ON COMPUTABILITY OF FINE MOTION PLANS~*

John Canny

Computer Science Division

University of California, Berkeley
Berkeley, California 94720

1 Abstract

We show that fine motion plans in the LMT framework
developed by Lozano-Pérez, Mason and Taylor are com-
putable, and we give an algorithm for computing them by
reducing fine motion planning to an algebraic decision prob-
lem. Fine Motion Planning involves planning a successful
motion of a robot at the fine scale of assembly operations,
where control and sensor uncertainty are significant. We
show that as long as the envelope of trajectories generated
by the control system can be described algebraically, there
is an effective procedure for deciding if a successful n-step
plan exists. Our method makes use of recognizable sets
as subgoals for multi-step planning. These sets are finitely
parametrizable, and we show that they are the only sets
that need be considered as subgoals. Unfortunately, if the
full generality of the LMT framework is used, finding a fine
motion plan can take time double exponential in the num-
ber of plan steps.

2 Introduction

This paper deals with fine motion planning as formalized
by Lozano-Perez, Mason and Taylor {12]. In their original
paper, these authors presented a new framework for fine mo-
tion planning that explicitly took into account both sensor
and control uncertainty. An integral part of their methodol-
ogy was a force control scheme, either a generalized damper
or generalized spring. The [121 paper gave a very abstract
description of a fine motion planning method, and it was
not clear that such plans were computable. Subsequent
work has studied restrictions to the LMT model that lead to
computable plans [7,111, but a significant amount of power
is lost with these restrictions. In particular, the plan ex-
ecutor cannot make use of time or sensor history. In this
paper, we show that LMT plans are computable in full gen-
erality, as long as the trajectory envelope can be described
algebraically. We do not know as yet whether the addition
of continuous sensor history as proposed by Mason [14] (in-
stead of the finite sensor history used in [12]) still gives a
computable planning problem.

In (3] it was shown that LMT plans may be very long.
Specifically, it was shown that even in a three dimensional
polyhedral environment, some plans require a number of
plan steps that grows exponentially with the environment
complexity. It was also shown that finding a guaranteed
plan is hard for non-deterministic exponential time, which
is strong evidence that finding plans can take double expo-
nential time in the worst case. In this paper, the number
of plan steps n is fixed, and is input to the algorithm. We

*Sponsored by the Defense Advanced Research Projects
Agency (DoD), monitored by Space and Naval Warfare Systems
Command under Contract N00039-88-C-0292.

CH2750-8/89/0000/0177$01.00 © 1989 IEEE

| | G| ELECTRONICS ENGINEERS, INC.

believe that the lower bounds just mentioned should not
be of concern, because it is only realistic to consider fine
motion plans with a small number of steps.
What we give here is a computability result, but the time
bounds are poor. Previously, Donald had shown that LMT
lans are computable in the plane without history or time
6]. Finding an n-step plan can take time double exponen-

tial in n, i.e. the running time is of the form 0(2*"). This
bound follows because we can reduce the fine motion plan-
ning problem to a decision problem in the theory of the real
numbers, with a number of real quantified variabies propor-
tional to n. Deciding formulae in the theory of the reals
takes double exponential time in the number of quantifiers.
On the positive side, the algebraic decision algorithms are
parallelizable, and the parallel time is single exponential in
the number of quantifiers. Of course the number of pro-
cessors is double exponential and is completely prohibitive.
But worst case bounds do not imply long running times in
typical cases, and what we describe here can be used as 2
starting point for more efficient average-case planners.

The reduction from fine motion planning produces an al-
gebraic formula with alternating existential and universal
real quantifiers. The existential quantifiers represent the
actions taken by the plan executor, like choosing the direc-
tion to move or the time to stop moving, and the universals
represent the actions of nature, namely the sensor readings.
This game-theoretic interpretation of fine motion planning
was explored in [16]. It is the alternation of these quantifiers
that leads to the double exponential time bound.

We begin our exposition with two introductory sections,
one on the algebraic tools needed for the computability re-
sult, and the other on the LMT fine motion framework.
Section 5 contains our main result, and introduces recog-
nizable sets as the basic subgoals in multi-step plans.

