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ABSTRACT

We empirically investigate whether advertisers are maximiz-
ing their return on investment (ROI) across multiple key-
words in sponsored search auctions. Because testing for ROI
maximization relies on knowledge of advertisers’ private true
values per click, we instead use necessary (although not suf-
ficient) conditions for ROI maximizing behavior that rely
only on advertisers’ bids. We classify advertisers based on
the extent to which they satisfy the test conditions. Our
results indicate that a large fraction of advertisers in the
Yahoo Webscope first price data set may be following ROI-
based strategies.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms

Sponsored Search Auctions, Empirical Analysis, Campaign
Optimization, Bidding Agent, Return on Investment

1. INTRODUCTION

Search engines sell advertising positions alongside organic
search results by conducting sponsored search auctions. The
goal of this paper is to better understand the empirical
behavior of bidders (advertisers) in these auctions. There
are two reasons why such an understanding is important.
Firstly, understanding advertiser needs will allow search en-
gines to develop bidding tools, user interfaces and features
that help advertisers achieve their goals. Secondly, as we
discuss below, our empirical investigation helps guide theo-
retical modeling and analysis of these auctions.

Academic research has focused primarily on the single-
keyword, single-shot model of a sponsored search auction
(see [13] for a good overview). The basic assumption is that
bidders strategize independently on each keyword they bid
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Number of | Percentage of Bidders Who Bid
Keywords On This Many Keywords
1 47
2 17
3-5 18
6-25 14
>25 3

Figure 1: Number of keywords bid on by bidders
in the Yahoo Webscope data set (described in Sec-
tion 3.1). Percentages do not sum to 100 due to
rounding.

on. This assumption, however, need not hold. Advertis-
ers may not have the resources or sophistication to track
each keyword separately, and their spending on each key-
word may be limited by a single advertising budget that
applies to all keywords collectively. This may cause adver-
tisers to coordinate their strategies across keywords. If this
is indeed happening, the behavior of a large proportion of
bidders could be affected. As Figure 1 shows, half of all
bidders in our data set (explained in Section 3.1) bid on at
least two keywords.

One promising model for multi-keyword bidding strategies
is based on the maximization of bidders’ return on invest-
ment (ROI). Papers exploring ROI in sponsored search auc-
tions include [3, 5, 7, 10]. We draw in particular on the work
of [3]. The main result of the paper is that if all advertisers
follow a particular ROI-based strategy, then under a certain
reasonable model the system reaches a market equilibrium.
If we can find empirical evidence that advertisers follow a
similar strategy, then we can use the vast literature on mar-
ket equilibria (see chapters 7 and 8 of [8] and the references
therein) to better understand sponsored search auctions.

There are two key difficulties in using empirical data to de-
termine whether bidders are maximizing their ROI. Firstly,
the definition of ROI relies on a bidder’s true value per click,
a quantity which is private to the bidder: she does not share
her true value with the auctioneer or any other party. With-
out knowing this value, it is impossible to conclusively say
that a bidder is maximizing her ROI. There are, however,
some necessary conditions for ROI maximization that rely
solely on public information (bids, times, etc) contained in
the data sets we used. If a bidder is violating some of these
conditions, then we can conclude that she is not maximizing
her ROI. For the other bidders, we are limited to saying that
they meet certain necessary conditions for ROI maximiza-
tion.



The second key problem is that few tests will be exactly
fulfilled by empirical data. To overcome this problem, we
follow the approach of [11] and calculate the minimal per-
turbations that must be made to the data in order for the
conditions to be fulfilled. If these perturbations are small
enough, then we can conclude that the test condition prob-
ably holds.

We run several tests on empirical multi-keyword data. We
focus in particular on tests that relate to ROI optimization
in the model proposed by [3]. ROI-based strategies are sup-
ported by some of the most popular bidding agents, such
as Apex Pacific’s PPC BidMaz and Omniture’s SearchCen-
ter. It is quite easy for a bidder to employ an ROI-based
strategy: she only needs to know the money spent on and
value derived from each keyword. (In fact, knowing just the
relative values of his keywords is sufficient.) Therefore, we
believe an empirical investigation of ROI-based strategies to
be well-motivated.

