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Introduction

 Machine learning operates on a data-driven
philosophy that favours automatic pattern discovery

over manual design.

* Yet, the algorithms that power machine learning are
still manually designed.

e Can we learn these algorithms instead?
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Learning to Learn

* Inspired by metacognition (Aristotle, 350 BC), which
refers to the ability of humans to reason about their own

process of reasoning.

* Goal: learn some general knowledge about the learning
outcome or process that is useful across many tasks.

— Unlike ordinary learning, generalization is not across
instances, but across tasks.

* Terms:
— Base-learning: instance-level learning
— Meta-learning: task-level learning
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Fundamental Challenge

 Key Problem: how do we parameterize the space of
all possible learning methods such that it is both:

1) expressive, and
2) efficiently searchable?
* Two Extremes:
— Enumerate a small set of methods: not expressive.

— Search over all general-purpose programs: takes
exponential time.
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Learning to Learn

Different methods differ in the type of meta-knowledge
they learn.

Learning
How to
Learn

Learning
Which Model
to Learn
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Learning to Learn

Different methods differ in the type of meta-knowledge
they learn.

Learn parameter values
of the base-model that
are useful across tasks.
— Transfer Learning

— Multi-Task Learning
— Few-Shot Learning

Our Contribution:
Learning Learn how to train the
How to base-model.

Learn (Focus of this talk)

Learning
Which Model
Learn which base-model is to Learn
best suited for a task.
— Hyperparameter
Optimization Berkeley
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Learning How to Learn

Learning to Optimize
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Setting

* Most learning algorithms optimize some objective
function.

— Learning how to learn reduces to learning an
optimization algorithm.
 We train an optimization algorithm on a set of
objective functions.

* The learner searches the space of possible
optimization algorithms and outputs an optimization
algorithm that performs well on the set of objective
functions.
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Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

2(%) < random point in the domain of f
for: =1,2,...do |
Az ¢({2\7), f(2D), Vf(27)}2p)
if stopping condition is met then
return z(*~ 1
end if
() 2= 4 Ag
end for
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Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

2(%) < random point in the domain of f
for: =1,2....do
Az | ¢({2V), f(2), Vf(a7)}i2p)
if stopping condition 1s met then
return ("~

end if () = =V [zt
(2) (2—1) -
z\Y — x + Az o
end for e (ﬂzoa v ))>
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Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

2(%) < random point in the domain of f
for: =1,2....do
Az | ¢({2V), f(2), Vf(a7)}i2p)
if stopping condition 1s met then
return ("~

end if ¢(-) = —yV f(z)
(%) (i—1) —
z\Y — x + Az o
end for o= (Zoa v ))>

Learned Algorithm ¢(-) = Neural Net ‘
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Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

2(%) < random point in the domain of f
for:=1,2....do |
Az | ¢({2V), f(2), Vf(a7)}i2p)
if stopping condition 1s met then
return z(*~ 1
end if
() 2= 4 Ag
end for

How do we learn ¢(-)?
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Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

2(%) < random point in the domain of f
for:=1,2....do |
Az | ¢({2V), f(2), Vf(a7)}i2p)
if stopping condition 1s met then
return z(*~ 1
end if
() 2= 4 Ag
end for

How do we learn ¢(-)? We use reinforcement learning.
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Background on Reinforcement Learning

 Set of states: S C R”

* Set of actions: A C R

* Probability density over initial states: p; (sg)

* State transition probability density: p (s¢+1 |s¢, at)
* Cost function: c: S =+ R

* Time horizon: T

* Typically, the reinforcement learning algorithm does
not know what D (S¢t1 |St,ae) is.
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Background on Reinforcement Learning

 Set of states: S C R”

e Set of actions: A C R?

* Probability density over initial states: p; (sg)

* State transition probability density: p (s¢+1 |s¢, at)
e Costfunction:c:S — R

 Time horizon: T

* Typically, the reinforcement learning algorithm does
not know what P (S¢41 |St,a¢) is.

<

This is crucial.
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Background on Reinforcement Learning

* Policy: 7 (a¢|s¢,t)

— When it is independent of ¢, it is known as
stationary.

* The goal is to find:
T
7 =argminEg 405, .57 {Z C(St)}

t=0
where the expectation is taken w.r.t.

T—1
Q(S(), ag, Sty -, ST) = Di (80) H 7T (at‘ Stat)p (St—i—1’ St, at)
t=0
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Reduction to Reinforcement Learning

Algorithm 1 General structure of optimization algorithms

Require: Objective function f
2(9) « random point in the domain of f
fori=1,2....do |
Az (@ ({219, f(2D), V f(29))}]2))
if stopping condition 1s met then
return ("~
end if
) — 20D 4 Ag
end for
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Reduction to Reinforcement Learning

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

2(®) « random point in the dot
for:=1,2....do__ | N
Az (@ ({2, f(219)), Vf(2D)}125))

j=0
if stoppino_condition 1s met then

Policy

ref State 1) Action
endAft
20— 20=1) L IAg £ ()
en(d.)