3 Real Algebraic Algorithms

The basic building blocks that we use to represent geometric
objects are formally called semi-algebraic (SA) sets. A very
broad range of geometric objects can be represented exactly
as SA sets. A few common objects however, those whose
boundaries are not algebraic, must be approximated.

SA sets are defined by predicates which are logical combi-
nations of polynomial inequalities. They can be defined for-
mally in a real space R™ whose coordinates are z1,...,Zm
via:

Definition A semi-zlgebraic (SA) set is the set of
points in the real space R™ that satisfy a predicate of
the form B(Q1(z1,...,Zm), ..., Qe(21,...,Zm)) where B :

{T,F}* — {T,F} is a k-argument binary function, and
each Qi(z1,..

., Tm) is polynomial inequality. That is, each

Qi is of the form Pi(z1,...,zm) ® 0, where P; is a polyno-
mial, and @ can be any of the comparators =, #, >, <, >
or <. We call the defining predicate an SA predicate.

Polyhedra are a special case of SA sets that have lin-
ear defining polynomials P;. Constructive solid geometry
(CSG) models are also SA sets. Objects that have alge-
braic parametric surface patch boundaries are SA sets, for
example, objects with B-spline boundaries.

3.1 Quantifier Elimination

The most important property of semi-algebraic sets is that
they are closed under projection, and that this is a com-
putable operation. This means that if we have a universal
or existentially quantified real variable in front of an SA
predicate, we can eliminate this quantifier, and obtain a
new SA predicate in the free variables.

Theorem 3.1 gTarski) If A(z1,...,2m) is an SA predi-
cate, then so is B(z1,...,Zm-1) = 3zm A(z1,...,Zm) and

(£1,.-.1Zm-1) = VI, A Z1,...,%m). Both the predicates
B and C are quantifier-free SA predicates.

This theorem for single quantifiers implies that sequences
of quantifiers can be eliminated, starting from the inside
out. For example, by eliminating 2, Vz Jy V= A(z,y, 2)
becomes Vz 3y A’(z,y) which becomes Yz A”(z), which
evaluates to either true or false.

Algorithms for doing quantifier elimination on SA predi-
cates have been around for some time, starting with Tarski’s
paper [15]. The best sequential time bounds are due to
Collins [4], who showed that quantifier elimination can be
done in time double-exponential in the number of variables
m, that is, the running time of his algorithm is roughly 22",

Somewhat better bounds are possible if the quantifiers
are of a particular type, e.g. all existential. If this is the
case, they can be eliminated in parallel polynomial time [2).
Or even if the number of alternations of quantifier type is
fixed, e.g. a string of universals followed by a string of ex-
istentials followed by universals counts as two alternations,
the sequential time bound drops to single exponential [9].

3.2 Sample Points

If we have an SA predicate that defines a set A which is non-
empty, we sometimes need to find a point p which actually
lies in the set. Collin’s method [4] produces such sample
points. The author’s method [2] produces “symbolic” sam-
ple points, but numerical coordinates of these points can

found by solving a single univariate polynomial. It is
somewhat faster than Collin’s method for multidimensional
sets. Of course, if all the points in A are irrational, then
an exact sample point cannot be found. However, it is pos-
sible with the above schemes to get arbitrarily close to the
coordinates of a true sample point.

So it can be assumed that if one has a predicate defining a
non-empty SA set, there is an effective procedure for finding
a numerical sample point (or approximation) in the set.
Both methods have running times that are polynomial in
the size of the SA predicate, but the exponents grow with
the dimension of the set. In Collins method the exponent is
exponential in the dimension, while in the author’s method,
it 1s linear in dimension.

3.3 Set Notation

In the following sections, to simplify our exposition, we will
often refer to a semi-algebraic set without explicitly giving

its defining predicate. For a set A C R™, there is an im-
plicitly defined predicate A(z,,...,Z,) which is true at a
point iff that point is in A. For two sets, AN B has defining
predicate A(z1,...,2m) A B(z1,...,2m), and similarly for
AUB etc.

We will also write phrases like A C B, which is a logical
statement that translates into a quantified formula in the
corresponding predicates:

Vo1,...,2m A(21,...,2m) = B(z1,...,Zm) 1)
and when we write p € A where p is a point with coordinates
P1,...,Pm, we mean that the statement A(py,...,pm) is

true.

For compactness, if p has m real coordinates, we will
write Vp instead of Vpy,..., pm, etc.

