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1 Introduction

In the last couple of lectures, in our study of Bayesian nonparametric approaches, we considered the Chinese
Restaurant Process, Bayesian mixture models, stick breaking, and the Dirichlet process. Today, we will try
to gain some insight into the connection between the Dirichlet process and the Dirichlet distribution.

2 The Dirichlet distribution and Pólya urn

First, we note an important relation between the Dirichlet distribution and the Gamma distribution, which
is used to generate random vectors which are Dirichlet distributed. If, for i ∈ {1, 2, · · · ,K},

Zi ∼ Gamma(αi, β) independently,

then

S =
K
∑

i=1

Zi ∼ Gamma

(

K
∑

i=1

αi, β

)

and
V = (V1, · · · , VK) = (Z1/S, · · · , ZK/S) ∼ Dir(α1, · · · , αK)

Now, consider the following Pólya urn model. Suppose that

• Xi - color of the ith draw

• X - space of colors (discrete)

• α(k) - number of balls of color k initially in urn.

We then have that

p(Xi = k|X1, · · · ,Xi−1) =
α(k) +

∑

j<i δXj
(k)

α(X ) + i − 1

where δXj
(k) = 1 if Xj = k and 0 otherwise, and α(X ) =

∑

k α(k). It may then be shown that

p(X1 = x1,X2 = x2, · · · ,Xn = xn) =
α(x1)

α(X )

n
∏

i=2

α(xi) +
∑

j<i δXj
(xi)

α(X ) + i − 1

=
α(1)[α(1) + 1] · · · [α(1) + m1 − 1]α(2)[α(2) + 1] · · · [α(2) + m2 − 1] · · ·α(C)[α(C) + 1] · · · [α(C) + mC − 1]

α(X )[α(X ) + 1] · · · [α(X ) + n − 1]

where 1, 2, · · · , C are the distinct colors that appear in x1, · · · , xn and mk =
∑n

i=1
1{Xi = k}.
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3 The Pitman-Yor process

This section is a small aside on the Pitman-Yor process, a process related to the Dirichlet Process.

Recall that, in the stick-breaking construction for the Dirichlet Process, we dene an innite sequence of Beta
random variables as follows:

βi ∼ Beta(1, α0) i = 1, 2, · · ·

Then, we define an infinite sequence of mixing proportions as follows:

π1 = β1

πk = βk

∏

j<k

(1 − βj) k = 2, 3, · · ·

The Pitman-Yor process PY (d, α,G0) is a related probability distribution over distributions. The parameters
of this process are 0 ≤ d < 1 a discount parameter, a strength parameter θ > −d and a base distribution
over G0. In the special case of d = 0, the Pitman-Yor process is equivalent to the Dirichlet process.

Under the Pitman-Yor process, the innite sequence of Beta random variables is dened as

βi ∼ Beta(1 − d, α + kd) i = 1, 2, · · ·

As in the Dirichlet Process, we complete the description of the Pitman-Yor process via

G =

∞
∑

k=1

πkδφk

θi|G ∼ G

Hence, due to the way βi are drawn, the Pitman-Yor process has a longer tail than the Dirichlet Process,
that is, more sticks have non-trivial amounts of mass. The Pitman-Yor process may be seen as a Chinese
restaurant process with a rule that favors starting a new table. In the homework, you will be required
to show that the expectation of the total number of occupied tables in the Chinese restaurant scales as
O(αnd) under the Pitman-Yor process, PY (d, α,G0). This is known as a power-law and is in contrast to the
logarithmic growth for the Dirichlet Process that we discuss in the next section. Many natural phenomena
follow power-law distributions, and in these cases, the Pitman-Yor process may be a better choice for a prior
than the Dirichlet Process.

4 Expected number of occupied tables in the Chinese Restaurant

Process

Going back to the Dirichlet Process, the stick-breaking construction/GEM distribution (named so by Ewens
(1990) after Griths, Engen and McCloskey), of the βi is given by Beta(1, α). In the resulting Chinese
Restaurant Process, we have

P (new table on ith draw) =
α

α + i − 1

We define

Wi =

{

1 if ith draw is a new table
0 otherwise
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The expected number of occupied tables is then given by

E

(

n
∑

i=1

Wi

)

=

n
∑

i=1

α

α + i − 1
∼ α log

(

α + n

α

)

Moreover, we can also easily compute the probability of any sequence of draws. Consider, for instance, the
sequence of draws given by W = (1, 1, 0, 0, 1). The probability of this sequence is given by

P (W = (1, 1, 0, 0, 1)) =
α

α
·

α

α + 1
·

2

α + 2
·

3

α + 3
·

α

α + 4

=
α3Γ(α)

Γ(α + n)
(1 · 1 · 2 · 3 · 1)

In general, it may be shown that the probability of drawing k tables in n draws is given by

P (k tables|α, n) = S(n, k)
αkΓ(α)

Γ(α + n)

where S(n, k) is a Stirling number of the first kind. The following identity may be shown to hold for Stirling
numbers of the first kind:

S(n + 1,m + 1) = S(n,m) + nS(n,m + 1)

5 Gibbs Sampling α for Dirichlet Process mixtures

Our goal now, is to sample α in a Gibbs sampler for Dirichlet Process mixtures. The sampling distributions
used are

