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Introduction

* The method of k-nearest neighbours is a
fundamental building block of many machine
learning methods.

* Problem definition: Given a database of n points and
the query, find the k points that are closest to the

query.
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Notions of Dimensionality

 The hardness of a dataset can be characterized using
two notions of dimensionality.

— Ambient dimensionality: the dimensionality of the
space that contains the data points.

— Intrinsic dimensionality: can be roughly thought of
as the dimensionality of the data manifold.
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Intrinsic Dimensionality

* Definition:
A dataset ) has intrinsic dimensionality? d’ if
forall 7 >0, a > 1 and P such that |B,(r)| > k,

By(ar)| < o [By(r)]

This is also known as the expansion dimension or the KR-dimension.
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Intrinsic Dimensionality

/
A d’-dimensional uniform grid Zd has intrinsic
dimensionality d’.
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Intrinsic Dimensionality

* If it were embedded in a higher-dimensional space, it
would retain its intrinsic dimensionality.

Fast k-Nearest Neighbour Searchvia~ UNIVERSITY OF CALIFORNIA
Prioritized DCI



Intrinsic Dimensionality

e Equivalently:
logy |Bp(ar)| < d'log, (ar) + (logy By ()| — d'logy )

— Plot log, | B, (ar)]
against log, (ar)
— Maximum slope upper

bounds the intrinsic
dimensionality.
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Why is High Dimensionality Hard?
d =1
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Why is High Dimensionality Hard?

d =2
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Why is High Dimensionality Hard?

d =2
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Why is High Dimensionality Hard?

d =3
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Why is High Dimensionality Hard?
d =3
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* The number of nearby points could grow
exponentially in intrinsic dimensionality.
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History

 The problem of nearest
neighbour search was SRS
formalized by Cover & Hart
(1967) and Minsky & Papert
(1969) in their seminal
book, Perceptrons.

Perceptrons

Marvin L. Minsky
Seymour A. Papert
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History

 The problem of nearest
neighbour search was

Expanded Edition

66 We conjecture that even for the best
possible Agie - Agng pairs, ... for large data

sets with long word lengths there are no
practical alternatives to large searches that
inspect large parts of the memory. 2

p. 223
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In other words, even for the best
choice of dataset and queries,
when the dataset is large and

* The proble high-dimensional, doing

neighbour sey—_ substantially better than \

exhaustive search is conjectured

to be impossible.

History

sets with long WOrg\) ths there are no
practical alternatives to large searches that
inspect large parts of the memory. 2

p. 223
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The Curse of Dimensionality

X-tree
k-d tree
(Bentley, 1975) (Berchtold et
al., 1996)
o o O >
1975 1984 1996
/\ * Exact deterministic algorithms
R-tree based on space partitioning.
(Guttman, * Query time exponential in the
1984) ambient dimensionality.
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The Curse of Dimensionality

(Meiser, 1993)

k-d tree R-tree _\/ X-tree

N N
A4 A

1975 1984 1993 1996

* Exact deterministic algorithm.
* Query time polynomial in ambient dimensionality.

e Space complexity exponential in ambient dimensionality.
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The Curse of Dimensionality

LSH
(Indyk & (Andoni & Indyk,
Motwani, 2006)
1998)
k-d tree R-tree Meiser X-tree\/ _\/
1975 1984 1993 19961998 2004 2006

e LSH introduced the idea of

randomization.

* Approximate randomized algo-
rithm based on space partitioning.
« Query time is O(dn”), where

p1/(1+¢)?

/\

Euclidean LSH
(Datar et al.,
2004)
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The Curse of Dimensionality

il e Virtual spill
. tree
(Liu et al.,
2004) (Dasgupta &
Sinha, 2015)
k-d tree R-tree Meiser X-tree LSH \/ \/
O O O o—o0 O00——0—0 O >
1975 1984 1993 19961998 2004 20062008 2015
* Exact randomized algorithms based /\
on space partitioning. RP tree
* Query time exponential in intrinsic (Dasgupta &
dimensionality. Freund, 2008)
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The Curse of Dimensionality

Cover tree Rank cover tree
(Karger & Ruhl, .

