Ke Li Jitendra Malik

Introduction

- Machine learning operates on a data-driven philosophy that favours automatic pattern discovery over manual design.
- Yet, the algorithms that power machine learning are still manually designed.
- Can we learn these algorithms instead?

- Inspired by metacognition (Aristotle, 350 BC), which refers to the ability of humans to reason about their own process of reasoning.
- Goal: learn some general knowledge about the learning outcome or process that is useful across many tasks.
 - Unlike ordinary learning, generalization is not across instances, but across tasks.

• Terms:

- Base-learning: instance-level learning
- Meta-learning: task-level learning

Fundamental Challenge

- Key Problem: how do we parameterize the space of all possible learning methods such that it is both:
 - 1) expressive, and
 - 2) efficiently searchable?
- Two Extremes:
 - Enumerate a small set of methods: not expressive.
 - Search over all general-purpose programs: takes exponential time.

Different methods differ in the type of meta-knowledge

they learn.

Different methods differ in the type of meta-knowledge

they learn.

Learn parameter values of the base-model that are useful across tasks.

Different methods differ in the type of meta-knowledge

they learn.

Learn parameter values of the base-model that are useful across tasks.

- Transfer Learning
- Multi-Task Learning
- Few-Shot Learning

Different methods differ in the type of meta-knowledge

they learn.

Learn parameter values of the base-model that are useful across tasks.

- Transfer Learning
- Multi-Task Learning
- Few-Shot Learning

Learn which base-model is best suited for a task.

Different methods differ in the type of meta-knowledge

they learn.

Learn parameter values of the base-model that are useful across tasks.

- Multi-Task Learning
- Few-Shot Learning

What to Transfer Learning

Learning How to Learn

Learning Which Model to Learn

Learn which base-model is best suited for a task.

Hyperparameter **Optimization**

Different methods differ in the type of meta-knowledge

they learn.

Learn parameter values of the base-model that are useful across tasks.

- Transfer Learning
- Multi-Task Learning
- **Few-Shot Learning**

What to

Learning How to Learn

Learning Which Model to Learn

Our Contribution: Learn how to train the base-model.

Learn which base-model is best suited for a task.

Hyperparameter **Optimization**

Different methods differ in the type of meta-knowledge

they learn.

Learn parameter values of the base-model that are useful across tasks.

- Transfer Learning
- Multi-Task Learning
- Few-Shot Learning

Learning What to Learn

Learning
How to
Learn

Our Contribution: Learn how to train the base-model. (Focus of this talk)

Learning Which Model to Learn which base-model is best suited for a task.

HyperparameterOptimization

Berkeley

Learning How to Learn

Setting

- Most learning algorithms optimize some objective function.
 - Learning how to learn reduces to learning an optimization algorithm.
- We train an optimization algorithm on a set of objective functions.
- The learner searches the space of possible optimization algorithms and outputs an optimization algorithm that performs well on the set of objective functions.

Algorithm 1 General structure of optimization algorithms

```
Require: Objective function f x^{(0)} \leftarrow \text{random point in the domain of } f for i=1,2,\ldots do \Delta x \leftarrow \phi(\{x^{(j)},f(x^{(j)}),\nabla f(x^{(j)})\}_{j=0}^{i-1}) if stopping condition is met then return x^{(i-1)} end if x^{(i)} \leftarrow x^{(i-1)} + \Delta x end for
```


Algorithm 1 General structure of optimization algorithms

```
Require: Objective function f x^{(0)} \leftarrow \text{random point in the domain of } f for i=1,2,\ldots do \Delta x \leftarrow \phi(\{x^{(j)},f(x^{(j)}),\nabla f(x^{(j)})\}_{j=0}^{i-1}) if stopping condition is met then return x^{(i-1)} end if x^{(i)} \leftarrow x^{(i-1)} + \Delta x end for Gradient Descent \phi(\cdot) = -\gamma \nabla f(x^{(i-1)})
```