2. OUR CONTRIBUTION

We formulate empirical tests that check for evidence of
ROI maximization and other forms of bidder rationality.
These tests use only the public information revealed by bid-
ders. To investigate conditions (or types of rationality) that
rely on private information, such as true values per click,
we use the public information to build necessary conditions
for having the private information for which we seek to test.
Our analysis produces the following results:

e 65% of first price bidders display behavior consistent
with the ROI-maximization strategy proposed by [3].
Specifically, these bidders need bid perturbations of
5% or less in order to have consistent ratios across
time between their bids on different keywords.! See
Section 6.2 for more details.

e 83% of first price bidders need bid perturbations of
5% or less in order to maintain a consistent lowest-to-
highest ordering of their bids on different keywords.
This implies that the majority of bidders are at least
partially optimizing their ROI. See Section 6.1 for more
details.

e For both of the previous two tests, results varied dra-
matically based on the number of keywords being bid
on. For example, 84% of advertisers bidding on only 2
keywords display behavior consistent with the ROI op-
timization strategy, whereas only 26% of bidders bid-
ding on more than 25 keywords display such behavior.

e Most bidders are sophisticated enough to submit dif-
ferent bids on different keywords. 63% of first price
bidders submit meaningfully different bids across their
different keywords. (We consider a difference to be
meaningful if it cannot be canceled out by perturba-
tions of up to 5%.) See Section 6.3 for more details.

e In the first price data set, only 20% of bidders submit
the same bids across time. In the second price data

Note that displaying this behavior does not necessarily
mean that the ROI-maximization strategy was being fol-
lowed. For example, submitting identical bids on every key-
word or every day is a trivial way of displaying this behavior.
This issue is further explored in the body of this paper.

set, 70% of bidders submit the same bids across time.
This difference reflects the increased stability of the
second price auction. See Section 6.3 for more details.

e There are weak but positive correlations between all of
the following: number of keywords bid on, frequency
of bid updates, bid spread (the mean difference be-
tween bids on any two keywords) and mean bid. This
indicates, for instance, that the ability to bid on mul-
tiple keywords also implies increased bidding activity
on any one of them. However, the lack of strong cor-
relation also indicates that bidders in the data set are
fairly diverse. See Section 6.4 for more details.

3. SETUP

3.1 Data sets

We ran all tests on Version 1.0 of Yahoo! Search Market-
ing advertising bidding data, provided as part of the Yahoo!
Research Alliance Webscope program. The data set contains
all bids placed on the top 1,000 keywords during the time
period 6/15/2002 to 6/14/2003. There are 10475 bidders in
total. Each bidder is assigned a unique anonymous identi-
fier so that he can be tracked across time and keywords. Bid
data are sampled in 15 minute time increments (which we
then average across an entire day). If a bidder bid on more
than 50 keywords in the data set, or more than 90 days,
the data were truncated to permit tractable analysis. This
truncation does not compromise the analysis: the data are
inherently truncated at some level, in the sense that we only
have access to bids on the top 1000 keywords, and all bids
are sampled from a one year time period. Furthermore, only
10% of bidders were affected by the truncation.

The data are from a first price auction. Although first
price auctions are no longer used in practice, we believe that
the results from our analyses on the first price data set are
also applicable to a second price auction. This is because our
analysis focuses on multi-keyword properties. The exact way
in which bidders behave in an auction is not relevant to most
of our tests; rather, we are interested in how bidders allocate
their budgets across keywords, which is a common problem
regardless of the type of auction being used. First price
auctions were also used in much of the theoretical analysis
done by [3].

In some ways, a first price data set is actually preferable
to a second price data set for our analysis: a first price
auction allows advertisers to control exactly how much they
spend per click, and by extension they can control their
exact ROI on each keyword. This contrasts with a second
price auction, in which advertisers pay the bid of the bidder
ranked immediately behind them, thereby not having fine-
grained control over their ROI on each keyword. Thus, if
advertisers are attempting to maximize their ROI, it should
be much easier to see evidence of this behavior in a first
price auction than a second price auction.

We also had access to a small second price data set. The
data were collected by [2] using the Overture Bid View tool.
The data set includes daily bid magnitudes of all bidders on
45 keywords. Each keyword is the name of a car manufac-
turer. In total, there were 629 bidders in the data set. The
data set is limited in size, and is market-specific. There-
fore, the second price results should be treated cautiously.
They are included mainly for purposes of rough comparison



with the first price results, and to justify our belief that re-
sults from the first price data set also apply to second price
auctions.

