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Abstract

In this paper we describe a robot path planning algorithm
that constructs a global skeleton of free-space by incremen-
tal local methods. The curves of the skeleton are the loci of
maxima of an artificial potential field that is directly propor-
tional to distance of the robot from obstacles. Our method
has the advantage of fast convergence of local methods in un-
cluttered environments, but it also has a deterministic and
efficient method of escaping local extremal points of the po-
tential function. We first describe a general algorithm, for
configuration spaces of any dimension, and then describe in-
stantiations of the algorithm for robots with two and three
degrees of freedom.

1 Introduction

There have been two major approaches to motion planning
for manipulators, (i) local methods, such as artificial potential
field methods [1}, which are usually fast but are not guaran-
teed to find a path, and (ii) global methods, like the first
Roadmap Algorithm [2], which is guaranteed to find a path
but may spend long time doing it. In this paper we present an
algorithm which has characteristics of both. Qur method is
an incremeutal construction of a skeleton of free-space. Like
the potential field methods, the curves of this skeleton lo-
cally optimize a certain potential function that varies with
distance from obstacles. Like the Roadmap Algorithm, the
skeleton, computed incrementally, is eventually guaranteed to
contain a path between two coufigurations if one exists. The
size of the skeleton iu the worst case, is comparable with the
worst-case size of the roadmap.

Unlike the local methods, our algorithm never gets
trapped in local extremal points. Unlike the Roadmap Al-
gorithm, our incremental algorithm can take advantage of a
non-worst-case environment. The complexity of the roadmap
comes from the need to take recursive slices through config-
uration space. In our incremental algorithm, slices are only
taken when an initial search fails and there is a “bridge”
through free space linking two “channcls”. The conditions
for a bridge are quite strict, and can be locally checked be-
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fore a slice is taken. We expect few slices to be required in
typical environments.

In fact, we can make a stronger statement about com-
pleteness of the algorithm. The skelcton that the algorithin
computes eventually contains paths that are homotopic to
all paths in {ree space. Thus, once we have computed slices
through all the bridges, we have a complete description of
free-space for the purposes of path planning. Of course, if we
only want to find a path joining two given points, we stop the
algorithm as soon as it has found a path.

The tracing of individual skeleton curves is a simple
enough task that we expect that it could be done in real time
on Lhe robot’s control hardware, as in other artificial poten-
tial field algorithms. However, since the robot may have to
backtrack to pass across a bridge, it does not seem worthwhile
to do this during the search.

For those readers already familiar with the Roadmap
Algorithm, the following description may help with under-
standing of the new method: If the configuration space is
R*, then we can construct a surface in R**! which is the
graph of the potential function, i.e. if P(ay,....ax) is the
potential, the surface is the sct of all points of the form
(1, 2k P(1, ..., 2%)). The skeleton we define here is a
subset of a roadmap (in the seuse of [2]) of this surface.

This work builds on a considerable volume of work in
both global motion planning methods [2] [3]. [4], [5], and lo-
cal planners, [1]. Our method shares common theme with the
work of Barraquand and Latombe [G] in that it attempts to
use a local potential field planner for speed with some pro-
cedure for escaping local maxima. But whereas Barraquand
and Latombe’s method is a local method made global, we
have taken a global method (the Roadmap Algorithm) and
found a local opportunistic way to compute it.

Although our starting point was completely different.
there are some other similarities with [6]. Our “[reeways”
resemble the valleys intuitively described in [6]. Tn fact our
freeways are a subset of the valleys described in [6]. But the
main difference between our method and the method in [6] is
that we have a guaranteed (and reasonably efficient) method
of escaping local potential extremal points and that our po-
tential function is computed in the configuration space.

The paper is organized as follows: Section 2 contains a
simple and general description of roadmaps. The description
deliberately ignores details of things like the distance [unction
used, because the algorithm can work with almost any func-



tion. Section 3 gives some particulars of the application of
artificial potential fields. Section 4 describes our incremental
algorithm, first for robots with two degrees of freedom, theu
for three degrees of {reedom.