2002) (Beygelzimer et (Houle & Nett,

al., 2006) 2015)
Spill
k-d tree R-tree  Meiser X-tree LS tree tree VST
=
1975 1984 1993 1996199820022004 20062008 2015

* Exact algorithms based on local J\

search and coarse-to-fine. Navigating net
* Query time exponential in (Krauthgamer
intrinsic dimensionality. & Lee, 2004)
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The Curse of Dimensionality

Dynamic
Continuous
Indexing (Li &
Malik, 2016)

K&RSpillNav. RP
k-d tree R-tree Meiser X-tree LSH  tree net CT tree VST RCT

N N N O
A4 A A A

1975 1984 1993 1996199820022004 20062008 2015 2016 2017

e Qur contribution: a new family of exact randomized /\—
algorithms, known as Dynamic Continuous Indexing. Prioritized DCI

(Li & Malik,
2017)
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The Curse of Dimensionality

Dynamic
Continuous
Indexing (Li &
Malik, 2016)
K&RSpillNav. RP
k-d tree R-tree Meiser X-tree LSH  tree net CT tree VT RCT
1975 1984 1993 1996199820022004 20062008 2015 2016 2017
* Query time linear in ambient dimensionality and /\—
sublinear in |nt.r|ns.|c dimensionality. | o Prioritized DCI
e Space complexity independent of ambient or intrinsic (Li & Malik,
dimensionality. 2017)
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The Curse of Dimensionality

— O(d’d —|—logn)
— O(23dllogn)
K&R, —  O(dmax(logn,n'~ 1/d,))
Nav. Net, O(dma (logn,n'~ m/d/)—|—(mlogm)max(logn,nl_l/d/))
2 |Cover Tree
o
o
-
S
2 Spill Tree,
=
> RP Tree
o
>
o

Intrinsic Dimensionality (d')
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The Curse of Dimensionality

— O(d’d +logn)

— O(23d logn)
K&R, —  O(dmax(logn,n' "))
Nav. Net, @ —  O(dmax(logn,n" ™% ) + (mlogm)max(logn,n' ~*/*))
Cover Tree

Spill Tree,
@ RP Tree

Query Time Complexity

e

Intrinsic Dimensionality (d')
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The Curse of Dimensionality

— O(d’d +logn)

— O(23d logn)
K&R, —  O(dmax(logn,n' "))
Nav. Net, @ —  O(dmax(logn,n" ™% ) + (mlogm)max(logn,n' /%))
Cover Tree

Spill Tree,
@ RP Tree

Query Time Complexity

; DCI
Q Prioritized DCI
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Our Approach

* Key difference from prior methods: Dynamic Continuous
Indexing (DCI) avoids space partitioning.

* Space partitioning is a divide-and-conquer strategy that
underlies most existing methods, including k-d trees and
locality-sensitive hashing (LSH).

— It works by partitioning the space into discrete cells
and keeping track of points contained in each.

* We conjecture that the curse of dimensionality stems
from the inherent deficiencies of space partitioning.
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The Case Against
Space Partitioning
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e Either the number or volume of the cells must grow
exponentially in dimensionality.
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e Either the number or volume of the cells must grow
exponentially in dimensionality.

* “Field of view” limited to cell containing the query.
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* The number of neighbouring cells that must be
searched grows exponentially in the dimensionality
in the worst case.
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LSH
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LSH
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LSH
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e Searching over only the points in the cell containing
the query would lead to the incorrect result.
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LSH
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* As the ratio of surface area to volume grows in
dimensionality, the number of overlapping grids
grows in dimensionality.
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LSH

* Inefficient when query lies in denser regions.
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LSH
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e Returns no points when query lies in sparser regions.
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e Returns no points when query lies in sparser regions.

* This partitioning is unsuitable for datasets with large
variations in density.
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Prioritized DCI
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Prioritized DCI
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Project all data points along a random direction.
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Prioritized DCI
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Project all data points along multiple random directions.
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Prioritized DCI
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Project the query along each projection direction.

