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Motion of Two Rigid Bodies with Rolling
Constraint

ZEXIANG LI anp JOHN CANNY

Abstract— Rolling constraint is a classical example of a nonholonomic
constraint. Such a constraint is usually difficult to work with. In this
paper, motion of two rigid bodies under rolling constraint is considered.
In particular, the following two problems are being addressed: 1) Given
the geometry of the rigid bodies, determine the existence of an admis-
sible path between two contact configurations. 2) Assuming that an
admissible path exists, find such a path. First, the configuration space
of contact is defined, the system of differential equations governing
rolling constraint are derived. Then, a generalized version of the Frobe-
nius’s theorem, known as Chow’s Theorem, to determine the existence
of motion is applied. Finally, an algorithm is proposed that generates
a desired path with one of the objects being flat. Potential applications
of this study include 1) adjusting grasp configurations without slipping
by a multifingered robot hand, 2) contour following without dissipation
or wear by the end-effector of a manipulator, and 3) wheeled mobile
robotics.

I. INTRODUCTION

ECENTLY, there has been a great deal of interest in non-
olonomic systems. For example, R. Brockett [3] studied
the theory and control for a class of motors manufacutred by
Panasonic Company [23]. Relying on the principle of holon-
omy (see [22]), this class of motors could excel, in terms
of mass-to-torque ratio, the traditional dc motors by several
orders of magnitude. T. Kane and M. Scher [16] looked at
the falling cats problem. They explained how falling cats land
on their feet even released from complete rest while upside-
down; C. Frohlich [8] examined how a diver or a gymnast
can do rotational maneuvers in midair without violating angu-
lar momentum conservation; M. Berry [1] studied the general
shifting problem of a bead moving in a slowly rotating hoop.
He established a general principle, known as the holonomy
principle, underlying all the previous problems. J. Marsden,
R. Montgomery, and R. Ratiu [12] presented a unified frame-
work for systematically studying these problems.

In robotics research, recent effort has been focused on
dexterous robot hands (see [17] and the references therein)
which, due to rolling constraint and finger relocation, con-
stitutes another example of nonholonomic systems. The well-
known dexterous manipulation problem is to make use of
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the nonholonomic nature of the system so that the object can
be manipulated from one grasp configuration to another.

In this paper, we study motion of two rigid bodies under
rolling constraint. This problem is a basic ingredient in dex-
terous manipulation. First, label the two rigid bodies by objl
and obj2, respectively (see Fig. 1). Objl may represent the
fingertip of a robot hand finger, and 0bj2 the object being
manipulated by the robot hand. This problem also has impor-
tance of its own. For example, in wheeled mobile robotics
[19], ob,j1 may represent the wheel (i.e., a ball wheel) of a
mobile robot and 0bj2 the curved surface where the robot
travels. In contour following, 0b,j/ may represent the end-
effector of a manipulator and ob,2 the workpiece.

By commanding rolling motion instead of sliding motion,
which is known to be holonomic, the gained advantages are: 1)
The problem of wear associated with the contacting bodies
is eliminated. 2) The associated control problem becomes
much simpler. Remember that in order to control sliding mo-
tion, the coefficient of friction has to be known exactly, which
is in general difficult. Even the world’s best figure skaters
have trouble managing controlled sliding. On the other hand.
rolling motion can be achieved by exerting forces which are
sufficiently close to the center of the friction cone [6]. [17].
3) As we will see in this paper, the set of configurations
reachable by rolling is much larger than that reachable by
sliding. This is due to the nonholonomic nature of the con-
straint.

We address the following two problems in particular.

Problem 1 (The Existence of Motion Problem): Given
two contact configurations, determine whether an admis-
sible path exists between them.

Problem 2 (The Path Planning Problem): Assuming
that an admissible path exists (or a motion exists) between
two contact configurations, find such a path.

Motion planning with nonholonomic constraints is funda-
mentally different from motion planning with holonomic con-
straints. For the latter, a (semi-) algebraic description of the
free space, in which a path can be planned, is available. The
free space is specified either in terms of a set of equality, or
inequality, constraints on the configuration variables [4] or in
terms of a set of integrable differential equations (e.g., slid-
ing). For the former, only a set of nonintegrable differential
equations, which a path has to satisfy, is available.

An outline of the paper is as follows: In Section II, we re-
view the geometries of a surface and the kinematics of contact.
In Section I1I, we define the configuration space of contact and
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derive the system of differential equations that governs rolling
motion. We then use some known results from differential ge-
ometry to determine the existence of a path. In Section IV,
using geometric techniques, we present a simple algorithm
that determines a desired path in the case when one of the
objects is flat.

II. PRELIMINARIES

In this section. we review briefly the geometry of a surface
and the kinematics of contact. See [14], [21], and [26] for
further treatment on geometries of a surface and [7], [13],
[17]. [19], and [20] for the kinematics of contact.