Finally, we will often make use of parametrically-defined
sets A(g) C R™, where A(q) is an SA set which is a function
of some argument g. This means that there is an implicitly
defined SA predicate A(p, g) which is true iff p € A(g). So
when we write Ag) C B, we mean Yp A(p,q) = B(p)
which gives us an SA predicate f‘%q) which is true of those
values of ¢ such that A(g) C B. We will be careful to state
whether a symbol describes a predicate or a set when this
is not clear from the context.

4 LMT Fine Motion Planning

Most commercial robots use position control only. Because
position control errors are significant for many assembly
tasks, robot applications are biased toward low-precision
tasks such as welding and spray-painting. To successfully
plan high-precision assemblies, uncertainty must be taken
into account, and other types of control must be used which
allow compliant motion.” Compliant motion occurs when a
robot is commanded to move into an obstacle, but rather
than stubbornly obeying its motion command, it complies
to the geometry of the obstacle.

Compliant motion ([%0], [13]) is possible only with cer-
tain dynamic models. The two most common of these are
the generalized spring and generalized damper models, [13].
Our methods apply to either model, but we will sketch only
the generalized damper model. The generalized spring was
studied in the context of LMT planning ir [1]. We do not
need the details of the control scheme in our planner, but
the planning algorithm does require that the trajectory en-
velope be describable algebraically, and this description will
depend on the control scheme. We give such a description
for a typical damper control scheme and a three-dimensional
environment.

LMT plans can be suinmarized as follows: A plan consists
of n steps. At the begining of each step, the plan executor
makes a sensor reading s of position and velocity, and it
chooses a commanded motion . The commanded motion is
passed to the control system, usually a generalized damper
or generalized spring, which moves the robot along some
trajectory conmsistent with the motion command. Because
of control uncertainty, this trajectory is not unique, and
is not known (except indirectly through sensor readings) to
the plan executor. The trajectory will typically involve slid-
ing against obstacles. As ihe robot moves, at each time ¢,
the plan executor takes a sensor reading si and evaluates a
termination predicate P(sg,0,t,s}). This predicate should
return a true value if and only if the robot has successfully
entered a goal region (or intermediate subgoal region). If a
subgoal is reached and recognized by the termination pred-
icate, the next plan step commences, using s; as the initial
sensor reading.

The framework takes into account the inaccuracy in sen-
sor readings and in the control system, so that the actual

178

R ol

state of the robot is not known. Instead, the plan executor
has partial knowledge of state, i.e. it knows that the robot’s
state is in some set of states that are consistent with the
sensor readings. When the termination predicate returns a
true value, it means that it has determined that all possi-
ble actual states of the robot that are consistent with the
sensor readings lie in the goal region.

We assume that we are working in the configuration space
of the robot, so that the robot itself is always a point. Let
C denote the configuration space, the set of free (obstacle
avoiding) configurations F' C C of the robot is assumed to
be an SA set.

In the damper control scheme, during each step of the
fine motion plan, the point robot is commanded to move at
some velocity v¢. Because of control uncertainty however,
the point actually moves with a control velocity v which lies
in a ball of radius €||v¢]] about the commanded velocity, i.e.

[lo = v¥|| < ello®|] (2)

where ||| is a suitable norm. In the LMT model, the control
velocity v can change instantaneously, as long as it always
remains within the error ball about v°. This description
gives us a complete characterization of the robot’s motion in
free space, but during contact, we need to take the dynamic
model into account.

The generalized damper applies forces to the robot in
response to velocity errors. If F' is the force on the robot, v
the control velocity and v® the actual velocity, the damper

equation is
F =B(v® —v) 3)

where B is a matrix called the damping matrix. Assumin,
B has all negative eigenvalues, this gives a stable (idealized%
negative feedback system, and in free space we find that
v® = v as we would expect.

Motion in contact with a surface is possible if the control
velocity v is directed into the surface. The actual velocity
v® will be tangent to the surface in this case, since the
reaction force will cancel the component of F directed into
the surface. We omit the details of derivation of v* in this
case, but refer the reader to [7]. It is enough for us to know
that both the velocity v*®, and the robot’s trajectory as a
function of time can be specified using SA predicates.