3.2 Model and Notation

We use a subset of the model proposed by [3], with a few
small changes to fit with our analyses.

A bidder submits bids per click on keywords 1,2,--- , K on
days 1,2,---,T. Let by be the bid submitted on keyword
k for day t. If a bidder bids different amounts on keyword k
over the course of a single day, we set by + to be his average
bid for that day. Because this is a first price auction, the
bid per click is also the price paid per click. Let 0 be the
number of clicks on keyword k over the course of day ¢. This
measurement is slot agnostic, and is well defined even if a
bidder resides in different slots over the course of a single
day. Each bidder has a budget B; for each day t. This
budget applies to all keywords collectively. In other words,

K
V.Y by Ok < Bu. (1)

k=1

Each bidder is assumed to have a value per click vy for each
keyword k. This value per click is constant across time.

We make the simplifying assumption that the number of
clicks a bidder receives is a strictly increasing function of
his bid. So if bk, > b}, then Ox: > 6 ,. The purpose
of this assumption is to provide an intuitive justification
for why an advertiser should attempt to raise his bid on
high-ROI keywords and lower his bid on low-ROI keywords
(see Section 4). Although this assumption may not be true
immediately after a bid change, over the course of an entire
day there is a lot of churn, with bidders frequently swapping
slots. Thus, when we consider the day as a whole, a bidder
will most likely have received more clicks as a result of a
higher bid or fewer clicks as a result of a lower bid. Of course,
this assumption cannot apply when a bidder is bidding so
low that his ad is never appearing or so high that he is in the
top slot for the entire day. To compensate for this problem,
we ignored bidders in the top slot for some of our empirical
analyses.

4. RETURN ONINVESTMENT: A REVIEW
OF PRIOR RESEARCH

In this section, we summarize the return on investment
(ROI) model proposed by [3], and introduce the ROI maxi-
mization condition that we test for in this paper.

Return on investment is the ratio of utility (i.e. value
minus cost) over price. For example, if a bidder pays $1 per
click, and gets $1.50 in value from each click, then his ROI
is £29=1 — 0.5.

ROI optimization is related to value per unit price opti-
mization in the following way:

u vVv-°P V

P~ P P 1 (2)
where U, P, and V represent the utility, price and value
respectively. Thus, maximizing ROI is equivalent to maxi-
mizing the value obtained per unit price. If the advertiser
is exactly meeting his budget, the total price is fixed: it is
always the budget. Thus, if a budget is being exactly met,

ROI maximization is equivalent to maximization of the value
derived from clicks on the ad.

If a bidder maximizes her overall ROI, then she will, in
effect, equalize the marginal ROI she gets from each keyword
she bids on. If her marginal ROI is higher on one keyword
than another, then she could lower her bid slightly on the
keyword with lower marginal ROI and raise her bid slightly
on the keyword with higher marginal ROI. She could do this
in a way that resulted in the same expenditure but higher
utility, and thus in higher overall ROI. Because the marginal
ROI of a keyword is difficult to estimate (and is sometimes
even undefined), [3] approximates it with the ROI. Thus, if
a bidder is maximizing her overall ROI, we expect her to
have the same ROI on each keyword that she bids on.

Formally, if ROI (and by extension, total value) is be-
ing maximized in a budget-constrained setting then on any
given day t we expect 3= = s; for some constant scale factor
st. The scale factor s; may change from day to day in order
to always spend exactly the budget. Even if a hard budget
does not exist, we may still see behavior similar to this con-
dition. Bidders who are not budget constrained may follow
an ROI-like strategy purely for its relative simplicity (see,
for example, the strategy described at the very end of this
section).

Rearranging this equation gives us the following ROI max-
imization condition:

Vk, t. (St . bk,t = Uk) . (3)

We test for adherence to this condition. One simple way
for bidders to adhere to this condition would be to follow
the algorithm proposed in [3]. In this algorithm, bidders
always maintain the same relative bids on their keywords.
At the end of each day, they see whether their budget was
exhausted. If it was exhausted, they scale all bids down by
the same factor. It it was not exhausted, they scale all bids
up by the same factor. (This scale factor corresponds to the
s¢ terms in equation (3).) This strategy relies on very little
information or sophistication; all a bidder needs to know in
order to apply this strategy is the relative value she has for
clicks on each keyword and the total amount of money that
she is spending.