Algorithm 1 General structure of optimization algorithms

```
Require: Objective function f
x^{(0)} \leftarrow \text{random point in the domain of } f
\text{for } i = 1, 2, \dots \text{do}
\Delta x \leftarrow \phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{j=0}^{i-1})
\text{if stopping condition is met then}
\text{return } x^{(i-1)}
```

 $\begin{array}{l} \text{end if} \\ x^{(i)} \leftarrow x^{(i-1)} + \Delta x \end{array}$

end for

Gradient Descent
$$\phi(\cdot) = -\gamma \nabla f(x^{(i-1)})$$

Momentum $\phi(\cdot) = -\gamma \left(\sum_{j=0}^{i-1} \alpha^{i-1-j} \nabla f(x^{(j)})\right)$

Learned Algorithm $\phi(\cdot) = \text{Neural Net}$

Algorithm 1 General structure of optimization algorithms

```
Require: Objective function f
x^{(0)} \leftarrow \text{random point in the domain of } f
for i=1,2,\ldots do
\Delta x \leftarrow \phi(\{x^{(j)},f(x^{(j)}),\nabla f(x^{(j)})\}_{j=0}^{i-1})
if stopping condition is met then
\text{return } x^{(i-1)}
end if
x^{(i)} \leftarrow x^{(i-1)} + \Delta x
end for
```

How do we learn $\phi(\cdot)$?

Algorithm 1 General structure of optimization algorithms

```
Require: Objective function f x^{(0)} \leftarrow \text{random point in the domain of } f for i=1,2,\ldots do \Delta x \leftarrow \phi(\{x^{(j)},f(x^{(j)}),\nabla f(x^{(j)})\}_{j=0}^{i-1}) if stopping condition is met then return x^{(i-1)} end if x^{(i)} \leftarrow x^{(i-1)} + \Delta x end for
```

How do we learn $\phi(\cdot)$? We use reinforcement learning.

Background on Reinforcement Learning

- Set of states: $\mathcal{S} \subseteq \mathbb{R}^D$
- Set of actions: $\mathcal{A} \subseteq \mathbb{R}^d$
- Probability density over initial states: $p_i\left(s_0
 ight)$
- State transition probability density: $p\left(s_{t+1} \mid s_t, a_t\right)$
- Cost function: $c:\mathcal{S}
 ightarrow \mathbb{R}$
- Time horizon: T
- Typically, the reinforcement learning algorithm does not know what $p\left(s_{t+1} \mid s_t, a_t\right)$ is.

Background on Reinforcement Learning

- Set of states: $\mathcal{S} \subseteq \mathbb{R}^D$
- Set of actions: $\mathcal{A} \subseteq \mathbb{R}^d$
- Probability density over initial states: $p_i\left(s_0
 ight)$
- State transition probability density: $p\left(s_{t+1} \mid s_t, a_t\right)$
- Cost function: $c:\mathcal{S}
 ightarrow \mathbb{R}$
- Time horizon: T
- Typically, the reinforcement learning algorithm does not know what $p\left(s_{t+1} \mid s_t, a_t\right)$ is.

This is crucial.

Background on Reinforcement Learning

- Policy: $\pi\left(\left.a_{t}\right|s_{t},t\right)$
 - When it is independent of t, it is known as stationary.
- The goal is to find:

$$\pi^* = \arg\min_{\pi} \mathbb{E}_{s_0, a_0, s_1, \dots, s_T} \left[\sum_{t=0}^{T} c(s_t) \right]$$

where the expectation is taken w.r.t.

$$q(s_0, a_0, s_1, \dots, s_T) = p_i(s_0) \prod_{t=0}^{T-1} \pi(a_t | s_t, t) p(s_{t+1} | s_t, a_t)$$

