Quality of Service (QoS) - DiffServ

Our Story So Far

- QoS = attaining some sort of reliable performance from the network
- Max-Min Fairness as concept for allocating capacity across a set of flows
- Weighted Fair Queuing as way to attain Max-Min Fairness
- Token Bucket as way to describe bounds on burstiness of a flow’s packet’s arriving at a queue
- Integrated Services (IntServ) as means by which flows can
 - Describe burstiness using Token Bucket descriptors
 - Set up soft-state reservations end-to-end
 - Entails admission control decision
 - Answer could be “no, you don’t get it”

Problems with IntServ

- Scalability: per-flow state & classification
 - Aggregation/encapsulation techniques can help
 - Can overprovision big links, per-flow ok on small links
 - Scalability can be fixed - but no second chance
- Economic arrangements:
 - Need sophisticated settlements between ISPs
 - Contemporary settlements are primitive
 - Unidirectional, or barter
- User charging mechanisms: need QoS pricing
 - On a fine-grained basis

Differentiated Services (DiffServ)

- Give some traffic better treatment than other
 - Application requirements: interactive vs. bulk transfer
 - Economic arrangements: first-class versus coach
- What kind of better service could you give?
 - Fewer drops
 - Lower delay
 - Lower delay variation (jitter)
- How to know which packets get better service?
 - Bits in packet header
- Deals with traffic in aggregate
 - Provides weaker services
 - But much more scalable

DiffServ Architecture

- Ingress routers - entrance to a DiffServ domain
 - Police or shape traffic
 - Set Differentiated Service Code Point (DSCP) in IP header
- Core routers
 - Implement Per Hop Behavior (PHB) for each DSCP
 - Process packets based on DSCP

Differentiated Service (DS) Field

- DS field encodes Per-Hop Behavior (PHB)
 - E.g., Expedited Forwarding (all packets receive minimal delay & loss)
 - E.g., Assured Forwarding (packets marked with low/high drop probabilities)
Comparison to Best-Effort & Intserv

<table>
<thead>
<tr>
<th></th>
<th>Best-Effort</th>
<th>Diffserv</th>
<th>Intserv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity</td>
<td></td>
<td>Per aggregate isolation</td>
<td>Per flow isolation</td>
</tr>
<tr>
<td>No isolation</td>
<td></td>
<td>Per aggregate guarantee</td>
<td>Per flow guarantee</td>
</tr>
<tr>
<td>No guarantees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service scope</td>
<td></td>
<td>Domain</td>
<td>End-to-end</td>
</tr>
<tr>
<td>End-to-end</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
<td>Long term setup</td>
<td>Per flow stleup</td>
</tr>
<tr>
<td>No setup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly scalable (nodes maintain only routing state)</td>
<td>Scalable (edge routers maintain per aggregate state; core routers per class state)</td>
<td>Not scalable (each router maintains per flow state)</td>
<td></td>
</tr>
</tbody>
</table>

Discussion: Limited QoS Deployment

- End-to-end QoS across multiple providers/domains is **not** available today
- Issue #1: complexity of payment
 - Requires payment system among multiple parties
 - And agreement on what constitutes service
 - DiffServ tries to structure this as series of **bilateral** agreements ...
 - But lessens likelihood of end-to-end service
 - Architecture includes notion of “Bandwidth Broker” for end-to-end provisioning
 - Solid design has **proved elusive**
 - Need infrastructure for metering/billing end user

Limited QoS Deployment, con’t

- Issue #2: prevalence of overprovisioning
 - Within a large ISP, links tend to have plenty of headroom
 - Inter-ISP links are **not** over provisioned, however
- Is overprovisioning enough?
 - If so, is this only because access links are slow?
 - What about Korea, Japan, and other countries with fast access links?
 - Disconnect: ISPs overprovision, users get bad service
- Key difference: intra-ISP vs. general end-to-end

Summary

- **Basic mechanism for achieving better-than-best-effort performance: scheduling**
 - Multiple queues allow priority service
 - Fair queuing provides isolation between flows
- But: still need end-to-end mechanisms
 - Reservations & admission control
 - Descriptions of bursty traffic: **token buckets**
- IntServ provides per-flow performance guarantees
 - But lacks **scalability**
- DiffServ provides per-**aggregate** tiers of relative perf.
 - Scalable, but not as powerful
- **Neither** is generally available end-to-end today
- ISPs manipulating what services receive what performance raises issues of: **network neutrality**