2 A General Roadmap Algorithm

We denote the space of all configurations of the robot as C'S.
For example, for a rotary joint robot with k joints, the con-
figuration space C'S is R*, the set of all joint angle tuples
(01, ...,0c). The set of configurations where the robot over-
laps some obstacle is the configuration space obstacle CO,
and the complement of C'O is the set of free (non-overlapping)
configurations I"P. As described in [2], FP is bounded by
algebraic surfaces in the parameters ¢; after {he standard sub-
stitution t; = tan(%‘). This result is needed for the complexity
bounds in [2] but we will not need it here.

A roadmap is a one-dimensional subset of FP that is
guaranteed to be connected within each connected component
of FP. Roadmaps are described in some detail in [2] where
it is shown that they can be computed in time O(n* logn)
for a robot with k degrees of freedom, and where {ree space
is defined by n polynomial constraints (there is also an al-
gebraic component of the complexity which we ignore lere).
But »* may still be too large for many applications, and in
many cases the free space is much simpler than its worst case
complexily, which is O(n*). We would like to exploit this
simplicity to the maximum. The results of [6] suggest that
in practice free space is usually much simpler than the worst
case bounds. What we will describe is a method aimed at
getting a maximal description of the connectivity of a par-
ticular free space. The original description of roadmaps is
quite technical and intricate. In this paper, we give a less
formal and hopefully more intuitive description. We will not
give proofs, but the reader who is interested should find that
generalizing from the proofs of [2] is straightforward.

2.1 Definitions

The general roadmap is computed recursively on dimension
in CS = R*. We assume that we have an algorithin that
correctly constructs roadmaps of (k — 1)-dimensional planar
slices through R*. For concreteness, suppose ('S has coordi-
nates x4, .... 2. A slice ('S|, is a slice by the plane 1 = v.
Similatly, slicing P with the same plane gives a set denoted
FP),. The algorithm is based on the key notion of a channel
which we define next:

A channel-slice of free space F P is a connected com-
ponent of some slice FP|,.

The term channel-slice is used because these sets are precur-
sors to channels. To construct a channel {rom channel slices,
we vary v over some interval. As we do this, for most values of
v, all that happens is that the connected components of I'P o
change shape continuously. As v increases, there are however
a finite number of values of v, called critical values, at which
there is some topological change. Some events are not signifi-
cant for us, such as where the topology of a component of the
cross-section changes, but there are four important events:

1555

X3

Figure I: A schematized 2-d configuration space and the par-
Lition ol free space into w1-channels.

As v increases a connected component of I'P|, may appear
or disappear, or several components may join, or a single
component may split into several. The points wheve joins or
splits occur are called interesting critical points. We define a
channel as a maximal connected union of cross-sections that
contains no interesting critical points. We use the notation
F P|(a) to mean the subset of FP where ry € (a,b) C R.

A channel through [ P is connected component of F'F, 1
containing no splits or joins, and (maximality) which is vot
contained in a connected componeut of F P4 containing no
splits or joins, for (¢, d) a proper superset of (a,b). See ligure
1 for an example of channels. The property of no splits or
joins can be stated in another way. A maximal connected
set Cliap) C FPlap is a channel if every subset Cle.g) 13
connected for (e, f) C (a,b).