Cost
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Reduction to Reinforcement Learning

 Under this formulation, the state transition
probability density p (st+1 |st, a¢ ) captures how the
gradient and objective value are likely to change for
any given step vector.

— In other words, it encodes the distribution of local
geometries of the objective functions of interest.

* The geometry of an unseen objective function is
unknown.

— This is OK, since reinforcement learning does not
assume knowledge of p(s¢4+1|st,a).
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Why Reinforcement Learning?
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Simultaneous Discovery

* Asimilaridea was also proposed independently by
Andrychowicz et al. soon after our paper appeared:
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Q Google
DeepMind
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Simultaneous Discovery

* Asimilaridea was also proposed independently by
Andrychowicz et al. soon after our paper appeared:

Learning to Optimize

Berkeley
Uses Reinforcement Learning
Google Learning to learn by gradient descent
DeepMin d by gradient descent

Uses Supervised Learning
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Problem is Harder Than It Looks

— Gradient Descent
200 — Momentum
Conjugate Gradient
— L-BFGS
— AdaGrad
150 — ADAM
I

\M —  RMSprop

— L2LBGDBGD

| *
< — Predicted Step Descent

|
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Problem is Harder Than It Looks

1

Objective Value
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Gradient Descent
Momentum
Conjugate Gradient
L-BFGS

AdaGrad

ADAM

RMSprop
L2LBGDBGD

Predicted Step Descent

e Optimization algorithm trained.using supervised
learning does reasonably well initially.
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Problem is Harder Than It Looks

1

| —
!
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Momentum
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* But it divergesin later iterations.
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Problem is Harder Than It Looks

1

Gradient Descent
Momentum

Conjugate Gradient
L-BFGS

AdaGrad

ADAM

RMSprop

L2LBGDBGD

Predicted Step Descent

200

150

\hﬂ, |

* Theoptimizationalgorithm trained using
reinforcement learning does not diverge in later
iterations.

e Value

Iteration
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What Generalization Means

 Each example is an objective function.

— In the learning-to-learn setting, it is the loss function
for training a base-model on a task.

— Objective functions can differ in two ways:
* The base-model
* The task
 Generalization is across objective functions.

— In the learning-to-learn setting, it is across base-
models and/or tasks.

 We should train the optimization algorithm on some
base-models and tasks, and test it on different base-
models and tasks.
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Experimental Setting

* The training set consists of one objective function: the

cross-entropy loss function for training a neural net on
MNIST.

* The test set consists of the loss functions for training
neural nets with different architectures on different

datasets, i.e.: the Toronto Faces Dataset (TFD), CIFAR-10
and CIFAR-100.

* In other words, the optimization algorithm is:

— Meta-trained on the problem of training a neural net
on MNIST.

— Meta-tested on the problems of training neural nets
on TFD, CIFAR-10 and CIFAR-100.
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Larger Architecture (TFD)
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Larger Architecture (CIFAR-10)
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Larger Architecture (CIFAR-100)
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Noisier Gradients (TFD)
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Noisier Gradients (CIFAR-10)
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Noisier Gradients (CIFAR-100)
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Longer Time Horizon (TFD)
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Longer Time Horizon (CIFAR-10)
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Longer Time Horizon (CIFAR-100)
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2D Logistic Regression

Gradient Descent (4 Steps)
Momentum (21 Steps)
Conjugate Gradient (8 Steps)
L-BFGS (9 Steps)

Learning to Optimize (5 Steps)

Dimension 2
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2D Logistic Regression

Gradient Descent (32 Steps)
Momentum (61 Steps)

1 Conjugate Gradient (26 Steps)
L-BFGS (26 Steps)
Learning to Optimize (5 Steps)
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Generalization

Learning to Optimize
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Importance of Generalization

* Suppose we evaluate the
performance of the
optimizer on the training
set.

* Tolearn an optimizer, we
can simply run a
traditional optimizer and
memorize the solution.

* This is the best optimizer,
since it gets to the
optimum in one step.
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Importance of Generalization

* Suppose we evaluate the
performance of the
optimizer on the training
set.

 Tolearn an optimizer, we
can simply run a
traditional optimizer and
memorize the solution.
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Extent of Generalization

e (Generalization to similar base-models on similar
tasks

— Learned optimizer could memorize parts of the
optimal parameters that are common across tasks
and base-models.

* E.g.: Weights of the lower layers in neural nets
— Essentially the same as learning what to learn.
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Extent of Generalization

e Stronger notion: Generalization to similar base-
models on dissimilar tasks

— The optimal parameters for dissimilar tasks are
likely completely different.