Notation 2.1: Let C; and C; be two coordinate frames
of f{". where i and j are arbitrary subscripts. Let r; ; € R
and R; ; € SO(3) denote the position and orientation of C;
relative to C ;. The velocity of C; relative to C; is defined by

Iy
Ri,/rl.J

—1 .
S (Ri ;R:i. )

where $: R — SO(3) identifies [* with the space of 3 x 3
skew-symmetric matrices.

Definilgion 2.1: A space curve is the image of a C? map
c: I — |, where [ is an interval. The pair (c, I) is called a
parameterization of the space curve. ¢ is regular if ¢(f) # 0,
vtrel.

Notation 2.2: U will always denote an open subset of R%. A
point of U will be denoted byu € &7, or by (1), uz) € R x R,
or (u,v) € 8 x 8. Let f: U — & be a differentiable map,
JSu, f, denote the partial derivatives of f with respect to u and
v, respectively.

Definition 2.2: A surface in 3° is a subset S C ® such
that for every point s € S, there exists an open subset S of
S with the property 1) s € Ss, 2) S is the image of a C?
map f: U — jt°, where f, x f, #0,V (u,v) € U,and 3) f:
U — S < it is a diffeomorphism.

S is called a coordinate patch and the pair (f, U) is called
a (local) coordinate system of S. The coordinates of a point
s €S, are given by (u,v) = f~!(s). From now on, if the
coordinate system is clear from the context, we shall not dis-
tinguish a point s € S from its coordinates. The collection
of coordinate patches {S;} which covers S, i.e., S = US;,
1s called an atlas of S. By a curve in S we mean a curve c:
I — ‘Rj, which can be expressed as f o u(r) for some curve
u:l —UinU.

Example 2.1: The sphere S of radius p is a surface. To see
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(a) A sphere of radius p. (b) A football.

this, let U = {(u, v) € R, -2 <u<w/2, —mr <v <7}
and consider the following coordinate systems:

f: U—>Li'§§3

T (u,v)— (pcosucosv, —p cos U sinv, p sin u)

and
| U—R

2 (u, v) — (—p cOS U cOS v, p sin u, p cos u sin v).

The image of f is the sphere minus the south pole, north pole,
and an arc of the great circle connecting them (see Fig. 2(a)),
ie.,

SJW)y=8-1{0,0, £ptU{—pcosu,0,psinu},
/2 <u<mw/2.

Similarly, the image of f is

FU) =8 —{0, +p,0}U{p cos u, p sin u, 0},
-T2 <u<mw/2.

The partial derivatives of f and f are

fu=(—psinucosv,psinusinv, pcos u)

fv = (—p cos u sinv, —p cos u sin v, 0)
and

fu = (psin u cos v, pcos u, —p sin u sin v)

fo=(cosusinv,0, pcosucosv).
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Clearly, f, x f, #0 and Fu x fo #0, Y(u, v) € U. More-
over, S; = f(U)and S, = F(U) cover S. Thus S is a surface.
| |
We denote by S? the unit sphere (i.e., p = 1) of R?.
Example 2.2: The football x>+ +(z%/c?) = 1 (Fig. 2(b))
can be parametrized by the following coordinate system:

3 . .
f:U—®R: (u,v) > (cos u cos v, —cos u sin v, ¢ sin u)

and

N _3 . .
f: U—IR": (4,v) > (—cos u cosv,sin u, ¢ oS U sin v)

where U is given by the previous example. The reader may
furnish the rest of the proof as an exercise.
[ ]

Definition 2.3: The Gauss map of a surface S is a contin-
uous map n: S — S? such that n(s) is normal to S. We will
also use 7 to denote the map nof: U — S%.

Definition 2.4: A coordinate system (f, U) is called or-
thogonal if f, - f, = 0, ¥(u,v) € U, and right-handed if
Su X fo/lfu X fu| = nof@). Let (f, U) be an orthogonal
right-handed coordinate system for a surface patch So C S.
We define the Gaussian frame at a point s € Sp as the coor-
dinate frame with origin at f(u) and coordinate axes

x@) = fu/lful Y@ =1 /110

Definition 2.5: Let Sy be a coordinate patch of S, with an
orthogonal coordinate system (f, U). At a point s € Sy, the
curvature form K is defined as the 2 x 2 matrix

and z@) = nof().

K =[@), y@Yka@)/|ful, 2.@)/|fu ]

whereu = f~!(s). The connection form T is the 1 x 2 matrix

T =y@) @)/ |ful,x,@)/\f. ]}
and the metric tensor M is the 2 x 2 matrix
l:'fu\ 0
M =

0 {fvl}‘

Example 2.3: Embed the plane in R* by the following
parameterization:

f: UCG’RZ ‘»E'i}s: (u, v) — (u, v, 0).