2.2 General Roadmaps

Now to the heart of the method. A roadmap has two com-
ponents:

(i) Treeways (called silhouette curves in [2}) and

(i1) Bridges (called linking curves in [2]).
A freeway is a connected one-dimensional subset of a channel
that forms a backbone for the channel. The key properties of
a freeway are that it should span the channel. and be continu-
able into adjacent channels. A freeway spans a channel if its
range of vy values is the same as the channels, i.e. a freeway
for the channel ("|(,4) must have points with all x; coordi-
nates in the range («,b). A freeway is continuable if it meets
another freeway at its endpoints. i.e. if C'li.p) and (| ) are
two adjacent channels. the b endpoint of a [reeway of C|,
should meet an endpoint of a freeway of C'js.q- (Technically,
since the intervals are open, the word “endpoint” should be
replaced by “limit point™)

1 general, when a specific method of computing frecway
curves is chosen, there may be several freeways within one
channel. For example, in the rest of this report. freeways are
defined using artificial potential functions which are divectly
proportional to distance from obstacles. In this case each



Figure 2: Two channels C'y and C3 joining the channel Cj,
and a bridge curve in Cs.

freeway is the locus of local maxima in potential within slices
FP|, of I'P as v varies. This locus itself may have some
critical points, but as we shall see, the [reeway curves can
be extended easily past them. Since there may be several
local potential maxima within a slice, we may have several
disjoint freeway curves within a single channel, but with our
incremental roadmap construction, this is perfectly OK.

Now to bridges. A bridge is a one-dimensional set which
links freeways from channels that have just joined, or are
about to split (as v increases). Suppose two channels ', and
(' have joined into a single channel '3, as shown in figure 2.
We know that the {reeways of (; and C, will continue into
two freeway curves in C3. These freeways within Cy are not
guaranteed to connect. However, we do know that by defini-
tion (3 is connected in every slice #; = v, so we siniply call
the Roadmap Algorithm recursively, and ask it to construct a
roadmap of any non-empty slice Csl, of C3. By our inductive
hypothesis, this roadmap is connected. We can also easily
arrange things so that this roadmap contains points on both
the lreeways we are trying to connect. This guarantees that
whenever two channels join, their freeways do also. Once we
can show that whenever channels meet, their freeways do also
(via bridges), we have shown that the roadimap, which is the
union of freeways and bridges, is connected. The proofl of
this very intuitive result is a simple inductive argument on
the {finite number of) channels, given in [2].

The basic structure of the general Roadmap Algorithm
follows:

I. Start tracing a freeway curve [rom the start configura-
tion, and also from the goal.

[

- If the curves leading from the start and goal are not
connected, enumerate a split or join point, and add a
bridge curve “near” the split or join (uy-coordinate of
the slice slightly greater than thatl of the joint point for
a join, slightly less for a split).

3. Find all the points on the bridge curve that lie on other
freeways, and trace from these {reeways. Go to step (2).

The algorithm terminates at step (2) when either the start
and goal are connected, in which case the algorithm signals
success and returns a connecting path, or if it runs out of split
and join points, in which case there is no path connecting the
start and goal. This description is quite abstract, but in later
sections we will give detailed examples of the approach in
two- and three-dimensional configuration spaces.

Two things distinguish our new algorithm from the pre-
vious Roadmap Algorithm. One is that the freeways do not
necessarily lie near the boundary of free space as they did in
[2]. In our present implementation we are in fact using max-
imum clearance freeways. But the most important difference
is that we now only enumerate frue split or join points. With
a robot with k degrees of freedom and an environment of com-
plexity n, it can be shown thal there are at most Q(n*=")
potential split or join points. But many experiments with
implementated planners in recent years have shown that the
number of true splits or joins in typical configuration spaces
is much lower. In our new algorithm. we can make a purely
local test on a potential split or join point to see if it is really
qualified. The vast majority of candidates will not be. so we
expect far fewer than O(n*=") bridges to be required.

We also plan to experiment with randomly chosen slice
values, alternating with slices taken at true split or join
poiuts. The rationale for this is that in practice the “range”
of slice values over which a bridge joins two freeways is typi-
cally quite large. There is good probability of finding a value
in this range by using random values. Occasionally there will
be an wide range of slices values for a particular bridge. but
many irrelevant split and join points may be enumerated with
values outside this range. To make sure we don’t make such
easy problems harder than they should be, our implemen-
tation alternates slices taken ncar true split and join points
with slices taken at random x, values.

