

On the Implicit Assumptions of GANs Berkeley

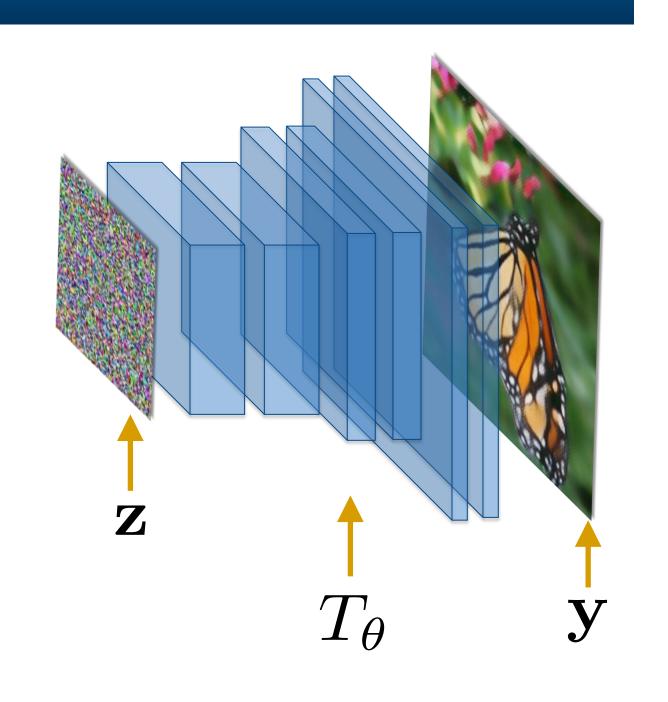
Ke Li

Jitendra Malik

{ke.li, malik}@eecs.berkeley.edu

Introduction

- Implicit probabilistic models: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \quad \mathbf{y} = T_{\theta}(\mathbf{z})$
- Standard method for training such models: GANs.
- If we only have a *finite* number of data points, do the theoretical guarantees of GANs still hold (even if the discriminator were