The axes of the Gaussian frame are

1 0 0
xw)=|0 yu)=|1 and z@)=10
0 (] 1

The curvature form, connection form, and metric tensor are

00 1 0
Kz{ } T =[0, 0] M:[ jl
00 01

Example 2.4: Consider the sphere S of radius p. Let S; =
f(U) be the coordinate patch of S studied in Example 2.1.
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The Gaussian frame at a point s € S is given by
—sin ¥ cos v

xw) = sin & sin v

cos u
—sin v

ym)= | —cosv

0
and

COos U Cos v

Z@) = | —cos u sinv

sin u

The curvature form, connection form, and metric tensor are

given by
/o O
K =
0 1/p

T=[0 —tanu/p]

) 0
M= .
0 pcosu

We now consider the two objects that move while main-
taining contact with each other (see Fig. 1). Choose reference
frames C,, and C,, fixed relative to 0bjI and 0b,2, respec-
tively. Let S, C R and S C R be the embeddings of the
surfaces of obj1 and 0bj2 relative to Cr, and C,,. respec-
tively. Let n, and n, be the Gauss maps (outward normal)
for S, and S,. Choose atlases {S ;}/, and {S,;}/" for S
and S,. Let (f1,;, Uy,;) be an orthogonal right-handed co-
ordinate system for S;; with Gauss map #,. Similarly, let
(f2.i, Ua,:) be an orthogonal, right-handed coordinate system
for Sz,,' with 7.

Let ¢,(¢) € §; and ¢;(¢) € Sz be the positions at time ¢ of
the point of contact relative to C,; and Cj, respectively. We
will restrict our attention to an interval { such that ¢ (f) £ S,
and ¢;(¢) € S5, forall ¢ € I and some / and some j. The coor-
dinate systems (f,;, Uy,;) and (f>, j, Uz, ;) induce a normal-
ized Gaussian frame at all points in S} ; and S ;. We define
a continuous family of coordinate frames, two for each t €7,
as follows. Let the local frames at time ¢, C;y, and Cj3, be
coordinate frames fixed relative to C,; and C,», respectively,
that coincide at time f with the normalized Gaussian frames
at ¢;(¢t) and c»(¢) (see Fig. 1).

We now define the parameters that describe the five de-
grees of freedom for the motion of the point of contact.
The coordinates of the point of contact relative to the co-
ordinate system (f, ;, U, ;) and (f2,;, Uz ;) are given by
uy(t) = filci(t) € Uy and ua(t) = f5 j(c2(t) € Un .

and
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Fig. 3.

These account for four degrees of freedom. The final param-
eter is the angle of contact ¥/(7), which is defined as the angle
between the x axis of C;; and Cj». We choose the sign of ¢
so that a rotation of Cj; through —y around its z axis aligns
the x axis.

We describe the motion of 0b /I relative to ob 2 at time ¢,
using the local coordinate frames C; and Cpp. Letvy, vy, and
v, be the components of translation velocity of Cy; relative to
Cy at time ¢. Similarly, let wy, w,, and w_ be the components
of rotational velocity.

The symbols K. T, and M, represent, respectively, the
curvature form, connection form, and metric tensor at time ¢
at the point ¢, (£) relative to the coordinate system (f1,;, Ut,1).
We can analogously define K>, 7>, and M,. We also let

cosy  —siny

RF{
—sin ¥

Note that K, is the curvature of 0ob 2 at the point of contact
relative to the x and y axes of C;;. Call X + K, the relative
curvature form.

The following kinematic equations that describe motion of
the point of contact over the surface of 0bjI and 0bj2 in
response to a relative motion between these objects are due
to Montana [20].

Ky =RyK:Ry.

—Cos ¥

Theorem 2.1 (Kinematic equations of contact): At a
point of contact, if the relative curvature form is invert-
ible, then the point of contact and angle of contact evolve
according to

N —W, _ fux
li]ZMf'(K1+K2)]<{ }—Kz[ }) M
Wy vy

| ~ —Wy Uy
iy =M;'Ry(K +Ky)™ +K, @)
Wy vy
v =w. +T My, +T2Moii, 3)
0=v;. 4

The last equation is called the constraint equation.

Example 2.5 (The classical example revisited): Let us
consider the classical example of a unit disk rolling on the
plane, as shown in Fig. 3 (see [9] and [10]). The coordinates
of the plane are given by (u3, v2) € R, and the coordinate of
the contact point on the disk is u; € R. Embed the disk into

A unit disc rolling over the plane.

R’ with the following parametrization:
ffUCR— @3: u, — (cos uy, sin uy, 0).