S. EMPIRICAL ANALYSIS TECHNIQUES

Bidders in a sponsored search auction have both public
information (the bids they submit) and private information
(their true values per click). The ROI maximization con-
dition is somewhat difficult to test for, because it involves
knowledge of private information. Essentially, we overcome
this lack of knowledge by using necessary but not sufficient
conditions. We follow the approach of [12, 13]. If there ex-
ists a set of private values that, along with the public infor-
mation, is consistent with the ROI maximization condition,
then we conclude that bidders may be rationally optimizing
their return on investment. This style of analysis is inspired
by revealed preference theory (see [9] for the more informa-
tion on this subject).

Sponsored search auctions tend to have a lot of entropy,
and it is unlikely that any condition we test for will be ex-
actly fulfilled in a real-world situation. Sources of this seem-
ingly random disorder include inaccurate estimates of values
per click, fluctuating search volume and click-through-rates,
strategic bidding behavior (e.g. [6]), repeated game bidding
strategies, changing participants in the market, changing



budgets and inertia towards updating bids. Also, it is pos-
sible that bidders are purposely following strategies only in
a loose manner. Thus, in all of our tests, we sought to find
for which bidders a condition approrimately held.

As an example, imagine we are trying to test whether the
ratio between the magnitudes of the bids on keywords A
and B is identical across time. Clearly, if the bids are just
a couple of cents away from having an identical ratio, we do
not want the bidder to fail the test. The dynamics described
above mean that a couple of cents is actually very small in
comparison to the general background disorder that occurs
in a sponsored search auction.

In order to see whether a condition approximately holds,
we assume that all bids have a certain error in them caused
by the seemingly random background factors mentioned pre-
viously. We then follow the approach of [12, 13]. We find
the minimal perturbations to the bids that are required for
a test condition to be fulfilled.

The smaller the perturbations, the more likely a condition
is to hold. In our tables, we sometimes provide results for
a variety of perturbation tolerances. Otherwise, we classify
bidders as conforming to a condition if they can do so with
bid perturbations of up to 5% of the bid magnitude. We
believe that this figure is relatively conservative; in reality,
the large amount of entropy in background auction dynamics
probably amounts to more than a 5% error.

It is also possible to formalize the effect of uncertainty in
the auction setting and argue that a bidder’s inability to
follow the strategy exactly is due to the noisy information
it has. We discuss such an analysis in Section 8 based on
ideas from Hal Varian in [12]. We see similar trends using
both approaches. We opt to use the informal approach, as
it is easier to comprehend.

6. RESULTS

6.1 Weak Test for ROI: Consistent Ordering
of Bids Across Keywords

We begin by testing for evidence of attempted ROI max-
imization (a test for the full ROI maximization condition
follows this test). As stated in Section 4, if full ROI maxi-
mization is occurring, on any given day, a bidder must have
an identical ratio Z—z for every keyword k. Put another way,
bky
bry
words ki, k2. Perhaps bidders are not sophisticated enough
for this strong condition to hold. If so, a more reasonable
condition to test for is whether bidders maintain a consistent
ordering of their bids on keywords. If a bidder bids more on
keyword 1 than keyword 2 on one day, does he do so on all
days? A consistent ordering is a necessary condition for full
ROI maximization.

We ran an empirical test to see what proportion of bidders
meet this condition. We found the minimal perturbations
that result in this condition being true. We calculated these
perturbations using the following procedure.

on every day, the ratio should be the same for any key-

1. Re-number the keywords so that keyword 1 has the
highest average bid, keyword 2 has the second-highest
average bid, and so on.

2. Solve the following quadratic program.

minimize Y (x,:)° such that
kot
VE, t(be,s + Tr,t) > (brg1,e + Tht1,t)
where bK+1,t = TK+1,t = 0 for all ¢

(If a bid was not submitted for a specific keyword/time pair,
then we ignored that pair in our calculations.)