3 The Basic Approach Using an
Artificial Potential Field

The idea of our approach is to construct an potential field
to repel the point robot in configuration space away from
the obstacles. Given a goal position and a description of
its environment, a manipulator will move along a “maximum
potential” path in an “artificial potential field”. The position
to be reached represents a critical point that will be linked
by the bridge to the nearest maximum, and the obstacles
represent repulsive surfaces for the manipulator parts.

Let ('O denote the obstacles, and x the position in R*.
The artificial potential field can be described by:

Uppi() = Up(x). (1)

The potential field Up(x) induces an artificial repulsion
from the surface of the obstacles. [’o(r) should be defined as
a non-negative continuous and diflerentiable function whose
value tends to zero as the end-effector approaches the obsta-
cle’s surface. One of the classical analytical potential field is
the Euclidean distance function.



Using the shortest distance to an obstacle 0, we have
proposed the following potential field Uo(a):

Uo(x) = l]liill W Di(0;, 2)) (2)

where D;{O;, ) is the shortest Euclidean distance between an
obstacle O; and the point x, and 5 is an adjustment constant.
D;(0;, x) is obtained by local methods for fast computation of
the distance functions. For further details on the computation
of distance functions used to construct potential field, please
refer to [7].

With this scheme, a manipulator moves in such a way
to maximize the artificial potential field Uy (). But, the re-
sulting potential in configuration space may have many local
mmaxima. especially in the obstacle concavities. Thus, it is
necessary to design an algorithin to escape these local max-
ima and to build some linking curves counecting these local
maxima until the goal is attained.

In the next section, we will detail the description of our
algorithm to guide a robot toward the desired goal and some
heuristic techniques Lo escape local maxima in an “artificial
potential field™.

4 Description of the New Algo-
rithm

The algorithm will take geometric description of the obstacles
in semi-algebraic representations, the initial and goal position
as inputs, and output a path between the initial and goal
position in robot’s configuration space, il such a path exists.
The idea is to construct an potential field function in
'S x R to repel the point robot away from the obstacles
and toward the desived goal position. This function defines
a surface constructed by the Roadmap Algorithm: fix the v-
avis, then follow the extremal points in w-aais as the value of
v varies. But, this new algorithm differs from the Roadmap
Algorithm[2] in following respects:
o It doesn’t always construct the entire skeleton or
roadmap

In this algorithm, v = x, where x is one of the CS co-
ordinates while w = R, where I is always the height of
the potential function in 2-d. Yet, in the Roadmap Al-
gorithm, v = and v =y where & and y are both CS
coordinates.

The Roadmap algorithm fixes one C'S coordinate, say
2. and follows extremal points (maxiina, minima and
saddles) in y, to generate the silhouette curves in a two-
dimensional workspace. Ou the other hand, the new al-
gorithm fixes x, and follows only marima in R.

4.1 Two-Dimensional Workspace

Starting from the initial position s € C'S, we first fix one of
the axes of ('S and then the & coordinale of a slice to be
the + coordinate of s. Then we search this slice to find the
nearest local maximum. (This local maximum is a {reeway
point.) Next, we build a bridge between the point s and this
local maximum. At the same time, we begin tracing a {reeway
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@ Portion of silhouette curve in CS x R @ Slice projection at X = %s in R-y plane

Figure 3: A pictorial example of an inflection point in C'S x
R vs. its view in 1? x y at the slice x = &y