We define the Gaussian frame of the disc by the frame with
origin at f(u;) and coordinate axes

xw)=f  zu)=r"

Let ¢ be the angle of the disc relative to the vp axis. Let
(vx,Vy,v;) be the components of translational velocity of
C relative to Cpp, and (0, wy, w) be the components of ro-
tational velocity. Note that the disc has only two degrees of
rotational freedom. Following a procedure outlined in [20],
we derive the following kinematic equations of contact for the
moving disc:

and y(u,) =z xx.

i -1 0 0
iy —cos ¢ 0 cos ¥
= wy + W, + Uy
Us sin Y 0 sin ¢
¥ 0 1 0
0 -
—sin ¢
+ vy
cos Y
0
v, =0. 3)

Rolling constraint implies that (v, = v, = 0), and the
above set of equations gets simplified to!

i -1 0
U —cos ¥
= wy + w, £ X w, +Xow:.
Ua sin ¢ 0
¥ 0 1

(6)

X, and X, are called the “‘driving” and the “‘steering” vector
fields, respectively. It is the direction of the corresponding
infinitesimal motion.

]

'An alternative approach is to derive the constraint in differential forms.
see [9], [10].
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Rolling constraint is defined by the following conditions:

{Ux} =0 and w, =0. @)
vy
Similarly, sliding constraint is defined by
Wy
w, | =0. ®
Wz

Substituting (7) into the kinematic equations of contact, yields

i M
- —Wy
| =| M (Kn+Kz)'l|: ] 9
- ~ WX
] T +T2Ry

III. ExisTENCE OF MoOTION

In this section, we use the kinematic equations of contact
and a generalized version of the Frobenius Theorem to deter-
mine the existence of an admissible path between two contact
configurations.

Definition 3.1:> The configuration space of contact P is
a five-dimensional space, which locally is described by the
coordinates of contact relative to objl and obj2, and the
angle of contact, i.e., a contact configuration p € P has the
form

T
p :(U],Ul, Uy, V2, ¢) .

Note that this definition of P depends on the coordinate sys-
tems used for 0bj1 and 0bj2. An intrinsic definition of P is
given in [18].3

Consider now the kinematic equations of contact with
rolling constraint imposed, which can be rewritten in the form

i
P =X 1(P)wyx +Xa2(p)W, p=|u (10)
¢
where
M
- 0
Xi(p) = My Ky +Ky»™! L}
T +T2R¢
M
. —1
X1(p) = M, (Ki +Ky)™! { } . D
_ 0
T\ +T2R¢

*We assume that the relative curvature form is invertible.

*For readers familiar with differential geometry, P is defined as follows:
Let 7S, be the circle bundle of S| and 7S, the circle bundle of S,. Form
the product space (TS, x ToS;) and let S', the circle group, acting on 79S,
by left rotation and on TS, by right rotation (i.e., we have a diagonal action
of §' on (TyS| x TS2)). Then P is the product space quotient the diagonal
action, i.e.. P = (TS| xTS2)/S"' (see [18] and [28]).

Equation (10) defines a system of differential equations on P.
X (p) and X»(p) are the vector fields for the infinitesimal
rolling motion.

Definition 3.2: A path p(¢) € P, t <[0.~). is said to
be admissible (or conforms with the constraint) if it satisfies
the differential equation (10) for some piecewise-continuous
rolling velocity (w,(f), w,(#)) € i", 1 € [0, x).

Definition 3.3: Let pp € P be an initial contact config-
uration. A point p, € P is said to be reachable from py, by
rolling if there exists an admissible path p(f) < P, ¢ < [0, ¢},
such that p(0) = po and p(t;) = p;.

The following is a restatement of the existence of motion
problem.

Problem 1’ (The Existence of Motion Problem): Given
two contact configurations po, pr € P, determine the ex-
istence of an admissible path that connects py to py.

Modifying a result from differential geometry, known as the
Chow’s Theorem [5], we arrive at the following algorithm that
solves Problem 1’. A proof of correctness of the algorithm can
be found in [11] and [24].

Algorithm 3.1 (Existence of Motion Algorithm)

£y

Input: 1) Coordinate systems {fy ;, U ;}i_" of ob,jl,
and {fZ,,', Uz’j}jj,ln: of 0bj2
2) Geometrical data (M, T, K|) of 0b,/ and
(Mz, TQ, Kz) of Objz
3) The coordinates of two contact configurations
Po, Pj €EP.
Output: Determine if ps can be reached from p, by
rolling.
Step 1: Compute the coordinate expressions of the vector
fields X1(p) and X>(p) from (11).
Step 2: Compute the following Lie bracket vector fields
(see the remark that follows)
Xalp) = 1, Xa = D, - X
dpi api
Xa(p) =X, X3]
Xs5(p) = [X2, Xs] (12)
where p = (uy, vy, U2, va, ¥).
Step 3: Form the distribution®

V(p):{Xl,Xg,X3,X4,X5}, (13)
Foreach p € P, V(p)isa5 x 5 matrix. Compute
the rank of V(p).