This quadratic program can in theory be solved using a
standard quadratic program solver. (For example, Matlab’s
quadprog.) We found, however, that solving the quadratic
program in this way became computationally intractable for
some of the more complicated bidders. To work around this
problem, we reformulated the program as a gradient descent
problem. This reformulation does not affect the results; it
merely allows for faster analysis.

Our results show that a large majority of bidders are able
to meet this simple condition. If we permit bid perturba-
tions of up to 5%, then 83% of bidders are able to achieve
a consistent ordering of their keywords on every day. More
detailed results are presented in Figure 2.

6.2 Full ROI Maximization

Recall the ROI maximization condition from equation 3:
Vk,t. (St . bk;’t = ’Uk) .

For each day t, there is a scale factor s; between the bids
and the values for each keyword k. In other words, for any

two keywords ki1, k2, the ratio Z:—l is the same on all days.
2
We sought to discover what proportion of bidders obey
this condition. To find the minimal perturbations required
to meet the ROI maximization condition, we solved the fol-

lowing program:

For each bidder
minimize 3 (x,:)* such that

kot
Vk,t. s¢ (bi,t + Tk,t) = v and
S1 = 1

(We fix s1 = 1 to avoid multiple solutions. If a bid was not
submitted for a specific keyword/time pair, then we ignored
that pair in our calculations.)

We solved this program using gradient descent. The solu-
tion to the program contains the values per click that result
in the minimal perturbations required to meet the ROI max-
imization condition. Because these values per click may not
correspond to the true values per click (which are private
information), adherence to the ROI maximization condition
is a necessary but not sufficient condition for ROI maximiza-
tion. However, the condition is quite strong, so we suspect
that most non-trivial bidders who fulfill the condition are
indeed maximizing their ROL.

Because bidders in the top slot cannot expect to receive
more clicks when they raise their bid, the ROI model breaks
down for them. To compensate for this, we ignored the
perturbations of all bidders in the top slot. (This action
has only a slight effect. It ignores about 20% of the per-
turbations and changes the results by at most 4 percentage
points.)

Our results show that a majority of bidders are able to
fulfill this condition. If we permit bid perturbations of up
to 5%, then 65% of bidders obey the ROI maximization
condition. More detailed results are presented in Figure 3.



% permissible perturbation

on bids

Number of 0 5 110 | 20 30
keywords

2 75 196 | 99 | 100 | 100

3-5 50 | 90 | 97 | 100 | 100

6-25 21 [ 68 | 91| 99 | 100

>25 5 136 | 75| 97 | 100

Overall 48 | 83 | 95 | 100 | 100

Figure 2: Results of the consistent keyword ordering test. Each cell contains the percentage of bidders who
bid on the corresponding number of keywords who are able to maintain a consistent highest-to-lowest bid
ordering for their keywords after we apply bid perturbations of up to the corresponding amount.

% permissible perturbations

on bids

Number of 0| 5] 1020730
keywords

2 59 | 84 | 93 | 97 | 97

3-5 36 | 68 | 85 | 97 | 99

6-25 15 | 45 | 66 | 92 | 98

>25 6 | 26 | 45 | 88 | 97

| Overall [36 ]65]80]95]98 |

Figure 3: Results of the ROI maximization condition test. This table follows the same format as Figure 2.
Each cell contains the percentage of bidders who are able to meet ROI maximization condition after we apply

bid perturbations of up to the corresponding amount.

6.3 Eliminating Trivial Bidders

Some of the bidders who passed the consistent ordering or
ROI maximization tests passed for a rather trivial reason:
they submitted nearly identical bids on every keyword, or
they submitted nearly identical bids for every day. This may
of course mean that they are maximizing their ROI, but it
may also mean that they are merely very unsophisticated
bidders. We ran tests to see what proportion of bidders
submitted nearly identical bids across time and keywords.
As always, we allow for a small standard error on bids due to
the disordered background dynamics of first price auctions.

For each bidder, we calculated the minimal bid perturba-
tions necessary for the bids on all keywords to be identical.
We did this by introducing the variable ¢; (the theoretical
bid submitted at time ¢, which is the same for all keywords)
and solving the following quadratic program.

For each bidder
minimize 3 (z1.;)? such that
ket

Vk,t.(l;k,t + Tk,t) = Ct

We found that 37% of bidders submitted nearly identical
bids on all keywords. (More formally, 37% of bidders needed
perturbations of 5% or less in order to, on each day, have
identical bids on all keywords for which bids were submitted
on that day.)