Reduction to Reinforcement Learning

Algorithm 1 General structure of optimization algorithms

```
Require: Objective function f x^{(0)} \leftarrow \text{random point in the domain of } f for i=1,2,\ldots do \Delta x \leftarrow \phi(\Phi\left(\{x^{(j)},f(x^{(j)}),\nabla f(x^{(j)})\}_{j=0}^{i-1}\right)) if stopping condition is met then return x^{(i-1)} end if x^{(i)} \leftarrow x^{(i-1)} + \Delta x end for
```


Reduction to Reinforcement Learning

Algorithm 1 General structure of optimization algorithms

Reduction to Reinforcement Learning

- Under this formulation, the state transition probability density $p(s_{t+1}|s_t,a_t)$ captures how the gradient and objective value are likely to change for any given step vector.
 - In other words, it encodes the distribution of local geometries of the objective functions of interest.
- The geometry of an unseen objective function is unknown.
 - This is OK, since reinforcement learning does not assume knowledge of $p(s_{t+1}|s_t, a_t)$.

Why Reinforcement Learning?

Simultaneous Discovery

 A similar idea was also proposed independently by Andrychowicz et al. soon after our paper appeared:

Learning to Optimize

Ke Li Jitendra Malik

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Learning to learn by gradient descent by gradient descent

Marcin Andrychowicz Matthew W. Hoffman Misha Denil David Pfau Nando de Freitas Sergio Gomez Tom Schaul

Simultaneous Discovery

 A similar idea was also proposed independently by Andrychowicz et al. soon after our paper appeared:

Learning to Optimize

Uses Reinforcement Learning

Learning to learn by gradient descent by gradient descent

Uses Supervised Learning

 Optimization algorithm trained using supervised learning does reasonably well initially.

 The optimization algorithm trained using reinforcement learning does not diverge in later iterations.

What Generalization Means

- Each example is an objective function.
 - In the learning-to-learn setting, it is the loss function for training a base-model on a task.
 - Objective functions can differ in two ways:
 - The base-model
 - The task
- Generalization is across objective functions.
 - In the learning-to-learn setting, it is across base-models and/or tasks.
- We should train the optimization algorithm on some base-models and tasks, and test it on different basemodels and tasks.

Experimental Setting

- The training set consists of one objective function: the cross-entropy loss function for training a neural net on MNIST.
- The test set consists of the loss functions for training neural nets with different architectures on different datasets, i.e.: the Toronto Faces Dataset (TFD), CIFAR-10 and CIFAR-100.
- In other words, the optimization algorithm is:
 - Meta-trained on the problem of training a neural net on MNIST.
 - Meta-tested on the problems of training neural nets on TFD, CIFAR-10 and CIFAR-100.

Larger Architecture (TFD)

Larger Architecture (CIFAR-10)

Larger Architecture (CIFAR-100)

Noisier Gradients (TFD)

Noisier Gradients (CIFAR-10)

Noisier Gradients (CIFAR-100)

Longer Time Horizon (TFD)

Longer Time Horizon (CIFAR-10)

Longer Time Horizon (CIFAR-100)

2D Logistic Regression

2D Logistic Regression

Generalization

Importance of Generalization

- Suppose we evaluate the performance of the optimizer on the training set.
- To learn an optimizer, we can simply run a traditional optimizer and memorize the solution.
- This is the best optimizer, since it gets to the optimum in one step.

Importance of Generalization

- Suppose we evaluate the performance of the optimizer on the training set.
- To learn an optimizer, we can simply run a traditional optimizer and memorize the solution.
- This is the best optimizer, since it gets to the optimum in one step.

Importance of Generalization

- Suppose we evaluate the performance of the optimizer on the training set.
- To learn an optimizer, we can simply run a traditional optimizer and memorize the solution.
- This is the hest ontimizer

It would be pointless to learn the optimizer if we didn't care about generalization.