Output: a) If rank (V(p)) =5, ¥p < P, then there ex-
ists an admissible path between any two con-
tact configurations.’

b) If dim(V(p)) = n <35, 7p =P let N,
be the maximum integral manifold of V

*For each p € P, V(p) is an involutive distribution. known as the Lic
algebra generated by {X(p), X-(p)}.

SThis says that if V(p) is full rank. then any point in the space can be
reached by moving along the integral curves of X | and X-.

°For technical reasons we assume that V(p) has constant rank. Otherwise
see [11], [24).
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Fig. 4. An interpretation of [X, X,].

through po.” If ps € Np,, then an admis-
sible path exists between pg and p .2
¢) Otherwise, no path exists.

Remark 3.1: 1) The Lie bracket vector field has the fol-
lowing meanings: Let X; and X, be two vector fields on P,
and p € P. Define a curve ¢ on P as follows. For sufficiently
small ¢, 1) follow the integral curve of X through p for time
t; 2) starting from there, follow the integral curve of X, for
time ¢; 3) then follow the integral curve of X; backwards for
time #; 4) then follow the integral curve of X; backwards for
time 7 (see Fig. 4). In other words

c(t) =V (. (¥ (D ()
where ®,, ¥, are the integral curves of X, and X, respec-
tively. Then, we have
€0) = 21X, X21().

2) The previous remark also suggests a way of creating
a net motion in the direction [X;, X,] by moving along the
directions X'y and X;.

3) Computation of the Lie bracket vector fields, and check-
ing the rank of V(p) can be done using Macsyma.

We now apply the above algorithm to several examples.

Example 3.1: Consider a unit ball rolling on the plane, as
shown in Fig. 1. From Examples 2.1 and 2.3, the ball has two
coordinate systems, and the plane one. The curvature forms,
metric tensors, and connection forms are given in Example
2.4 and 2.3, respectively.

Step 1: On the first coordinate system of P, the kinematic
equations of contact are

[ r 0 ] r -1 7

vy sec 0

Uy | = —siny | wy + | —cos ¢ | w,y
vy —cos ¥ sin ¢

_z}d | —tan u; | L O

£ X\(pwx + X (D)W, (14

Step 2: Computing the successive Lie brackets of X (p)
and X, (p), gives
_ 0 1

—Ssecu) tan u,
X3 =[X1, X2] = | —siny tan u,

COS U tan u,

—sec’u; |

"The existence and uniqueness of Np, is guaranteed by Frobenius Theorem.
8This condition is rather difficuit to check, see [25].
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X4 =X, X3] =

and

(1 +sin® uy) sec u;
Xs =[X2, X3] = 2 sin ¥ sec? u;

2 cos ysec? u;

| 2sec’ u tan u,
Step 3: Form the distribution

V ={X, X, X3, X4, X5}

It is easy to verify that, through elementary row and column
operations, the determinant of V is identically 1.

Steps 1) through 3) are repeated for the second coordinate
system of P and V is again nonsingular.

Output: It is true that a unit ball can reach any contact
configuration on the plane by rolling!

]

Example 3.2: The second example consists of a unit ball
rolling on another ball of radius p (see Fig. 5). By the previous
example, P has four coordinate systems.

Step 1: The kinetic equations of contact in the first coor-
dinate system are

Fiy T - 0 :
Ui (1 =B)secu,
| = —B sin Wy
U2 —B cos Y secuy
_x/}_ | 8 tan u, cos ¥ — (1 — () tan uy |
[ —(1-=-8
0
+ —@B cos ¥ wy

B sin Y sec u;

| —B tan u; sin y |
£ X wy +X2Wy

where 8 = 1/(1 + p).
Step 2: Using Macsyma, the successive Lie brackets of X,
and X, are computed.
_ 0 .
(1 — B)? sec? u;
X3 =[X1, X1] = B(1 — B) sin ¥ sin u; sec u,
B(1 — B) sin ¢ sin u| sec u; sec u»

\_ X35
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multiplicity of the zeros at 8 = 1, or computing the rank
of V, the reachable space has dimension 2! This fact can
be interpreted using the notion of holonomy angles (see
Section IV).

o 8 =0 — p =o0. The result is degenerate because from
the previous example we know that a unit ball can reach
any contact configuration on the plane by rolling.

Steps 1) through 3) are repeated for the other three coordi-
nate systems and the results are consistent.

Output: It is true that a unit ball can reach any contact
configuration by rolling on another ball of radius p if and

Fig. 5. Motion of a unit ball over another ball. only if p is not zero or (p # 1).