Not surprisingly, the percentage of bidders who bid ap-
proximately the same amount across all of their keywords
varies dramatically based on how many keywords are being
bid on. Figure 4 presents these results. As a cautionary
note, the reader should be aware that the data set only in-
cludes bids on the top 1000 keywords, so it is possible that
bidders are also bidding on keywords that were not included
in the data set.

Number of Percentage of Bidders who
Keywords | Have Approximately Identical
Bid on Bids on All Keywords
2 60
3-5 35
6-25 19
>25 6
[ Overall | 37 |

Figure 4: Bidders who can bid identically on all key-
words when we apply bid perturbations of 5%.

To see whether advertisers bid approximately the same
amounts on each keyword across time, we solved the follow-
ing quadratic program:

For each bidder

minimize 3" (zx¢)* such that
kit

Vk, (bt + Tx,e) = ck

We found that 20% of bidders submitted nearly identical
bids across time. (More formally, 20% of bidders needed
perturbations of 5% or less in order for each keyword’s bid
to be identical on all days on which a bid for that keyword
was submitted.)

Figure 5 classifies bidders based on the results of this sec-
tion.

We re-ran the tests from sections 6.1 and 6.2, this time
removing the 45% of bidders who bid trivially (i.e. almost
identically on all keywords and/or all days). Allowing per-
turbations of up to 5%, the new data are expressed in Figure
6. This time, only 48% of bidders met the ROI condition.
This suggests that many of the bidders who meet the ROI



Same bids on
all days

Same bids on
all keywords

25% 8%

Differing bids
on both days 55%
and keywords

Figure 5: Classification of all bidders based on
whether they bid almost identically on all keywords
and/or days. Not to scale.

maximization condition do so for the trivial reason that they
have identical bids across time and/or keywords.

6.4 Correlations

In the course of our analysis of ROI maximization, we
found some interesting correlations between other metrics of
bidder sophistication. In the first price data set, we found
weak positive linear correlations between all of the follow-
ing: number of keywords bid on, frequency of bid updates,
bid spread (the mean difference between bids on any two
keywords) and mean bid. In general, all of these metrics are
loosely connected to bidder sophistication, so these correla-
tions make sense. The Pearson product-moment correlation
coefficients for these correlations ranged between 0.08 and
0.25, so none of the correlations was strong enough to be a
significant predictor of bidder behavior.

7. ROIMAXIMIZATION IN SECOND PRICE

AUCTIONS

Because the two ROI tests we ran dealt with the allocation
of budgets across keywords, and not with the dynamics of
a specific keyword’s auction, we believe that results from
the ROI tests on the first price data set are indicative of
results we would expect to see in a second price data set.
That being said, there are some differences between the two
auctions that may affect ROI performance. It is relatively
simple for a bidder to maximize his ROI in a first price
auction. Because bidders control exactly how much they pay
per click, it is easy to maintain consistent ratios of prices to
values across time. In a second price auction bidders instead
pay the bid of the bidder ranked immediately behind them,
S0 it is not so easy for bidders to precisely choose their price
per click. On the other hand, some (but certainly not all) of
the disordered behavior in a first price auction is absent from
a second price auction. Figure 7 shows, for example, that
bidders update their bids far less often in the second price

Proportion of Days | Percentage of Bidders With
On Which a Bid This Update Frequency

Is Updated First Price | Second Price

[0, 0.2) 25 74

0.2, 0.4) 1 8

0.4, 0.6) 1 12

0.6, 0.8) 2 3

[0.8, 1] 71 3

Figure 7: Bid update frequencies. A bid is consid-
ered to have been updated if it changes from one
day to the next.

data set than in the first price data set. It is possible that
the increased stability of the market results in increased ROI
maximization. To test these hypotheses, we ran our tests on
a small second price data set. Because the data set is small
and market-specific, we do not recommend drawing broad
conclusions from this analysis.

In a second price auction, the consistent ordering test (of
Section 6.1) and ROI maximization test (of Section 6.2) can
be run using either prices or bids. Running the tests on
prices fits in better with the definition of ROI, but because
bidders do not have precise control over the price, we choose
to present results using bids. This point is largely unimpor-
tant, however, because the results using bids are very similar
to the results using prices.