4.1 Feasible Trajectories

Having found the actual velocities that occur in response to
a control velocity, we can now try to represent trajectories
of the robot over time. In the original LMT framework, the
control velocity v can change instantaneously, as long as it is
consistent with the commanded velocity v¢. This is a very
strong assumption, and makes the set of trajectories vir-
tually impossible to represent. However, if we assume that
the control velocity changes only a number of times propor-
tional to the number of environment surfaces, we find that
in most cases we can generate the same trajectory envelope
as if we allowed an infinite number of changes.

We define a trajectory T' as a map from time to position
times velocity state space. At each time t, T(?) is a pair
(p,v) which are respectively the position and velocity of
the robot at time t. If C is the configuration space of the
robot, and TC is its tangent bundle,

Definition A trajectory is a map T : [0,tmas] — TC
such that T'(t) = (p, v) where p and v are the position and
velocity respectively of the robot at time ¢. The position
coordinate of a trajectory is a continuous function of time,
but velocity may have discontinuities.

We saw in the last section that the motion of the robot
(i.e. its actual velocity) is completely determined by the

179

control velocity. In the present paper, we assume that
rather than varying continuously, the control velocity takes
on m values vy,...,Vm, and there are m — 1 time switch-
points tx, where t; is the time at which the control velocity
switches from vx to vk41. We do not justify this here, but
it is the case that for the polyhedral environment described
below that the trajectory envelope with a finite number of
switchpoints is the same as if the number of switchpoints is
infinite. In general we feel this is a reasonable compromise
between the ideal model and a computable formalization.
We also feel that it is a reasonable reflection of what hap-
pensdin the physical world in response to a motion com-
mand.

Definition We write 7 (so, 8) for the set of feasible tra-
jectories T with initial state T(0) = so that are consistent
with the motion command 6.

Each trajectory is determined by a finite number of real
values tx and vy as described above, together with so. The
set T (80, 9) defines the values of these parameters that cor-
respond to feasible trajectories, and is an SA subset of the
set of all parameter values. For the damper, the motion
command 0 is just the actual commanded velocity v¢, and
the feasible parameters are just the vk that lie within the
uncertainty ball about v°.

While the sequences (vx), (1) determine the trajectory
T, they do not give a convenient representation of it. A bet-
ter representation is to give the actual velocities along the
segments, together with the positions at the switchpoints.
To do this, we need to take into account the interaction of
the robot with the environment.

In the special case of a polyhedral environment in three
dimensions, we have C = ®® and TC = R®, and each actual
velocity segment v} lies either entirely in free space, or is
a straight line along some obstacle face, or along a concave
edge. We assume that we have an SA predicate F'(z) defin-
ing free space, and that at each point z on the boundary of
free space, the normal N(z) is known.

Then, given a control velocity vk, and knowing the posi-
tion of the robot py at time tx, we can determine if the robot
will slide or move through free space during this segment. If
it slides, from the normal information, we can determine its
actual velocity v¢, and therefore its position pe41 at time
tis1. In this last step we assume that each segment involves
a single type of motion, that is, between ¢ and tx41, the
robot is either entirely in free space, or is sliding against a
single surface or edge. We add this as a restriction to the
class of feasible trajectories 7 (so0,). T(30,8) will still be an

SA predicate in the values of v1,...,vm and #,...,tm—1.
So when we write T € T(s0,6), we really mean a se-
quence of values v1,...,%m,%,...,tm-1, that is consistent

with the motion commands and the environment geome-
try. T(t) is a (position,velocity) pair which can be easily
computed from the values so,v1,...,vm and t,...,tm_1.
That is, we assume there is an implicit SA predicate

TR(30,01,+++,Vm, t1,... ,tm—1)(t,p,v) which is true ex-
actly when T(t) = (p,v), where T is the trajectory deter-
mined by so,%1,...,Um,t1,...,tm-1.

4.2 Notational Conventions

Our notation closely follows Erdmann (7). The major dif-
ference is that in the interest of compactness, rather than
using separate position and velocity values p and v as Erd-
mann does, we mostly use (position,velocity) state pairs
s = p x v. Actual position, velocity and state values are
denoted by lower case letters, such as po, vo and 3o. The
corresponding sensor rcading of a quantity is denoted with
a raised asterisk. For example p§ denotes a sensor read-

ing of po, and vy denotes the velocity sensor reading of the
actual velocity vp.