Figure 4: An example of the algorithm in the 2-d workspace

curve from the goal. If the goal is not on the maximum con-
tour of potential field, then we must build a bridge to link it
to the nearest local maximum. Afterwards, we trace the locus
of this local maximum as x varies until we reach an endpoint.
If the current position pi,c on the curve is the goal (7, then
we can termminate the procedure. Otherwise, we must verify
whether pio is a “dead-end” or an inflection point of the slice
x = xo. (See Fig. 3.) If proc is a point of inflection, then we
can continue the curve by taking a slice at the inflection point
and following along the gradient direction near the inflection
point. This scarch necessarily takes us to another local max-
imum. Fig. 4 demonstrates how the algorithm works in 2-d
('S. This diagram is a projection of a constructed poten-
tial field in C'S x R onto the r-y plane of the 2-d C'S. The
shaded area is the CO in the configuration space. The solid
curves represent the contour of maximum potential, while the
dashed curves represent the minima. Furthermore, the path
generated by our planner is indicated by arrows. In addition,
the vertical lines symbolize channel slices through the inter-
esting critical points. When this procedurc has been taken to
its conclusion, both endpoints of the freeway will terminate
at dead-ends. At this point it is necessary to take a recursive




slice al some value of x. Our planner generates several ran-
dom z-values for slices (at a uniformly spaced distribution
along the span of the freeway), interweaving them with an
enumeration of all the interesting critical points. If after a
specified number of random values, our planner fails to find a
connecting path to a nearby local maximum, then it will take
a slice through an interesting critical point. Each slice gives
a bridge whicl is itself the recursively computed roadmap of
the slice. We call this procedure recursively until we reach
the goal position G or have enumerated all the interesting
critical points.
The algorithm is described schematically helow:

e Algorithm

Procedure IFindGoal (Environment, piye, G)

if (pinit # G)
then Explore(pinit)
else return(FoundGoal);
even := false;
While ( CritPtRemain and NotOnSkeleton(G) ) do
if (even)
then x := Random (x-range)
else x := x-coord(next-crit-pt());
TakeSlice(x);
even := not even;
end(while);

End(FindGoal);

Function Explore(p)
% Trace out a curve from p

q := search-up&down(p);
% To move up & down only in y, using gradient near p
if new(q) then
% new() checks if g is already on the curve
begin(if)
<el,e2> := trace(q);
% trace out the curve from ¢, output two end points
if inflection(el) then Explore(el);
if inflection(e2) then Explore(e2);
% inflection(p) checks if p is an inflection point
end(if);

End(Explore);

Funetion TakeSlice(x-coordinate(p))
% This function generates all points on the slice and explore
% all the maxima on the slice.

old-pt := find-pt(x-coordinate);
% find-pt() find all the points on the x-coordinate.
% It moves up&down until reaches another maximum.
new-pt := null;
For (each pt in the old-pt) do
<up,down> := search-up&down(pt);
% <up,down> is a pair of points of 0,1,0r2 pts
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Figure 5: Search Tree for Taking Slices in Three-D

new-pt := new-pt + <up,down>;
For (each pt in the new-pt) do
Explore(pt);
End(TakeSlice);

4.2 Three-Dimensional Workspace

For a three-dimensional workspace, we can compute the path
in a similar fashion. Starting from the initial position pie.
we first fix one axis. Without loss of generality, we find the
local maxima on the X-Y plane as the values of Z vary. A
“maximum potential” path following the gradient direction
of potential field can be traced oul in the three-dimensional
space. Then, we repeat the verifying process as in the two-
dimensional case. If the current position is an inflection point.
we can always reach another maximum by following the direc-
tion of potential gradient to another local maximum. Once
we reach a maximum, however, we must find another nearby
maximum in the 3-dimensional space and then build a bridge
curve connecting the two maxima.

The search for a local maximum is analogous to the two-
dimensional case. First, we take a randomn two-dimensional
slice F'P|, normal to the Z-axis and search for local maxima
on I"P|. using the algorithm of the last scction. This algo-
tithm in turn may take one-dimensional slices, alternating
between random search and enumeration of critical points.
But the random slice FP|, may not always contain a local
maximum or else it may be quite difficult to find a local max-
imum on this slice. Therefore, we interweave the execution
of the two algorithms. After we take a certain number of
one-dimensional slices within F P|.,, we either take new two-
dimensional slice I P[., or explore some previous slice rri.,
further by taking more one-dimensional slices. llence, the
search for local maxima problem becomes more complex in
a three-dimensional space, since now we are facing different
searching options as shown in the search trec (see Fig. 5). An
“optimal” decision will be made at each node on the tree by
a lieuristic search algorithm that is currently under investi-
gation. In conclusion, for planning a path in 3-dituensional
workspace, we apply the algorithin recursively by taking two-
dimensional slices and then one-dimensional slices, with a



heuristic search that trades off path optimality and search
time.