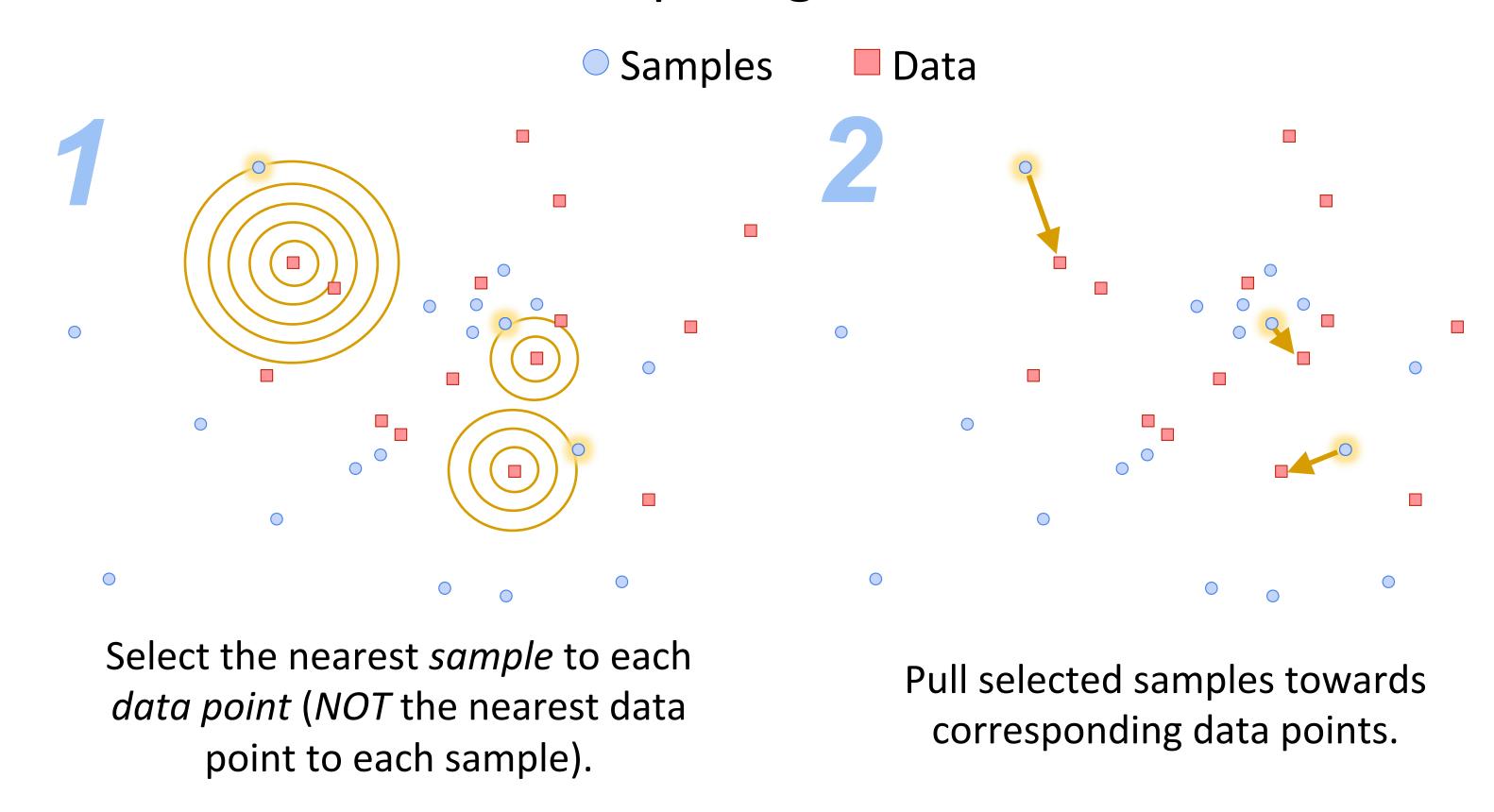


True vs. Empirical Data Distribution

- GAN Objective:
 - $\min_{\theta_G} \max_{\theta_D} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log D_{\theta_D}(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_z} \left[\log (1 D_{\theta_D} \left(G_{\theta_D}(\mathbf{z}) \right)) \right]$
- Optimizing this requires drawing fresh samples from the true data distribution p_{data} in every iteration.
- But samples are drawn from a finite training set this amounts to replacing p_{data} with $\widehat{p_{\text{data}}}$, the *empirical* data distribution.
- Jensen-Shannon divergence is always $\log 2$.
- Reverse KL-divergence $D_{KL}(p_{\theta}||\widehat{p_{\text{data}}})$ is undefined.
- Implications:
 - Minimizing JSD or reverse KL does not make sense.
 - GANs are actually *not* asymptotically consistent.

Solution: Implicit Maximum Likelihood Estimation

• Maximum likelihood is consistent – can we maximize likelihood without computing likelihood?

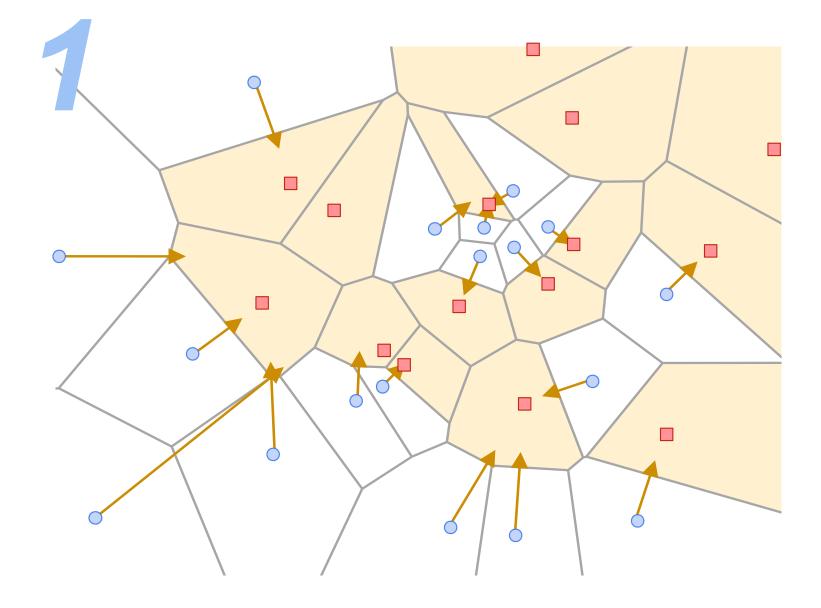


 Why? Maximize likelihood ⇔ High density at each data point 🖨 Samples likely to be near data points (Proof is in the IMLE paper)