To take into account the uncertainty in sensor values,
LMT uses uncertainty balls Bep(p) and Beo(v). Bep(p) is a
set of positions whose distance from p under some metric is
less than some distance ep, representing the possible error
in the position sensor readings. Thus if p is the actual po-
sition of the robot, B.p(p) represents the possible readings
of the position sensor. Dually, if the reading of the position
sensor is p°*, then the actual position of the robot will lie in
Bep(p*). Analogous results hold for velocity sensor errors,
where B.y(v) is the velocity error ball.

We add the notation s* to mean the pair of sensor read-
ings p* X v* of the actual state s = px v. And the error ball
B,(.!SJ of a state is the set B.,(p) X Be,(v) in state space.

We will need to make use of the set of possible states that
the robot may occupy after some motion command. This
is called the forward projection and is defined as:

Definition The forward projection of a state so under
the control command 6 at time ¢ is denoted Fi,o(t). It is
the set of points that the robot can reach at time f under
trajectories which start at so and which are consistent with
the control command 8. It can be written as

U 7o

T€T(s0,9)

F.su ,B(t) = (4)

Most of the time we will not know what the actual state
so of the robot is, we will only have a sensor reading sg
and a set of possible states R that the robot could be in.
We would like to represent the set of trajectories that the
robot could follow which are consistent with this informa-
tion. We denote this trajectory set as T (30,08, R) and it can
be defined as:

T€T(s3,6,R) <=)
330 (s0 € RN B.(s3)) A (T € T (50, 8))

Similarly, we can define a forward projection F‘a’g,R(t)
as the set of possible states of the robot at time ¢ which are
consistent with the sensor reading s§, and the fact that the
initial state of the robot is contained in R.

SE Fapor(t) <

3s0 (s0 € RN Be(33)) A (s € Fopo(t)) ©

4.3 One-step planning: The Preimage Condi-
tion

The fundamental concept in the LMT formalism is the no-
tion of a preimage. The preimage of a goal set G is the
set of states from which the robot can recognizably reach
the goal. In fine motion planning, it is not enough that the
robot move through a goal region, since it may not have ac-
curate enough sensors to determine when it is in the goal,
and may halt prematurely or too late, and miss the goal.

As formalized by Erdmann, a set Risa preimage of a goal
G under the motion command 6 if and only if the following
is true:

Preimage Condition For all initial sensed states 35
and for all trajectories T € T (sq,0, R), there is a time ¢ >
0 such that for every set of sensor readings s*, consistent
with T at time ¢, the goal set G contains the set of sensor
interpretations F,;,Q,R%t) N B.(s*).

. The notion of recognizability is captured in the termina-
tion condition, which is that F,;Yg,n t) N B.(s*) C G. The

180

condition for R to be a preimage of G translates into the
following formula:

Vs3 VT 3t > 0 Vs

(T €T(s5,6,R) A st € B.(T(t))) = (7
(Fay0,r(t) N Be(s]) € G)
We assume that the trajectories T € 7 (so,6) are

parametrizable by a polynomial number of variables, that
T (s0,0) is an SA predicate in these variables, and that there
is an SA predicate to test whether (p,v) = T(t). The last
section gave some justification for this assumption. Now if
we are given SA predicates defining the sets R and G, we
can eliminate quantifiers and decide whether R is a preim-
age of G. But if we have a multistep plan, we somehow
have to guess a sequence of intermediate subgoals Go, and
verify that each is a preimage of the next in the sequence.

The approach suggested in LMT was based on the idea of
enumerating all possible preimages of the goal, then com-
puting all preimages of those to get all possible two-step
preimages etc. One way to describe all possibe preimages
might be to describe a single maximal preimage which con-
tains all others. Unfortunately, it was pointed out in 7]
that maximal preimages in this sense do not always exist.
So it seemed that it might truly be necessary to enumerate
all subsets of state space that were preimages. This leads to
computability barriers, since if one allows second order real
variables which can represent subsets of ™, the resulting
algebraic theory is undecidable.

In the next section we argue that it is not necessary to
consider all possible subsets of state space as preimages,
only those that are consistent with some set of sensor values
that might arise at run-time. This latter family of subsets
can be gescribed algebraically, and indexed by the possible
sensor values, which are encoded in a finite number of real
variables. Our method of finding a motion plan is both
forward- and backward-chaining, in contrast to LMT, which
is strictly backchaining.