Figure 8 compares the first and second price results of the
consistent ordering and ROI tests from sections 6.1 and 6.2
respectively. It shows that ROI maximization seems to be
slightly more prevalent in the second price data set. How-
ever, these results perhaps mask the bigger issue: in the sec-
ond price data set, there are far more bidders who trivially
satisfy the ROI and consistent ordering conditions because
they bid almost identically across time or keywords. Figure
9 shows the proportions of second price bidders that fit into
these categories. Only 22% of bidders in the second price
data set varied their bids by meaningful amounts across both
time and keywords. When we rerun the tests using only
these bidders, the results are quite different. Figure 10 re-
presents the results of Figure 8, but with the trivial bidders
removed from the data set. In this test, ROI maximization is
more prevalent in the first price auction. Interestingly, how-
ever, the two types of auctions have very similar proportions
of non-trivial bidders who fulfill the consistent ordering test.
Some of the discrepancies may be related to the difference
between the bid and the price in second price auctions.

What conclusions do we draw from this? The fact that so
many bidders maintain near-identical bids across time and
keywords means that it is harder to determine whether ROI
maximization is occurring. This, combined with an already
small data set, means that the statistics may reflect par-
ticularities of this data set more than general properties of
second price auctions. Even so, we see that most of met-
rics are relatively similar between the first and second price
tests. This is in line with our belief that the first price results
are indicative of bidder behavior in second price sponsored
search auctions.



Number of Percentage of Bidders who Percentage of Bidders who
Keywords | Maintain a Consistent Ordering Meet the ROI
Bid on of Their Bids Across Keywords Maximization Condition
2 90 69
3-5 85 53
6-25 62 34
>25 30 19
Overall 74 48

Figure 6: Results of the ROI tests on the 55% of bidders who change their bids by appreciable amounts from
day-to-day, and have appreciable differences on their bids on different keywords. We applied perturbations

of up to 5% to the bids.

Number of l?ercgntage of Bidders th Percentage of Bidders who
Keywords Malntalln a Consistent Ordering 'M.eet .the ROI N
Bid On o.f Thelr. Bids Across Keyvyords Maxlm.lzatlon Condlthn
First Price | Second Price First Price | Second Price
2 96 100 84 97
3-5 90 100 68 88
6-25 68 88 45 66
>25 36 60 26 44
| Overall || 83 | 90 I 65 | 79 |

Figure 8: Comparison of the results from the consistent ordering test (Section 6.1) and the ROI mazximization
test (Section 6.2) on first price and second price data sets.

Same bids on
all days

26%
(8%)

Same bids on
all keywords

8%
(25%)

Differing bids
on both days
and keywords

22%
(55%)

Key:
Second price
(First price)

Figure 9: Classification of all bidders in the second
price data set based on whether they bid almost
identically on all keywords and/or days. Also in-
cludes corresponding numbers from the first price
data set. (Not to scale.)

8. A CHI-SQUARE STATISTICAL ANALY-
SIS

In this paper, we dealt with perturbations in a relatively
straightforward way. We classified bidders based simply on
the minimal bid perturbations they required in order to ful-
fill a certain condition. It would also have been possible to
follow the approach of [12] and treat the perturbations in a
statistical way. In this section, we explain how such an ap-
proach could be used with the perturbations we computed.
We briefly summarize the approach of [12] and apply it to
the analysis we used in this paper.

When we seek to establish whether a bidder meets a cer-
tain condition, we allow perturbations in order to overcome
the “errors” in the bids. Here, the term “error” is used to
describe the effects of background entropy (see Section 5 for
a more thorough explanation) that interfere with a pure ad-
herence to any one strategy. Because the auction entropy
is caused by a large number of factors that are essentially
acting independently, the error will follow an approximately
Gaussian distribution (the central limit theorem could be
used for a formal justification). Hence, we could run a stan-
dard chi-square goodness-of-fit test to see whether the em-
pirical data are consistent with the theoretical condition we
propose. An explanation of such a test follows.

Let Y = (y1, y2, -, yn) be a vector of actual bids, and
let Z = (z1, 22, - -+, zn) be a vector of bids proposed by a
theoretical model. Our null hypothesis is that the data are
consistent given a reasonable tolerance on the bids. In other
words, the actual bids are “close enough” to the theoretical
bids that we accept the model that was used to generate the
theoretical bids.