- Generalization to similar base-models on similar tasks
 - Learned optimizer could memorize parts of the optimal parameters that are common across tasks and base-models.
 - E.g.: Weights of the lower layers in neural nets
 - Essentially the same as learning what to learn.

- Stronger notion: Generalization to similar basemodels on dissimilar tasks
 - The optimal parameters for dissimilar tasks are likely completely different.
 - An optimizer that memorizes any part of the optimal parameters will fail.
 - An optimizer that works in this setting must have learned not what the optimum is, but how to find it.

- Even stronger notion: Generalization to *dissimilar* base-models on *dissimilar* tasks
 - The objective functions at test time could be arbitrarily different from the objective functions seen during training.
 - This is impossible there is no optimizer that works well on all possible objective functions.

- Given any optimizer, we can always find an objective function that it performs poorly on.
- We can simply change the objective function so that the final objective value is large.

- Given any optimizer, we can always find an objective function that it performs poorly on.
- We can simply change the objective function so that the final objective value is large.

- Given any optimizer, we can always find an objective function that it performs poorly on.
- We can simply change the objective function so that the final objective value is large.

It is not possible for the learned optimizer to generalize to all possible objective functions.

- Supervised learning requires one of the following:
 - Observations at each time step are i.i.d., or
 - The dependence of the future observation on the current observation is known.
- In our setting, neither is true:
 - The step the optimizer takes affects future gradients.
 - How the current step affects the next gradient, i.e.
 the local geometry, is not known at test time.

- When backpropagating through time, supervised learning essentially assumes the local geometry of an unseen objective function is the same as the local geometry of *one* of the training objective functions at *all* time steps.
 - In other words, it assumes $p(s_{t+1}|s_t, a_t)$ is known and models it using the Hessians of the training objective functions.
 - This is incorrect, since the Hessians of an unseen objective function will be different.
- Hence, supervised learning overfits to the geometries of training objective functions.

- When an optimizer trained with supervised learning is applied to an unseen objective function:
 - It takes a step,
 - > sees an unexpected gradient at the next iteration,
 - takes a step that is slightly off,
 - finds out the next gradient is even more unexpected,
 - → takes another step that is more off,

• • •

eventually diverges.

- This is known as the problem of compounding errors.
 - Supervised learning leads to a cumulative error that grows quadratically in the time horizon, rather than linearly. (Ross & Bagnell, 2010)

Why RL Solves This Problem

- Reinforcement learning algorithm does not assume knowledge of $p(s_{t+1}|s_t,a_t)$, which characterizes the geometries of training objective functions.
 - So, conditions at meta-training and meta-test times match.
 - The learned policy must account for the uncertainty in $p(s_{t+1}|s_t,a_t)$, and must know how to recover from mistakes.

Reinforcement Learning Method

Guided Policy Search

- An (approximate) policy search algorithm for continuous state and action spaces. (Levine et al., 2015)
- Maintains two policies, ψ and π .
 - ψ lies in a time-varying linear policy class.
 - Optimal policy can be found in closed form.
 - $-\pi$ lies in a stationary non-linear policy class.
- Alternates between solving for ψ and π .

ADMM

 Alternating direction method of multipliers (Boyd et al., 2011) solves the following problem:

$$\min_{\theta \in \Theta, \eta \in H} f(\theta) + g(\eta) \text{ s.t. } A\theta + B\eta = c$$

where f and g are convex functions, and Θ and H are closed convex sets.