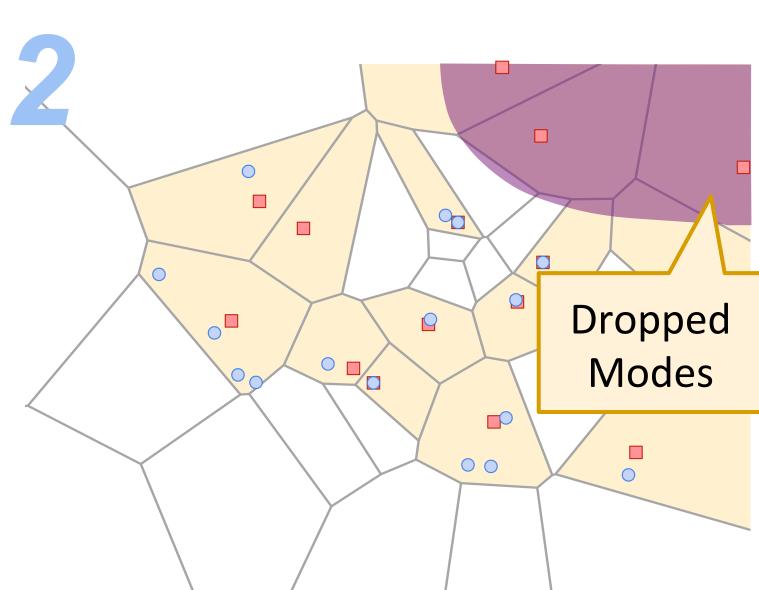
Comparison to GANs

No More Mode Collapse/Dropping

• GAN with a 1-nearest neighbour discriminator:

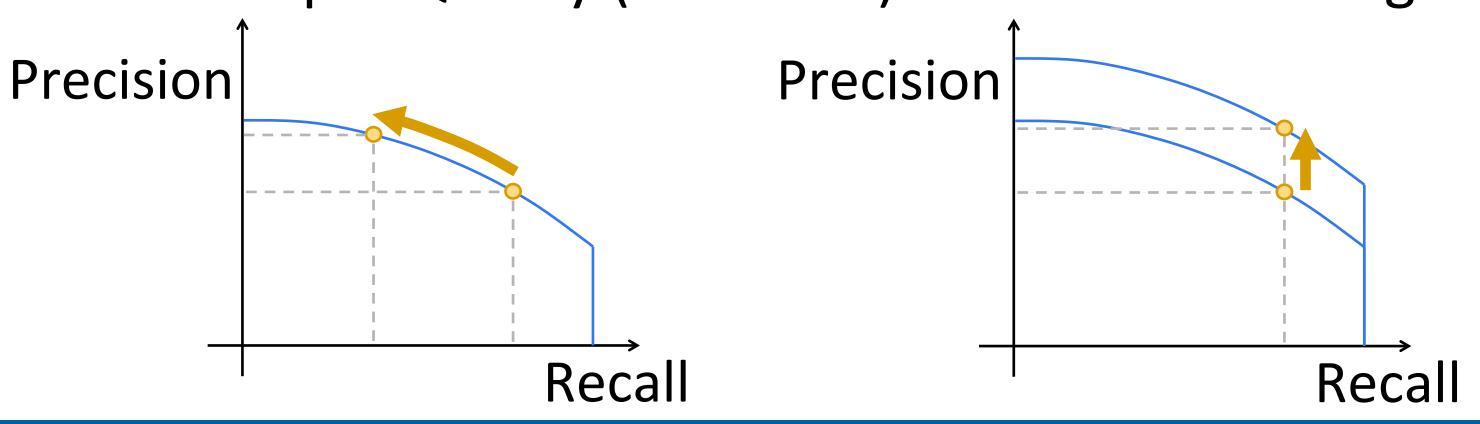


Push samples towards region containing real data.



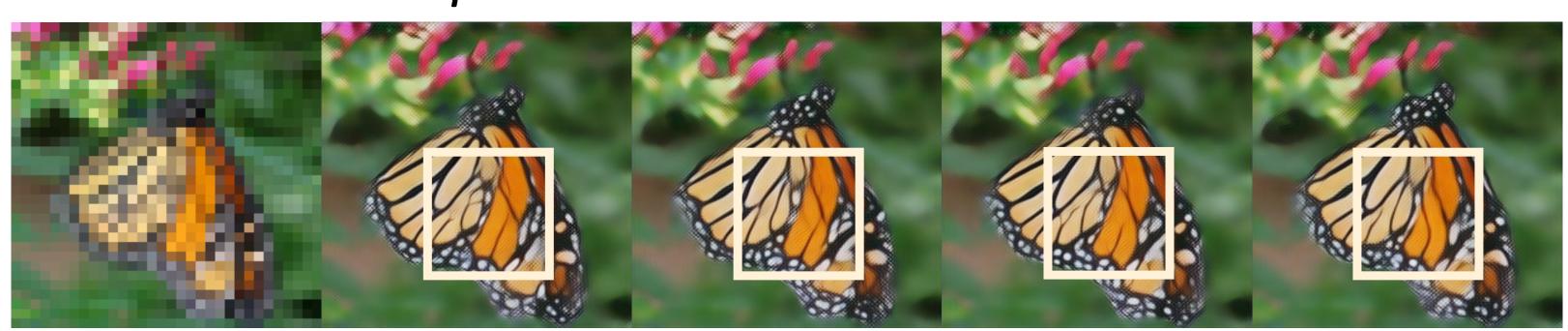
Every sample has a nearby data point, but some data points may not have a nearby sample.