5 Recognizable Sets as Subgoals

Before considering k-step plans, we consider a simple two-
step plan. Let the plan consist of two commanded velocities
6, and 6;. We wish to decide whether this two-step plan
will guarantee successful progress into the goal region G
from a given start region R. To do this we must find a
suitable set of intermediate subgoals H, such that every
H, is a preimage of G, and that starting from R, we can
recognizably reach some H,.

From the preimage equation (7) we see that to recog-
nizably attain some subgoal H, from R under the control
command 6, it must be the case that

Vs$ VT 3t, > 0Vs? 3H.
(T€T(s5,6:,R) A st € B.(T(1r))) =
(Fog,0,,r(t1) N Be(s7) C Ha)

(8)

where sg is the sensor reading at time 0, and s} is the
sensor reading at time ¢;. Now preimages have the property
that any subset of a preimage is also a preimage. So if H,
1s a preimage and it contains Fys o, r(t1) N Be(s}), then
Fys.0,,R(t1) N Be(s?) is also a preimage.

So rather than considering all H, which are preimages of
G, we need only consider those of the form F_,a’ghn)N
Be(s?). This is sufficient because if Fys 6, ,r(t1) N Be(s1) is
not a preimage of G, then there can be no larger set H,
which is a preimage.

We define the recognizable set H(s3,11,3;) to be pre-
cisely the set of states which are consistent with the sensor
readings sg and si and the time ?;:

H('g(.ntlvs;) = Fa;,ex,R(tl)nBG(s;) (9)
In the formula (8), when it comes to the existential choice
of the set H,, we take the set H(sg,t1,s]) wheneveritis a
preimage of G. The formula (8) then reduces to

Vs VT 3ty > 0Vs]
(T € T(33,8:,R) A s} € B(T(t1))) = P(s5,ta,81)
(10)
where P(s§,t1,s}) is a predicate which is true precisely
when H(sg,t, s]) is a preimage of G. So we next deter-
mine which of these sets are preimages of G. We use the
preimage equation again, where the set R is replaced by the
set H(s3,t,s}), using its SA predicate computed from (9):

vT 3‘2 2 0 Vs;
(T € T(s3,62, H(s3,11,87)) A 53 € Be(T(t2))) =
(Fus,05,8(s3.00,57) (22) N Be(s2) € G)
(11)

Now this is a quantified formula with free variables 8o, t1
and s} (and of course 8> which we are treating as a constant
in this example). We can perform quantifier elimination
on this formula to yield the quantifier-free SA predicate
P(s§,11,87) which is true if and only if H(s3,t1,81) is a
preimage of G. We substitute the predicate P(s3,11,97)
into (10), eliminate quantifiers, and we get either a true
or false result depending on whether the two-step strategy
8,0, succeeds or not.

5.1 Multi-step Plans

The methods used for two-step plans above extend naturally
to multi-step plans. The general planner is both forward-
and backward-chaining. It forward chains to find recog-
nizable sets, and then backward chains to determine which
recognizable sets are preimages. In this section we give the
planner the added power to choose the commanded motion
fx at execution time in response to previous sensor values.
Thus 8x becomes an exisentially quantified variable in the
formulae. We could have also done this in the example of
the previous section, but we omitted it in the interest of
simplicity.

In the last section, we saw that the recognizable sets
H(s3,t1,5]) are the smallest sets that can be recognizably
reached after the first step. We can recursively define rec-
ognizable sets for subsequent plan steps, and they retain
the property that they are the smallest sets that are recog-
nizably reachable after, say, k plan steps. We now give a
general expression for recognizable sets and make explicit
their dependence on the velocity commands 6. In what
follows, 6 is the motion command during the k" step, tx
is the time at which the k** motion terminates, and s is
the sensor reading at time #x.

Deflnition

The recognizable set Hx(s§,01,%,81,02,...,0k,tx,8%) is a
set of states recognizably reachable after k plan steps. We
abbreviate it to Hy, and define it recursively as:

Hy = Fo

k=1"

ou, Hy_y (T6) N B.(sk) (12)

So for an n-step plan, we can compute k-step recognizable
sets Hj using this formula for k = 1,...,n, taking as the
initial sets Ho(s¢) = RN Be(s3).