It alternates between the following updates:

$$\theta^{(t+1)} \leftarrow \arg\min_{\theta \in \Theta} f(\theta) + \langle \lambda^{(t)}, A\theta + B\eta^{(t)} - c \rangle + \frac{\rho}{2} \left\| A\theta + B\eta^{(t)} - c \right\|_{2}^{2}$$

$$\eta^{(t+1)} \leftarrow \arg\min_{\eta \in H} g(\eta) + \langle \lambda^{(t)}, A\theta^{(t+1)} + B\eta - c \rangle + \frac{\rho}{2} \left\| A\theta^{(t+1)} + B\eta - c \right\|_{2}^{2}$$

$$\lambda^{(t+1)} \leftarrow \lambda^{(t)} + \rho \left(A\theta^{(t+1)} + B\eta^{(t+1)} - c \right)$$

Bregman ADMM

 Bregman ADMM (Wang & Banerjee, 2014) generalizes ADMM and uses Bregman divergence as penalty. It solves:

$$\min_{\theta \in \Theta, \eta \in H} f(\theta) + g(\eta) \text{ s.t. } A\theta + B\eta = c$$

where f and g are convex functions, and Θ and H are closed convex sets.

It alternates between the following updates:

$$\theta^{(t+1)} \leftarrow \arg\min_{\theta \in \Theta} f(\theta) + \langle \lambda^{(t)}, A\theta + B\eta^{(t)} - c \rangle + \rho B_{\phi}(c - A\theta, B\eta^{(t)})$$

$$\eta^{(t+1)} \leftarrow \arg\min_{\eta \in H} g(\eta) + \langle \lambda^{(t)}, A\theta^{(t+1)} + B\eta - c \rangle + \rho B_{\phi}(B\eta, c - A\theta^{(t+1)})$$

$$\lambda^{(t+1)} \leftarrow \lambda^{(t)} + \rho \left(A\theta^{(t+1)} + B\eta^{(t+1)} - c \right)$$

Reinforcement Learning Problem

Recall the reinforcement learning problem:

$$\min_{\theta} \mathbb{E}_{s_0, a_0, s_1, \dots, s_T} \left[\sum_{t=0}^{T} c(s_t) \right]$$

where the expectation is taken w.r.t.

$$q(s_0, a_0, s_1, \dots, s_T) = p_i\left(s_0\right) \prod_{t=0}^{T-1} \pi\left(a_t | s_t; \theta\right) p\left(s_{t+1} | s_t, a_t\right)$$
 State Action Initial State Distribution Policy Parameters Distribution

Reinforcement Learning Problem

Recall the reinforcement learning problem:

$$\min_{ heta} \mathbb{E}_{ heta} \left[\sum_{t=0}^{T} c(s_t)
ight]$$

where the expectation is taken w.r.t.

$$q(s_0, a_0, s_1, \dots, s_T) = p_i\left(s_0\right) \prod_{t=0}^{T-1} \pi\left(a_t | s_t; \theta\right) p\left(s_{t+1} | s_t, a_t\right)$$
 State Action Initial State Distribution Policy Parameters State Transition Distribution

Guided Policy Search

Guided Policy Search performs dual decomposition:

$$\min_{\theta,\eta} \mathbb{E}_{\psi} \left[\sum_{t=0}^{T} c(s_t) \right] \text{ s.t. } \psi \left(a_t | s_t, t; \eta \right) = \pi \left(a_t | s_t; \theta \right) \ \forall a_t, s_t, t$$

 It relaxes the problem by only enforcing equality on the first moments*:

$$\min_{\theta,\eta} \mathbb{E}_{\psi} \left[\sum_{t=0}^{T} c(s_t) \right] \text{ s.t. } \mathbb{E}_{\psi} \left[a_t \right] = \mathbb{E}_{\psi} \left[\mathbb{E}_{\pi} \left[\left. a_t \right| s_t \right] \right] \ \forall t$$

^{*}The Bregman divergence penalty is applied on the original distributions.

