Keutzer/R. Newton 37

Handling Equality Constraints

origin = x + 1

origin = y + 1
v = w + 2

w = u – 2 i.e. u = w + 2
z = y + 1
origin = z + 2

u = t - 3 i.e. or t = u + 3

origin

x y

1 1

z
1

2

v

w

t

2 -3

u
-2

0

-3

K. Keutzer/R. Newton 38

Handling Equality Constraints

v = w + 2
origin

x y

1 1

z

2

v

w

t

2 -3

u

0

w = x + 2

w (v - 2) = x (origin - 1) + 2
v – 2 = origin - 1 + 2

v = origin + 3

3

2

Generally, this
is known as the
union-find
algorithm

w = u - 2 or u = w + 2

u = t - 3 or t = u + 3

origin = x + 1

origin = y + 1

y = z + 1

Page 20Copyright © Kurt Keutzer

K. Keutzer/R. Newton 39

Constraint-Based Compaction
Approach: Overview

Build constraint graph
if equality constraint

add to equality constraint graph
if inequality constraint

find distinguished representatives of each vertex in constraint
add constraint between distinguished representatives

Check for cycles in inequality constraint graph
If cycles exist terminate with error

Solve equality constraint graph
Solve inequality constraint graph

K. Keutzer/R. Newton 40

Compaction Enhancements

1-D constraint-based compaction problem can be formulated optimally
and computationally efficiently
In real circuits what we want is often more complex than can be
captured in simple linear inequalities of the form:

e ≥ c + 1
Or equalities of the form:

u = t – 3
For example:

Wirelength minimization
Spacing, slack distribution
Jog introduction

Improving area minimization using:
1 ½ D compaction
2D compaction

Page 21Copyright © Kurt Keutzer

K. Keutzer/R. Newton 41

Enhancements: Sliding/Spacing Terminals

Python, Sparks
(requires use of upper as well as lower-bound constraints)

5 10 150 75 10 150 12

K. Keutzer/R. Newton 42

Wire-Length Minimization

Features not on the critical path will be pulled towards a layout edge
because they are given their minimal legal spacing
May lead to increased wire length and slower circuit performance
Can re-distribute ‘slack’ (the available empty space) to the features
not on the critical path

I

I

≥ 1
≥ 1

≥ 3

Page 22Copyright © Kurt Keutzer

K. Keutzer/R. Newton 43

Jogs in “Wires”

Cabbage, SLIP, Dumbo

5 10 150 12 5 10 150 6

K. Keutzer/R. Newton 44

One-and-a-half Dimensional Compaction

G D

C

E F

A B

G D C F

A nill B

G D

C

E F

A B

G D E F

A B
C

C compacted up C compacted down If we could just
bump C over

Page 23Copyright © Kurt Keutzer

K. Keutzer/R. Newton 45

One-and-a-half Dimensional Compaction
Key idea: provide enough lateral movements to
blocks during compaction to resolve interferences
Algorithm starts with a partially compacted layout
(two applications of 1-D compaction)
Maintain two lists – floor and ceiling
Floor is a list of blocks visible from the top, ceiling is
the list of blocks visible from the bottom
Select the lowest block in the ceiling and move it to
the floor maximizing the gap between floor and
ceiling.
Continue until all blocks have been moved from
ceiling to floor.

K. Keutzer/R. Newton 46

1-Dimensional Compaction in 2D

X then Y 1D Compaction Y then X 1D Compaction

Page 24Copyright © Kurt Keutzer

K. Keutzer/R. Newton 47

True Two-Dimensional Compaction

Two dimensional compaction is NP Hard (C. K. Wong, 1984)
Choosing how two dimensions should interact to produce optimal is hard
Can formulate as integer-linear programming problem

Worst-case complexity is exponential

2D Compaction

K. Keutzer/R. Newton 48

What makes 2-D compaction hard?

Two dimensional compaction is NP Hard (C. K. Wong, 1984)
Choosing how two dimensions should interact to produce optimal is hard
Can formulate as integer-linear programming problem

Worst-case complexity is exponential

2D Compaction

Page 25Copyright © Kurt Keutzer

K. Keutzer/R. Newton 49

Choices

a ≥ b + 1

5 10 150
12 5 10 150 6

a ≥ b + 1

b

a a

b

K. Keutzer/R. Newton 50

Background Material

Handout:
Chapter 2: entitled Images of Algorithms and Techniques for
VLSI Layout Synthesis, Kluwer Academic Publishers, 1989.
pages 6 - 30..

Algorithmic background:
Introduction to Algorithms, T. Cormen, C. Lesierson, R. Rivest,
The MIT Press, Second Printing, 1996.

depth-first search 477-485
shortest paths 514-578 (probably overkill for our purposes)
union-find algorithm (disjoint forest implementation 448)