To see whether we should reject this null hypothesis and
hence conclude that the theoretical model is insufficient, we



Number of Percentage of Bidders who Percentage of Bidders who
Kevwords Maintain a Consistent Ordering Meet the ROI
B?(;VOn of Their Bids Across Keywords Maximization Condition
First Price | Second Price First Price | Second Price
2 90 100 69 57
3-5 85 100 53 59
6-25 62 79 34 42
>25 30 42 19 18
| Overall || 74 | 70 I 48 | 37 |

Figure 10: The same as Figure 8, but with trivial bidders (those who submit almost identical bids for all days

and/or keywords) removed from the data set.

compute the y? test statistic

n

-y

=1

(2 — yi)®
o2 ’

Observe that the equation z; — y; is the perturbation re-
quired for bid i to equal its theoretical value. If we know
o (the root mean squared error), we can then solve for 7'
If T is above a threshold C, that is determined by a cer-
tainty level o and the number of degrees of freedom, then
we reject the null hypothesis. If we do not know o, we can
fix T based on our desired certainty level, and compute the
minimal root mean square error necessary to avoid rejecting
the null hypothesis. Because we assume that the bids are
unbiased (i.e. they are just as likely to need to be perturbed
upwards as they are to need to be perturbed downwards),
the root mean squared error is equivalent to the standard
error, which is the standard deviation on the error. So if,
for example, we expect the background auction entropy to
affect bids by an amount with a standard deviation of =z,
then we set the standard error to be z.

Of course, the conditions we tested for did not propose ex-
act bids. Rather, they posited certain relationships between
bids across time and keywords. To see whether such models
are consistent with real-world auction data, we set the theo-
retical bids to be minimally perturbed real-world bids such
that the theoretical test condition holds. For example, if we
were testing to see whether the ROI maximization condi-
tion holds, then we would set the theoretical bids to be the
minimally perturbed empirical bids that resulted in the ROI
maximization condition holding. Thus, the minimal possible
test statistic is

n
min Z Gi ;gi)z
T (4)

=1
such that (31,32, - ,3n) IS
consistent with the theoretical model

Clearly, if S is greater than the critical value C,, then even
with the theoretical data that most resemble the empirical
data, we must reject the hypothesized condition. In this
case, we conclude that the theoretical model is insufficient.

Although we ran this type of analysis, we chose not to
present it in this paper, because we believe that the raw
perturbations provide a sufficient and intuitive basis for clas-
sifying bidders. (The same decision was made by Varian in
[13].) The results of the chi square tests and the results of
our informal tests had similar trends.

9. SUMMARY AND CONCLUSIONS

We found evidence that ROI-based strategies may have
been employed by a large fraction of bidders in the Yahoo!
first price data set. We found that when permitting bid per-
turbations of up to 5%, 83% of bidders ordered their bids
in the same way on all days (a primitive form of ROI maxi-
mization), and 65% of bidders met necessary conditions for
full ROI maximization. (Or, alternatively, 35% of bidders
are not maximizing their ROL.)

The evidence in a second price auction was less conclusive.
We found that over three quarters of bidders meet the ROI
maximization condition, but most bidders who meet this
condition do so because they have near-identical bids across
time or keywords.

Our tests can be applied on a bidder-by-bidder basis to
show specific areas in which bidders tend to lack sophistica-
tion. Approximately half of all bidders in the first price data
set bid almost identically on all days, or keywords, or both.
Of the bidders who do bid appreciably different amounts
on different days and different keywords, a slight majority
appear to not be optimizing their ROI.

Our conclusions are twofold. First, because of this empir-
ical evidence, we suggest that an ROI-based model may be
useful when investigating the equilibria of sponsored search
auctions, or when modelling the market. On the other hand,
in both types of auctions, a large fraction of bidders who cast
meaningfully different bids across time and keywords were
unable to achieve ROI. This might have been because they
were not budget-constrained, because they did not have an
accurate assessment of their true values per click on differ-
ent keywords, or because they lacked sophistication. If it
was due to one of the latter two reasons, improved bidding
agents or a different market design might result in a more
economically efficient market.
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