181

Next we must decide which of the recognizable sets are
preimages. Let Pi(s3,01,%1,87, ..., tk, s) be a predicate
which is true precisely when Hi(s3,61,t1,83,...,tk, 3x) isa
preimage of G under the motion commands f(kt1),---,0n.
Then Pi(s3,81,t1, 8%, ..., 8k, 3%) is computed recursively by
eliminating quantifiers from the right hand side of:

Pi(s0,01,t1, ...tk sy) &=

38k+1 vT 33k+1 Z 0 V3;+1
(T € T(s,0k41, Hi) A 8iz1 € Be(T(tk41))) =
Pit1(85,61,11, ..., tkt1,8541)

(13)

We can use this recurrence to compute preimage predicates
fork=mn-—1,n-2...,0, where the base case is the “zero-
step” preimage predicate:

P,,(sa,ﬂl,tl,.ﬁ,..,,tn,s:,) ==

Ho(s3,01, 11, 5% tn, 83) C G (14)

After backchaining n times, we obtain finally a predicate
Py(s3), which still has one free variable s§. We eliminate
this variable with a universal quantifier, and we obtain ei-
ther a true or false value, depending on whether a guaran-
teed n-step motion plan does or does not exist.

So we now have a general method for finding n-step fine
motion plans. We forward chain using (12) to find the rec-
ognizable sets Hy for k = 1,...,n. The definitions above
imply that all the Hyx are parametric SA sets. Then we
backward chain from the goal to find the preimage predi-
cates Px for k=n—1,n—2...,0 using (13).

5.2 Termination and Choice of Next Motion
Command

Our method also provides the termination predicates for
the plan executor, which are precisely the predicates
P.. At the k-th step, the plan executor tests the val-
ues of tx and si continuously, evaluating the predicate
Pi(s8,61,1,87,. .., tk, 85) (having remembered the previ-
ous times and sensor readings). As soon as Px returns a
true value, the executor halts the motion. It has recogniz-
ably reached a multistep preimage of the goal.

We have not said so far how the plan executor chooses
the next motion command k41 if it is doing this at run-
time. The formula defining Py is (13) and we see that the
first quantifier is 38x41. If instead of eliminating this quan-
tifier, we leave it as a free variable, we obtain a formula
Or41(88,61,11,. .., tk, 85, 0k41). Now all of the values of
s8,01,t,...,tk, sk are known to the plan executor at the
end of the k' step, and so it can substitute them into Ok 41
to give a formula with the single free variable Ox41. Now
this formula will be true for some value of 8x41, since Px is
true, and Py = 30k41 Oky1. So using the “sample point”
procedure mentioned in the section on real algebraic algo-
rithms, the plan executor can compute a suitable value of
9k+1'

5.3 Complexity Analysis

In measuring the complexity of the algorithms we have de-
scribed, we assume that the environment complexity (num-
ber of polynomials defining the environment) is m, the num-
ber of plan steps is n and the dimension of configuration
space is r. When we compute the sets Hy using (12) we
make use of the definition of forward projection given in (6).
Using these two formulae recursively we can write down a
{ormula for Hj directly in terms of the initial set R. This

| | G| ELECTRONICS ENGINEERS, INC.

formula has O(kr) explicit existentially quantified variables
30,...,3%-1, and there are also O(mkr) “implicit” existen-
tially quantified variables that define trajectories within the
forward projection predicate. They can be eliminated to

give a quantifier-free formula for H; of size 220%™ using
Collin’s method.

Let M = 22°™" be the size of the largest Hj formula.
If we fully expand the recursive back-chaining formula (13
we obtain a formula with nmr quantified variables, an
whose length before quantifier elimination is roughly nM.

Eliminating all these quantifiers takes time 220‘"") using
Collins. If we retain intermediate formulae during the quan-
tifier elimination, we obtain all the termination predicates
predicates Px and next motion command predicates O as
a side effect.