4.3 Path Optimization

Alter the solution path is obtained, we plan to smooth it by
the classical principles of variational calculus. That is, to
solve a classical two points boundary value problem. Basi-
cally, we minimize the potential that is a function of both
distance and smoothness, or to find an “optimal” path given
the algorithm.

5 Complexity Bound

Since our planner probably does not need to explore all the
critical points, this bound can be reduced by finding only
those intcresting critical points where adding a bridge helps
to veach the goal. 1f n is the number of obstacle features
(faces, edges, vertices) in the environment and the config-
uration space is RF, then the number of “interesting crit-
ical points” is at most O(n*~1).
dimensional workspace, for an environment with n obstacles,
the number of “interesting critical points™ is at most O(n?)
and the number of “interesting critical points” for the 2-D al-
gorithm is at most O(n). (Please refer to Append 1 for more
details.)

For instance, in a three-

6 Summary and Discussion

By following the maxima of a well-designed potential field,
and taking slice projections through critical points and at ran-
dom values, our approach builds incrementally an obstacle-
avoiding path to guide a robot toward the desired goal. The
techniques proposed in this paper provide the planner with a
systematic way (o escape from these local maxima that have
Deen a long standing problem with using the potential field
approach in robot motion planning.

Our algorithm, computed from local information about
the geometry of configuration space, requires no expensive
precomputation steps as in most global methods developed
thus far. In a two dimensional space, this method is compa-
rable with using a Voronoi Diagram for path planning. In
three-dimensional space, however, our method is more ef-
ficient than computing hyperbolic surfaces for Voronoi dia-
gram method. [n the worst case, it will run at least as fast as
the Roadmap Algorithm. But, it should run fastet than the
Roadinap Algorithm in most of the cases.

The implementation of this algorithm is in progress at
the present time and the issue of optimal search is also under
investigation.

Appendix I: Geometric Relations

between Critical Points and Contact
Constraints

Let n be the number of obstacle features in the environ-
ment. Free space FP is bordered by O(n) constraint sur-
faces. Each constraint surface corresponds to an elementary
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contact, either face-vertex or edge-edge, between a feature of
the robot and a feature of the environment. Other types of
contact are called nou-elementary, and can be viewed as mul-
tiple elementary contacts at the same point, e.g. vertex-edge.
They correspond to intersections of constraint surfaces in con-
figuration space. There are also O(n) non-elementary contact
surfaces in configuration space, and each has co-dimension 2
or more.

In k dimensions, the arrangement of constraint surfaces
has O(n*) intersection points. These intersection points fall
into two categories: (a) All the contacts are elementary (1)
one or more contacts are non-elementary. When all contacts
are elementary, i.e. all contact points arc distinct on the ob-
ject, free space in a neighborhood of the intersection point
is the intersection of & half planes (oue side of a constraint
surface), and forms a cone. This type of intersection point
cannot be a split or join point, and does not require a hridge.
Ilowever, if one or more contacts are non-elementary, then
the intersection point is a potential split or join point. Bul
because the O(n) non-elementary contact surfaces have codi-
mension > 2 there are only O(n*~") intersection points of
type (b). Interesting critical points may be either intersection
points, aud we have seen that there are O(n*=1) candidates,
or they may lie on higher dimensional intersection surfaces,
but there are at most O(n*~1) intersection surfaces of di-
mension one or greater. Therefore, the number of interesting
critical points is at most O(n*~1).
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