Berkele

Fast k-Nearest Neighbour Search via UNIVERSITY OF CALIFORNIA y
Prioritized DCI



Prioritized DCI

Find the closest point to the query along each projection
direction and add them to the frontier.
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Prioritized DCI

Compare their projected distances to the query.
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Prioritized DCI
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Visit the point with the shortest projected distance.
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Prioritized DCI

Find the next closest point along the projection direction that has
just been processed and add it to the frontier.
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Prioritized DCI

Compare projected distances of points on the frontier and visit the
one with the shortest projected distance.
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Prioritized DCI
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Prioritized DCI
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Prioritized DCI
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Prioritized DCI
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Prioritized DCI
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Prioritized DCI

Compare projected distances of points on the frontier and visit the
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Find the next closest point along the projection direction that has
just been processed and add it to the frontier.

Berkeley

Fast k-Nearest Neighbour Search via UNIVERSITY OF CALIFORNIA
Prioritized DCI



Prioritized DCI
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Prioritized DCI
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Prioritized DCI
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Prioritized DCI
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Prioritized DCI
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Prioritized DCI

Find the next closest point along the projection direction that has
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Prioritized DCI

Compare projected distances of points on the frontier and visit the
one with the shortest projected distance.
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Prioritized DCI

There is now a point that has been visited along all projection
directions. We add it to the candidate set.
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Prioritized DCI
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Visit the next point.
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Prioritized DCI
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Visit the next point.

Berkeley

Fast k-Nearest Neighbour Search via UNIVERSITY OF CALIFORNIA
Prioritized DCI



Prioritized DCI
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Visit the next point.
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Prioritized DCI

O O

Visit the next point and add it to the candidate set.
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Prioritized DCI
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Visit the next point and add it to the candidate set.
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Prioritized DCI

Perform exhaustive search over candidate points and return k
points that are closest to the query.
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Intuition

e Points are added to the candidate set in the order of
their maximum projected distance to the query.

 Maximum projected distance is a lower bound on
the true distance.

* As the number of projection directions increases, this
lower bound approaches the true distance.

max {|(p',u5) = (g uj)|} = max {|(p" — g, u;)|} < lp" = all,

where [[ujlly =1 Vj
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Lemma

 We derived the following lemma, which may be of
independent interest:

* Forany set of events F, ..., E,, the probability that at
least m of them occur is at most:

1 mn
m Z Pr(E;)
1=1
* When m = 1, this reduces to the union bound.

(Proof is in the “Fast k-Nearest Neighbour Search via Prioritized DCI” paper,
though two students, Eric Xia and Zipeng Qin, later came up with simpler proofs,
one using measure theory, and one using Markov’s inequality.)
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Complexity

* Construction Time: O(m(dn +nlogn))
« Query Time: O(dk max(log(n/k), (n/k)* "™/ %)+
mk log m(max(log(n/k), (n/k)'~1/4Y))
* Insertion Time: O(m(d + logn))
* Deletion Time: O(mlogn)
* Space: O(mn)
where m > 1 is the number of projection directions
chosen by the user.
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Complexity

* Construction Time: O(m(dn +nlogn))

- Query Time: O(dk max(log(n/k), (n/k)' ™% )+
klog m(max(log(n/k/{(n/k)l_ﬁ/d,

* |nsertion
e Deletion

] \

Linear dependence on
ambient dimensionality

ogn))

Sublinear dependence on

intrinsic dimensionality

* Space: O(mn)

where m > 1 is the number of projection directions
chosen by the user.
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Complexity

* Construction Time: O(m(dn +nlogn))
- Query Time: O(dkmax(log(n/k),(n/k)* =74 )+
mk log m(max(log(n/k), (/ k)1 4)

* Insertion Time: O(m(d + log n)) A linear increase in intrinsic

dimensionality can be mostly
counteracted with a linear
increase in the number of

projection directions.

* Deletion Time: O(mlogn)
* Space: O(mn)

where m > 1 is the number of projection directions
chosen by the user.
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Experiments
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Query Time on CIFAR-100
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— LSH
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Approximation Ratio

distance to retrieved nearest neighbours
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For More Details...

Fast k-Nearest Neighbour Search via Dynamic Continuous
Indexing

Ke Li, Jitendra Malik
ICML, 2016

Fast k-Nearest Neighbour Search via Prioritized DCI
Ke Li, Jitendra Malik
ICML, 2017
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