This extremely high complexity seems to be unavoidable
with the full generality of LMT. The alternation of existen-
tial and universal quantifiers is the source of the trouble.
The alternation occurs if the plan executor is allowed to
make use of sensor information to make choices about com-
manded motions or termination time. Of course, if the plan
executor makes no choices at execution time, then it cannot
make use of sensor values, and we are left with sensorless
plans as described in [8]. Since there is only a fixed number
of alternations of quantifier types in formulae for sensorless
planning, plans can be found more rapidly, and the running
time for a sensorless planner should be single exponential.
While there is a considerable improvement in time complex-
ity of finding sensorless plans, the loss of power is apparently
severe.

6 Conclusions

We gave an algorithm for finding fine motion plans in the
LMT framework. Our algorithm made use of quantifier
elimination procedures for semi-algebraic predicates. Con-
ditions for existence of a successful plan were defined as for-
mulae with real quantified variables, and the variables were
eliminated to decide if a successful plan exists. This is possi-
ble whenever the set of trajectories has a finite parametriza-
tion, and when the set of feasible trajectories 7 (s,) is an
SA subset of this parameter space. The complexity of the
method was shown to grow double exponentially with the
number of plan steps.

The heart of the method is its use of recognizable sets
as the subgoals in multi-step plans. Our method forward
chains to find all recognizable sets as parametric SA sets,
and then backward chains to determine which of these sets
are preimages of the goal. In the backward chaining phase,
the planner produces predicates P, which are the termina-
tion predicates for the plan executor, and ©, which can be
used to determine the next motion command.

We observe that our methods also apply to the extension
of LMT to allow model error [5]. Model error is varia-
tion in the geometry of the environment. If this variation
is described by a finite number of parameters, then find-
ing a guaranteed plan reduces to a classical LMT problem,
where the parameters are added as extra coordinates to the
configuration space. The plan executor can neither sense
these parameter values, nor change them with a motion
command, but these are acceptable restrictions.

References

(1] BuckleyS., “Planning and Teaching Compliant Motion
Strategies”, MIT AI Lab TR-936, 1987.

182

[2) Canny J., “Some Algebraic and Geometric Compu-
tations in PSPACE”, ACM Symp. Theory of Comp.,
Chicago, 1988.

Canny J., and Reif J., “New Lower Bound Techniques
for Robot Motion Planning”, IEEE conf. Found. of
Comp. Sci., Los Angeles, 1987.

Collins G., “Quantifier Elimination for Real Closed
Fields by Cylindrical Algebraic Decomposition”,
LNCS No. 33, Springer-Verlag, NY, pp. 135-183., 1975.

Donald B., “Error Detection and Recovery for Robot
Motion Planning with Uncertainty”, MIT AI TR-982,
1987.

Donald B., “On the Complexity of Planar Compli-
ant Motion Planning under Uncertainty”, Proc. ACM
conf. on Comp. Geom., Urbana, Ill., 1988.

Erdmann M., “Using Backprojections for Fine Motion
Planning with Uncertainty”, Int. Jour. Robotics Re-
search 5 (1), 1986.

Erdmann M., and Mason M., “An Exploration of Sen-
sorless Manipulation”, IEEE Int. Conf. Robotics and
Automation, San Francisco, 1986.

Grigoryev D., “Complexity of Deciding Tarski Alge-
bra”, Jour. Symb. Comp., 1988.

Inoue H., “Force Feedback in Precise Assembly Tasks”,
MIT AI Lab memo 308, 1974.

Latombe J., “Robot Motion Planning with Uncer-
tainty: The Preimage Backchaining Approach”, Tech.
Rept. CS-88-1196, Stanford University, 1988.

Lozano-Pérez T., Mason M., and Taylor R., “Auto-
matic Synthesis of Fine-Motion Strategies for Robots”,
Int. Jour. Robotics Research 3 (1), 1984.

Mason M., “Compliant Motion”, Robot Motion, Brady
et. al. (eds), MIT Press, Cambridge, MA, 1982.

Mason M., “Automatic planning of fine motions: cor-
rectness and completeness”, IEEE Conf. Robotics, At-
lanta, 1984.

Tarski A., “A Decision Method for Elementary Algebra
and Geometry” Univ. of Calif. Press, Berkeley 2nd ed.,
1951.

Taylor R., Mason M., and Goldberg K., “Sensor-
Based Manipulation Planning as a Game with Na-
ture”, Fourth Int. Symp. Robotics Research, Santa
Cruz, 1987.

(3]

[4]

[5]

(]

[7]

[10]

Y
(12)

(3]

[14]

(15]

(16]