Guided Policy Search

 To solve the problem, it uses Bregman ADMM, which alternates between the following updates:

$$\eta \leftarrow \arg\min_{\eta} \sum_{t=0}^{T} \mathbb{E}_{\psi} \left[c(s_{t}) - \lambda_{t}^{T} a_{t} \right] + \nu_{t} \mathbb{E}_{\psi} \left[D_{KL} \left(\psi \left(a_{t} | s_{t}, t; \eta \right) \| \pi \left(a_{t} | s_{t}; \theta \right) \right) \right]$$

$$\theta \leftarrow \arg\min_{\theta} \sum_{t=0}^{T} \lambda_{t}^{T} \mathbb{E}_{\psi} \left[\mathbb{E}_{\pi} \left[a_{t} | s_{t} \right] \right] + \nu_{t} \mathbb{E}_{\psi} \left[D_{KL} \left(\pi \left(a_{t} | s_{t}; \theta \right) \| \psi \left(a_{t} | s_{t}, t; \eta \right) \right) \right]$$

$$\lambda_{t} \leftarrow \lambda_{t} + \alpha \nu_{t} \left(\mathbb{E}_{\psi} \left[\mathbb{E}_{\pi} \left[a_{t} | s_{t} \right] \right] - \mathbb{E}_{\psi} \left[a_{t} \right] \right) \ \forall t$$

 The optimization in the first update can be solved in closed form using a modification of linear-quadratic regulator (LQR).

Landscape of Meta-Learning Methods

Forms of Learning to Learn

Learn parameter values of the base-model that are useful across tasks.

- Transfer Learning
- Multi-Task Learning
- Few-Shot Learning

Learn which base-model is best suited for a task.

HyperparameterOptimization

Learn how to train the base-model.

Learning What to Learn

Goal

• Learn what parameter values of the base-model are useful across tasks.

Meta-knowledge

Intermediate features that are shared by tasks across the family,
 e.g. Gabor filters for vision tasks.

Extent of Generalization

• Need to generalize across similar tasks.

Parameterization Challenges

 Need to parameterize the space of intermediate features – this is straightforward.

Examples

- Transfer & multi-task learning, e.g. (Suddarth & Kergosien, 1990)
- Few-shot learning, e.g. (Finn et al., 2017), (Snell et al., 2017)

Learning Which Model to Learn

Goal

• Learn which base-model is best suited for a task.

Meta-knowledge

 Correlations between different base-models and their performance on different tasks.

Extent of Generalization

• Need to generalize across base-models, and *ideally*, across tasks.

Parameterization Challenges

 Need to parameterize the space of base-models – unclear how we can do this.

Examples

- Hyperparameter optimization does not generalize across tasks
- (Bradzil et al., 2003), (Schmidhuber, 2004), (Hochreiter et al., 2001)

Learning Which Model to Learn

- (Bradzil et al., 2003): Enumerate a small set of base-models not expressive.
- (Schmidhuber, 2004): Search over the space of all possible programs takes exponential time.
- (Hochreiter et al., 2001): Search over base-models represented by a single step of a recurrent neural net not expressive.
- Hyperparameter optimization: Search over a predefined set of hyperprameters – not expressive.

Generalization

Me

Parameterization Challenges

• Need to parameterize the space of base-models – unclear how we can do this.

Examples

- Hyperparameter optimization does not generalize across tasks
- (Bradzil et al., 2003), (Schmidhuber, 2004), (Hochreiter et al., 2001)

Learning to Optimize

Learning How to Learn

Goal

- Learn how to train the base-model.
- Learn about the *process*, rather the *outcome* of learning.

Meta-knowledge

• Commonalities in the behaviours of learning algorithms that achieve good performance.

Extent of Generalization

 Need to generalize across dissimilar tasks and/or similar basemodels.

Parameterization Challenges

- Need to parameterize the space of learning algorithms.
- Key Idea: Parameterize the update formula in optimizer.

Examples

- (Bengio et al., 1991) learned algorithm indep. of tasks/base-models
- (Li & Malik, 2016), (Andrychowicz et al., 2016), etc.

For More Details...

Learning to Optimize

Ke Li, Jitendra Malik

arXiv:1606.01885, 2016 and ICLR, 2017

Learning to Optimize Neural Nets

Ke Li, Jitendra Malik

arXiv:1703.00441, 2017