]
where Example 3.3 (The classical example revisited): Consider
Xa oo B(1 —B) cos Y cos up sin u; sin uy + {762 cos® u; + (8 — 1)2} COS U>

3= cos® uy cos® up
_ 0 -
0
Xy =[X1, X531 = B(28 —1) cos ¥
—B(26 — 1) sin ¥ sin u; secuy
L B(2B8 — 1) sin y sin upsecu, |
_ 0 -
—{=(1 = )% cos? u; +2(1 — B)*}sec® u;
X5 =[X,, X3] = —{B3 sin ¢ cos? u; —2B(1 — B)? sin ¢} sec? u,
—{B? cos ¥ cos® u; —2B(1 — B)? cos ¥} sec? u; sec u,
L Xs,5 ]
where
Yoo {63 cos ¢ cos® uy —28(1 — B)? cos Y cos Uy} sin U4y +«
>3 cos® u) cos iy
and again the classic example of a unit disc on the plane. Note
5 R L that the two rotations are different here from Example 3.1.
o = {B°(1 - B) cos” u; —2(1 — )’} sin u; cos us. We get from Example 2.5 the following two vector fields:
Step 3: Computing the determinant of ( -1
V = {X1, X2, X3, X4, X5} R —cos ¥
gives driving” = X, = ‘
— 1’32 _13 sin ¢
ey BB 1
COS U COS Uy 14+p L 0
V is singular for the following cases: and
e 8 =1 — p = 0: This corresponds to 05,2 being a single (O
point. Note that the rank of V is 3 (not 2!). This can
also be seen from the multiplicity of the zeros in the . ine” — X — 0
determinant. steering™ = X3 = 0
« 3= % — p = 1: This corresponds to the case when both
objects are balls of identical radius. In fact, counting the L1
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Performing the Lie bracket operation, gives
0

—sin ¢
X;=[X1, X, =
—cos ¢

0
and
0

—Cos ¥
Xy =[X2, X3] =
sin

0

Note that [X|, X3] = 0. X3 and X, are called the “wrig-
gling” and the “‘sliding”” vector fields, respectively. It is then
simple to verify that

V={X), X, X3, X,}

has rank 4. for all points in P. This shows that a disk can
reach any contact configuration by ““driving™ and “‘steering.”’
]

IV. A PATH PLANNING ALGORITHM

This section is devoted to the solution of the following plan-
ning problem.

Problem 2’ (Path Planning Problem): Assuming that an
admissible path exists between two contact configurations
Po. by € P, find one path.

One approach is to consider it as a nonlinear control prob-
lem. The plant equation is given by (10), whereas p(¢t) € P
is the state, (/X:,(p), X(p)) are the control vector fields, and
(Wy, wy) € )" the control inputs. The 07bjective is to find
a set of control inputs (w,(¢), wy(t) € R, t €[0, tf], such
that the system (10), starting from pg, reaches Py in finite
time. Relevant works in nonlinear control literature include
[3], [L1], [24].

Making use of the contact constraint, an alternative ap-
proach is presented here. First, from our driving experiences,
we know that a path relative to the surface of 0bj/ (or 0b/2)
determines uniquely a path in the configuration space of con-
tact. More precisely, we have

Proposition 4.1: Ler py = {u(0),u,(0), YO} epr
be an initial contact configuration. Then, a path
uty €S8, 1t €0, ty], determines uniquely a path p(f) € P,
1e]0,¢,).°

Proof: It suffices to show that (u,(z), ¥(?)) are uniquely
determined by u (1), t € [0, t7]. But, from (1), rolling veloc-
ity can be expressed in terms of #; as

_M’v N
[ V}Z(K]-f-l(z)M[lil.

Wy

(15)

“When the coordinate system in consideration is clear, we shall not distin-
guish the object surface from its coordinates in order to simplify notation.

69

Substituting this into (2) and (3) yields

[ﬁz]

¥

For given initial conditions @, (0), ¥(0)), a theorem (the exis-
tence and uniqueness theorem) of ODE ensures the existence

and uniqueness of the solution to (16). This completes the
proof.

[ M;'R, 6

| M.
T +T2R¢

O

We call the solution, p(f) = @1 (@), usr(t), Y1), t €0, irl,

from (16) the Jift of the path u,(z) through the point p,.

Apparently, the lift p(¢) € P is admissible, or satisfies the
rolling constraint.