— An optimizer that memorizes any part of the
optimal parameters will fail.

— An optimizer that works in this setting must have
learned not what the optimum is, but how to find
it.
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Extent of Generalization

* Even stronger notion: Generalization to dissimilar
base-models on dissimilar tasks

— The objective functions at test time could be
arbitrarily different from the objective functions
seen during training.

— This is impossible — there is no optimizer that
works well on all possible objective functions.
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Extent of Generalization

* Given any optimizer, we
can always find an
objective function that it
performs poorly on.

 We can simply change the
objective function so that
the final objective value is
large.
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Extent of Generalization

* Given any optimizer, we
can always find an
objective function that it
performs poorly on.

 We can simply change the
objective function so that
the final objective value is
large.

It is not possible for the learned optimizer to generalize
to all possible objective functions.
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Problem of Supervised Learning

* Supervised learning requires one of the following:
— Observations at each time step are i.i.d., or

— The dependence of the future observation on the
current observation is known.

* |n our setting, neither is true:

— The step the optimizer takes affects future
gradients.

— How the current step affects the next gradient, i.e.
the local geometry, is not known at test time.
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Problem of Supervised Learning

* When backpropagating through time, supervised
learning essentially assumes the local geometry of an
unseen objective function is the same as the local
geometry of one of the training objective functions at all
time steps.

— In other words, it assumes p (s¢11 |St,a¢) is known and
models it using the Hessians of the training objective
functions.

— This is incorrect, since the Hessians of an unseen
objective function will be different.

* Hence, supervised learning overfits to the geometries of
training objective functions.
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Problem of Supervised Learning

* When an optimizer trained with supervised learning is applied
to an unseen objective function:

— |t takes a step,
=>» sees an unexpected gradient at the next iteration,
=>» takes a step that is slightly off,
=>» finds out the next gradient is even more unexpected,
=» takes another step that is more off,

=>» eventually diverges.
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Problem of Supervised Learning

* Thisis known as the problem of compounding errors.

— Supervised learning leads to a cumulative error that grows
qguadratically in the time horizon, rather than linearly.
(Ross & Bagnell, 2010)

Expert trajectory

Learned Policy
—
venzzzzeo (R ..
m\\\‘-"‘ """""
No data on /
how to recover  :i ("-“I

Credit: John Schulman

Berkeley
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Why RL Solves This Problem

* Reinforcement learning algorithm does not assume
knowledge of p(si+1 st a¢), which characterizes the
geometries of training objective functions.

— So, conditions at meta-training and meta-test
times match.

— The learned policy must account for the
uncertainty in p (st+1 |5t a: ), and must know how
to recover from mistakes.
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Reinforcement Learning Method
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Guided Policy Search

* An (approximate) policy search algorithm for
continuous state and action spaces. (Levine et al.,
2015)

e Maintains two policies, ¥ and 7.
— % lies in a time-varying linear policy class.
* Optimal policy can be found in closed form.
— 7 lies in a stationary non-linear policy class.
e Alternates between solving for ¥ and = .
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ADMM

e Alternating direction method of multipliers (Boyd et al., 2011)
solves the following problem:

eegl,i?ner(@) +g(n) s.t. A9+ Bnp=c

where f and g are convex functions, and © and H are
closed convex sets.

* |t alternates between the following updates:

oU+) « arg gniél £(0)+ A, A0 + Bn'Y —¢) + g ||A9 + Bn® —¢
c 2

2
A < axgmin g(n) + A0, 46D 1 By — ) + £ || 460+ 4 By — ¢
ne

AHD 2O (Ag(t—i—l) + Bpt+D) _ C)
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. L. UNIVERSITY OF CALIFORNIA
Learning to Optimize



Bregman ADMM

* Bregman ADMM (Wang & Banerjee, 2014) generalizes ADMM
and uses Bregman divergence as penalty. It solves:

eegl,%?ner(H) +g(n) s.t. A9+ Bnp=c

where f and g are convex functions, and © and H are
closed convex sets.