Better Sample Quality (Precision) ≠ Better Modelling

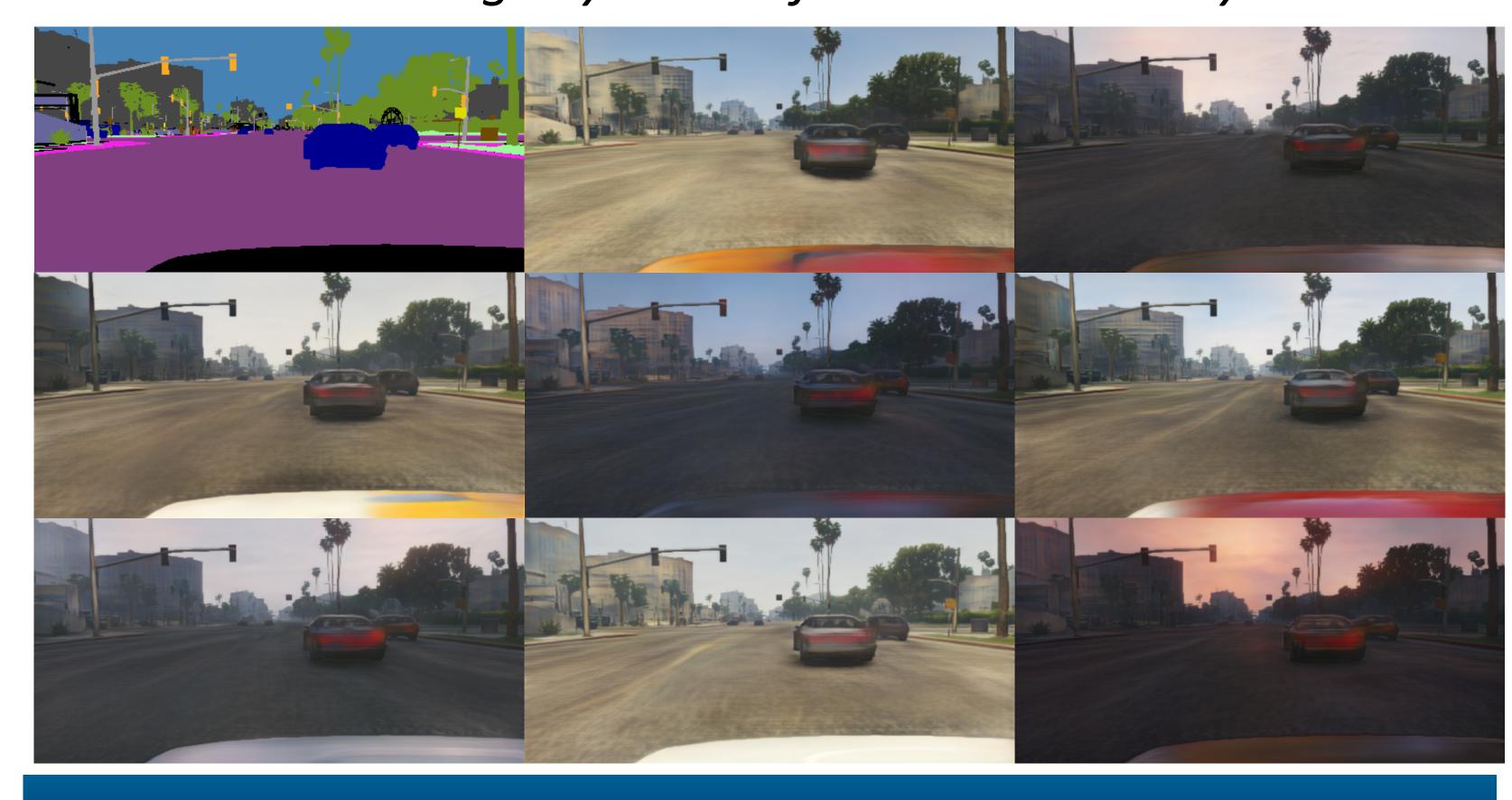


Application: Multimodal Prediction

- Conditional setting: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathbf{y} = T_{\theta}(\mathbf{x}, \mathbf{z})$
- Different samples for the same input image:
- Multimodal Super-Resolution



Multimodal Image Synthesis from Semantic Layout



References

Ke Li and Jitendra Malik. On the Implicit Assumptions of GANs. arXiv:1811.12402, 2018

Ke Li and Jitendra Malik. Implicit Maximum Likelihood Estimation. arXiv:1809.09087, 2018

Ke Li*, Shichong Peng* and Jitendra Malik. Super-Resolution via Conditional Implicit Maximum Likelihood Estimation. arXiv:1810.01406, 2018

Ke Li*, Tianhao Zhang* and Jitendra Malik. Diverse Image Synthesis from Semantic Layouts via Conditional IMLE. arXiv:1811.12373, 2018