Corollary 4.1: Let py € P be an initial contact configu-
ration and u>(t) € S,, t € [0, trl, a contact trajectory rel-
ative to obj2. Then, there exists a unique lift p(t) € P,
t €0, 7], defined by the following ODE:

1 M['R,
H - [T

JMzu'z. (17)

iRy +T,

The angle of contact ¢, whose evolution is defined by (16),
has a useful geometric interpretation when ob J2 is flat, i.e.,
Ty =0.Letu (), t €{tg, t,], be a piecewise-regular simple
closed curve in S| representing the contact trajectory of 0bj 1,
and 6y = ¥(f) — ¥(ty) denote the net change of contact angle
induced by u;. We have

Proposition 4.2: -8y is egual 1o the holonomy angle
of the loop u, (see [27] for the definition of holonomy
angle). In other words, —&) = Jfz kdA, where k is the
Gaussian curvature of S, and R is the region bounded by
u,.

Remark 4.1: This is a key result to the path finding algo-
rithm. In order to realize a desired change of contact angle
without altering the point of contact relative to S, we may
plan a closed curve in S| such that the Gaussian curvature
integral over the region bounded by the loop is equal to the
net angle change.

Proof: This follows from the Gauss-Bonnet Theorem in
differential geometry. For details see [14], [18], [27].
O

Using (17), (16), and Proposition 4.2, we have the follow-
ing algorithm that generates a desired path when ob j2 is flat.
The example of a unit ball on the plane is used for illustration.

Algorithm 4.1 (A Path Finding Algorithm)

Input: 1) Initial and final configurations py = @9, u9, %
and py = @{,uf, y’).

2) Geometric data of 0bj! and 0b j2: curvature
forms (K, K), metric tensors (M, M3;), and
connection forms (7', T, = 0).

An admissible path that links py to py.
Find a path u,(t) € S,, ¢ € [0, #,], such that

Output:
Step 1:
u>(0) =u3 and us(t,) =uf. (18)

Letu (¢) €S and y(¢), ¢ €[0, t,] be the induced
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trajectory of contact relative to obj1 and the contact
angle, respectively (i.e., the solution to (17)). At
t = t,, the contact point of ob,jI and the contact
angle reach some intermediate values, denoted by

dy =u,(t) and ¥ = Y(01).

Find a closed pathu,(f) € S2,¢ € [¢1, £2], such that
the induced contact trajectory of obj1 has the prop-

erty

Step 2:

u(t)) =u; and u((¢2) :u{.

Let ¥(£), t € [t1, t2], be the induced trajectory of
the contact angle. At 7 = #,, the angle of contact
reaches some intermediate value denoted by

¥ =y(tz),  where y(t) = V.

Let 6 = ¢/ — ¢ be the desired holonomy angle.
Find a closed pathu (f) € S1, ¢ € [t2, t ¢}, such that
1) the induced trajectory u2(¢) € Sy, t €[ta, tyl, is
also closed and 2) the Gaussian curvature integral
over the region bounded by 1, is equal to the desired
holonomy angle.

Output: Return the path @ (?), usx(t), ¥) eP, t €[0,
11Uty 12l Ult2, ty], which is the union of the
paths found in Steps 1, 2, and 3.

Step 3:

Remark 4.2: The desired contact point 4 of 0bj2 is
achieved in Step 1. Then, using a closed curve relative to
obj2 in Step 2 the desired contact pointu{ of 0bj1 is realized
without sacrificing the desired contact point of 0bj2. Finally,
in Step 3, using a closed curve relative to objl, which also
includes a closed curve relative to 0b,2, the desired contact
angle is realized.

We now use the example of a unit ball on the plane to
illustrate the algorithm. Clearly, Step 1 can be easily done
using existing techniques in robot motion planning [4], [15].
Steps 2 and 3 are carried out as follows:

Step 2A: Letd; and u{ be the two contact points of objl.
We wish to construct a closed path u,(t), t € [t1, t2], in the
plane so that the induced contact trajectory u (), t €1, t21,
of S? links #; tou{.

Lemma 4.1: Letii, anduf be exactly w/2 distance apart
in the unit sphere S*. Then, the square of side length ©/2,
shown in Fig. 6 will induce a contact trajectory u\ which
links i, touf.

Proof: We need to demonstrate that the square has the
desired features. Label the point #; and u{ in the sphere by
A’ and B', respectively, as shown in Fig. 6. d(4', B) = /2.
There exists a unique geodesic, i.e., an arc of the great circle,
that connects A’ to B’. The great circle will be called the
equator. Let A denote the initial point of contact in the plane.
Thus tracing the geodesic from A’ to B’ induces a straight line
in the plane with endpoint B, and d(B, A) = w/2 (by arc
length constraint). Going from the point B to the point C in
the plane is equivalent to going from the point B’ to the north
pole C' in the sphere. Note that ¥ (ABC) and X(A'B'C")
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Fig. 6. A Lie bracket motion.

Fig. 7. A (general) Lie bracket motion.

are both right angles. Now, tracing the straight line from C to
D in the plane induces a curve in the sphere which ends at the
starting point A’. Consequently, by closing the curve in the
plane with a straight line joining D to A, we have arrived at
the point B’ in the sphere. This shows that the square indeed
induces a curve in the sphere which has a net incremental
distance 7/2. This is called a Lie bracket motion.