* |t alternates between the following updates:

o+  arg min f(6) + AD A0 + Bn® — ¢) + pBy(c — A9, Bn®)
€

nt* « arg min g(n) + AD, 40D 4 By — ¢) +|pBy(Bn, c — AGUTY)
n

AHD 2O (Ag(t—i—l) + Bpt+D) _ C)

Berkeley
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Reinforcement Learning Problem

e Recall the reinforcement learning problem:

- T -
méinESO,ao,Sl,...,ST ZC(St)

| t=0
where the expectation is taken w.r.t.

q(s0,ao, $1, - - - = pi (o) HW at| 5¢50) p (St41] ¢, ar)

t=0
State Action Initial State Poli Policy State Transmon
Distribution oficy Parameters Distribution
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Reinforcement Learning Problem

e Recall the reinforcement learning problem:
. ]

m@mEQ Z c(st)

| t=0 _

where the expectation is taken w.r.t.

q(s0,ao, $1, - - - = pi (o) 1_[7T at| st;0) p (st+1]5¢,at)

t=0
State Action Initial State Poli Policy State Transmon
Distribution oficy Parameters Distribution
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Guided Policy Search

* Guided Policy Search performs dual decomposition:

T

C(St)] S.6. 1) (ag] 5¢,85m) = 7 (ag] 5¢;0) Vag, se,t
t=0

* |t relaxes the problem by only enforcing equality on
the first moments™:

mln ]E¢

Zc St ] s.t. Ey [ai] = Ey [Ex [ad] s¢]] VE

*The Bregman divergence penalty is applied on the original distributions.

Berkeley
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Guided Policy Search

* To solve the problem, it uses Bregman ADMM, which
alternates between the following updates:

T

1 al‘gff%iHZEw c(st) = Ap ar] + By [Drcr (9 (adl se, tm)|| 7 (i 54;6))]
t=0

T
0 < argmeinZ)\wa [Ex [ad] s¢]] + By [Drr (m (a¢] s¢50)|| ¢ (at s¢,t5m))]
=0

A = M+ av (Ey [Ex [ad] se]] — Ey [ad]) V2

* The optimization in the first update can be solved in closed
form using a modification of linear-quadratic regulator (LQR).
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Landscape of Meta-Learning
Methods

Learning to Optimize
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Forms of Learning to Learn

Learn parameter values
of the base-model that

are useful across tasks. Learning
— Transfer Learning How to

— Multi-Task Learning Learn

— Few-Shot Learning

Learn how to train the
base-model.

Learning
Which Model
Learn which base-model is to Learn
best suited for a task.
— Hyperparameter
Optimization Berkeley
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Learning What to Learn

e Learn what parameter values of the base-model are useful
across tasks.

e Intermediate features that are shared by tasks across the family,

Meta-knowledge e.g. Gabor filters for vision tasks.

Extent of

e e Need to generalize across similar tasks.
Generalization

CEIEInlECrE il © Need to parameterize the space of intermediate features — this
Challenges is straightforward.

e Transfer & multi-task learning, e.g. (Suddarth & Kergosien, 1990)
e Few-shot learning, e.g. (Finn et al., 2017), (Snell et al., 2017)

Berkeley

UNIVERSITY OF CALIFORNIA
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Learning Which Model to Learn

e Learn which base-model is best suited for a task.

e Correlations between different base-models and their performance

Meta-knowledge - NN

Extent of

. * Need to generalize across base-models, and ideally, across tasks.
Generalization

EIEInS v il il » Need to parameterize the space of base-models — unclear how we
Challenges can do this.

e Hyperparameter optimization — does not generalize across tasks
e (Bradzil et al., 2003), (Schmidhuber, 2004), (Hochreiter et al., 2001)
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Learning Which Model to Learn

e (Bradzil et al., 2003): Enumerate a small set of base-models — not —
expressive.
* (Schmidhuber, 2004): Search over the space of all possible programs — L)
takes exponential time.
* (Hochreiter et al., 2001): Search over base-models represented by a single
step of a recurrent neural net — not expressive.
 Hyperparameter optimization: Search over a predefined set of —
hyperprameters — not expressive. )
J
)

EIEInS v il il » Need to parameterize the space of base-models — unclear how we
Challenges can do this.

J
)

Exambles e Hyperparameter optimization — does not generalize across tasks
g e (Bradzil et al., 2003), (Schmidhuber, 2004), (Hochreiter et al., 2001) )

Berkele

. L. UNIVERSITY OF CALIFORNIA
Learning to Optimize



Learning How to Learn

e Learn how to train the base-model.
e Learn about the process, rather the outcome of learning.

e Commonalities in the behaviours of learning algorithms that achieve

Meta-knowledge
good performance.

Extent of * Need to generalize across dissimilar tasks and/or similar base-
Generalization models.

rEYEINE=ar L a o il ®© Need to parameterize the space of learning algorithms.
Challenges e Key Idea: Parameterize the update formula in optimizer.

e (Bengio et al., 1991) — learned algorithm indep. of tasks/base-models

e (Li & Malik, 2016), (Andrychowicz et al., 2016), etc.
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For More Details...

Learning to Optimize
Ke Li, Jitendra Malik
arXiv:1606.01885, 2016 and ICLR, 2017

Learning to Optimize Neural Nets
Ke Li, Jitendra Malik
arXiv:1703.00441, 2017
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