G ∼ DP (α,G0)

θi|G ∼ G

Xij |θi ∼ Fθi

In addition, we also need to determine a prior on α. Toward this end, let k = the number of occupied tables
in a Chinese restaurant process. By the last computation, we have that

p(k|α) ∝
αkΓ(α)

Γ(α + n)

We also have that the Beta function is

B(α1, α2) =

∫

1

0

xα1−1(1 − x)α2−1dx =
Γ(α1)Γ(α2)

Γ(α1 + α2)

=⇒
Γ(α)

Γ(α + n)
=

(α + n)B(α + 1, n)

(α + n)Γ(α + n)

The above identity may be verified by checking that

B(α + 1, n) =
Γ(α + 1)Γ(n)

Γ(α + 1 + n)
=

αΓ(α)Γ(n)

(α + n)Γ(α + n)

Hence, it then follows that

p(α|k) ∝ p(α)αk−1(α + n)

∫

1

0

xα(1 − x)n−1dx

Introducing X ∼ Beta(α + 1, n), we observe that p(α) must be chosen to be conjugate to the Gamma
distribution. Since the Gamma distribution is conjugate to itself, it follows that p(α) must be chosen to be
a Gamma distribution.
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6 The Dirichlet Process

In this section, we discuss why the Dirichlet Process is named the Dirichlet Process.

Consider a set Φ and a partition A1, A2, · · · of Φ such that ∪kAk = Φ. We would like to construct a random
probability measure on Φ, i.e., a random probability measure G such that for all i, G(Ai) is a random
variable. For this, we need to specify a joint distribution for (G(A1), G(A2), · · · , G(Ak)) for any k and any
partition.

Ferguson (1973) showed that G is a Dirichlet process with parameters α0 and G0, i.e. G ∼ DP (α0, G0) if
for any partition A1, · · · , Ak, we have that

(G(A1), · · · , G(Ak)) ∼ Dir[α0G0(A1), · · · , α0G0(Ak)]

Sethuraman (1994) showed that the Dirichlet Process is an innite sum of the form G =
∑

∞

k=1
πkδφk

that
obeys the denition of the stick-breaking process.

We wish to give an overview of why these denitions are equivalent. First, we present three facts, two of
which you need to prove in the homework and one which we simply state as a fact.

1. (Homework) Suppose that U and V are independent k-vectors. Let U ∼ Dir(α) and V ∼ Dir(γ). Let
W ∼ (

∑

i αi,
∑

i γi), independently of U and V . It may then be shown that

WU + (1 − W )V ∼ Dir(α + γ)

2. (Homework) Let ej denote a unit basis vector. Let βj = γj/
∑

i γi. In this case, it may be shown that

∑

j

βjDir(γ + ej) = Dir(γ)

3. Let W,U be a pair of random variables where W take values in [1, 1] and U takes values in a linear
space. Suppose V is a random variable taking values in the same linear space as U and which is
independent of (W,U) and satises the distributional equation

V
st
= U + WV

where the notation
st
= stands for “has same distribution”. If P (|W | = 1) 6= 1, then there is a unique

distribution for V that satises this equation.

By the stick-breaking construction,

G =
∞
∑

k=1

πkδφk
= π1δφ1

+ (1 − π1)
∞
∑

k=2

πkδφk

which gives us the distributional equation

G
st
= π1δφ1

+ (1 − π1)G

Evaluating the LHS and RHS on a partition (A1, · · · , Ak) gives us

V
st
= π1X + (1 − π1)V (1)
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where π1 ∼ Beta(1, α0), X is k−vector that takes on the value ej with probability G0(Ak), and V is
independent of X and π1.

We show that the k−dimensional Dirichlet distribution V ∼ Dir(G0(A1), . . . , G0(Ak)) satises Equation (1)
and therefore, by fact 3, V is the unique distribution to satisfy this. Therefore, V constructed via the
stick-breaking construction and V as defined in the Dirichlet Process are equivalent.

Now to show that the k−dimensional Dirichlet distribution satises Equation (1). Let V on the RHS
of Equation (1) be the k−dimensional Dirichlet distribution Dir(G0(A1), . . . , G0(Ak)). By denition, the
k−dimensional Dirichlet distribution Dir(ej) assigns probability 1 to partition Aj . Now conditioning on
X = ej , the distribution of π1X + (1 − π1)V is π1Dir(ej) + (1 − π1)Dir(G0(A1), . . . , G0(Ak)). By fact 1,
this is distributed Dir((G0(A1), . . . , G0(Ak)) + ej). Now integrating over the distribution of X where

P{X = ej} = G0(Aj) =
αj
∑

i αi

and using fact 2, we see that the RHS is distributed Dir(G0(A1), . . . , G0(Ak)).

Therefore, the stick-breaking construction and the mathematical denition of the Dirichlet Process are equiv-
alent.

References

[1] Ferguson, T. S. 1973. A Bayesian Analysis of Some Nonparametric Problems. The Annals of Statistics 1 (2):
209-230.

[2] Sethuraman, J. 1994. A Constructive Definition of Dirichlet Priors. Statistica Sinica 4: 639-650.