We now return to the more general case.

Step 2B: By Lemma 4.1, we may assume that
d(i,,uf) < m/2. Otherwise, Lemma 4.1 can be applied re-
peatedly until some intermediate point which is less than /2
distance away from ulf is reached. Let / = d@, u{ y< /2
be the distance of these two points. We wish to construct a
closed curve u»(t), t € [£1, t2], in the plane such that the in-
duced contact trajectory u(¢), ¢ € [ty, t2], has an incremental
distance / along the geodesic connecting i to u{. We propose
to use foru, the closed curve ABC DE shown in Fig. 7. where
x = d(A, B)is to be determined, d(B, C) = dC,D)=m7/2,
and

X
6 =2 tan "y

We would like to show that for some choice of x, the closed
curve ABCDE will induce a curve u (t), t € {¢y, {2], in the
sphere that links & to u{. First, by tracing the straight linc
from A to B and then to C induces a curve in the sphere
which starts at A’, passes through B’, and then comes to the
north pole C’. Note that d(B’, Ay = x and ¥(A'B'C’) =
90°. Going down from C to D with an angle § and by a
distance 7 /2 is equivalent to going down in the sphere from
C’ to some point D’ at the equator. Clearly, d(B’, D) = 0.
Now, connect D to A by a straight line, and we claim that 1)

X CDA = 90° and 2) d(A, D) = x. To see this, note that
by definition XACD = 6/2 and AC is common o both the
triangles AABC and AACD. Thus they must be congruent
triangles and the claim follows. Hence, by tracing the straight
line from D back to A in the plane, we have followed the
equator from D’ to some point E’, and d(E’, D'y = x. With



LI AND CANNY: MOTION OF TWO RIGID BODIES

Fig. 8. Another Lie bracket motion.

u, being the closed curve ABCDE for some choice of x,
the induced curve u, in the sphere has its starting point A’
and its ending point E’, where d(E’, A’), the net incremental
distance, is a function of x. Let f(x) = d(E’, A"). It is not
hard to see that

X
fx)=2x -6 =2x —2tan""' o
The hope is to find an x, if possible, that solves the equation
FoO=L. (19)
We claim that there exists a unique x that solves (19).
To show this, note that f(0) = 0 and f(x/2) = n/2 >|.
Thus solutions exist. For the uniqueness part, we compute the
derivative of f(x), which is given by

, 2/ 2 -2/ +4x?/x?
=2-=-2 =
S 1 +4x? /x?

3 > 0.
4x
l+—

Thus f(x) is a monotone function and the solution to (19),
denoted by x*, is unique! Consequently, the curve ABCDE,
with d(B, A) = x*, has all the desired features.

Step 3’:We wish to find a closed path u,(t), t € [t2, /],
in §* such that 1) the induced path u(t), t € [t2, t/], in
the plane is also closed and 2) u, has a desired holonomy
angle &Y. We may assume that 0 < — &) < 2w. Consider the
latitude circle with u;(¢f) = u,(0), and v () = v,(0) + ¢,
t €{t2, 12 + 2], see Fig. 8. We claim that 1) the induced
trajectory u, is also a circle and 2) the holonomy angle of
u, ranges from 0 to 2w for 0 < u;(0) < w/2. To see this,
substitute the expression of

u(t)

vi(?)

into (16) and after some algebra, we get

e~

Y(t) — Y(0) = —sin u;(0)t = «at, a = —sin u,(0)

and
ux(t) = B cos(at + o) +7o
va(t) = —f sin(at + o) + &g
Yo = u2(0) — cos Yy cos u(0)/a
80 = v2(0) +sin g cos u(0)/a.
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Thus we have

(a(6) —70)* + (va(1) — Bp)* = B°.
This shows the claim.

V. CONCLUSION

The paper studied a fundamental problem in dexterous ma-
nipulation by a robot hand: motion of two rigid bodies with
rolling constraint. A systematic procedure for deriving the
configuration space of contact and the differential equation
for the constraint has been presented. This approach is appli-
cable to objects of arbitrary shapes and under any contact con-
straints. For example, one may use this formulation to study
motion of two rigid bodies under sliding or a combination of
sliding and rolling constraints.

An algorithm that determines the existence of an admissible
path between two contact configurations has been given. First,
the distribution generated by the two constrained vector fields
is computed. One then checks to see if the distribution is
nonsingular. If so, an admissible path exists between any two
contact configurations.

It has also been shown that the path finding problem is
equivalent to a nonlinear control problem. Thus existing re-
sults in nonlinear control theory can be used. A geometric
algorithm that finds a path when one object is flat is given.
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