
Zero-knowledge Test of Vector Equivalence and
Granulation of User Data with Privacy

Yitao Duan and John Canny

Abstract— This paper introduces a new framework for privacy
preserving computation to the granular computing community.
The framework is called P4P (Peers for Privacy) and features
a unique architecture and practical protocols for user data
validation and vector addition-based computation. It turned out
that many non-trivial and non-linear computations can be done
using an iterative algorithm with vector-addition aggregation
steps. Examples include voting, summation, SVD, regression,
and ANOVA etc. P4P allows them to be carried out while
preserving users privacy. To demonstrate its application in
granular computing, we present two practical protocols that test
the equality of user vectors in zero-knowledge. Our protocols only
involve constant number of public key operations (independent
of vector size) and are very efficient. These protocols can be used
to perform granulation, which is a fundamental task of granular
computing, in a privacy-preserving manner. They can also be of
independent interest for other fields such as data mining as well.

Index Terms— Privacy, zero-knowledge protocol, equivalence
test, granulation.

I. I NTRODUCTION

GRANULATION of the universe is one of the funda-
mental issues in granular computing (GrC). It involves

decomposing the universe into subsets or clustering individual
objects into classes. The subsets or classes are called granules.
A granulation may consists of a family of either disjoint or
overlapping granules. It is the first step towards treating the
world in a GrC manner.

A granulation must use some criteria that determines
whether two objects should be put into the same granule. A
simple scheme can be based on equivalence relation. LetU be
a finite and non-empty set of objects called the universe and
E ⊆ U ×U an equivalence relation onU . E dividesU into a
family of disjoint subsets called the partition of the universe
induced byE. Two objects are equivalent if they are in the
same subset.

An equivalence relationE on U essentially defines a gran-
ulation. The equivalence relation itself can be determined by
knowledge about the objects. Such knowledge can be provided
by schemes such as information table [1], [2]. An information
table is defined as the tuple:

(U,At, {Va|a ∈ At}, {Ia|a ∈ At})

This work was supported by National Science Foundation award #EIA-
0122599 (Title: “ITR/SI: Societal Scale Information Systems: Technologies,
Design, and Applications”).

Both authors are with the Computer Science Division, University of
California at Berkeley, 387 Soda Hall, UC Berkeley, Berkeley, CA 94720-
1776 (emails:{duan, jfc}@cs.berkeley.edu).

where At is a finite set of attributes or features,Va is a
set of values for each attributea ∈ At, and Ia : U → Va is
an information function for each attributea ∈ At such that it
maps an object inU to exactly one value inVa.

In this scheme, given a subsetA ⊆ At, we can define an
equivalence relationEA as:

xEAy ⇔ ∀a ∈ A, Ia(x) = Ia(y)

In other words,x and y are indiscernible, with respect to
all attributes inA, if and only if they have the same value for
every attribute inA.

A. Granulation and Privacy

In many situations, the information table contains users’
private information. For example, in health care applications,
the information table can be a database containing users’
gender, ethnic, age, medical history etc. In this case it is
extremely valuable for many health care providers to granulate
the data accurately to gain statistical insights and mine useful
information. Yet it is also extremely detrimental to user privacy
if the raw information is exposed to a single provider.

We provide a private computation framework called Peers
for Privacy (P4P) to address this dilemma. P4P was first
introduced in [3]. It includes efficient and privacy-preserving
protocols for performing user data validation and many use-
ful computations. P4P offers a practical solution to many
applications such as privacy-preserving data mining etc. In
this paper we show that P4P also has great potential for
protecting user privacy in granular computing. Concretely,
we introduce two efficient zero-knowledge protocols that test
the equality of two user vectors or some of their elements.
These protocols can be used to implement the equivalence
relation mentioned earlier. Therefore we provide a practical
and privacy-preserving solution for granulation of user data.
By doing so we wish to bring to the attention of the GrC
research community the importance of user privacy and show
that it is indeed practical to provide strong protection while
maintaining the accuracy of the computation.

The rest of the paper is organized as follows. Section II
examines previous solutions and other related research. In
Section III we give a brief overview of the P4P framework.
Section IV states our model and assumptions. Section V
summarizes some cryptographic tools that our protocols use.
In VI we give detailed description of our protocols and their
security proofs. Finally we discuss current implementation
issues and future directions in Section VII.

II. RELATED WORK

Zadeh first introduced the concept of information granu-
lation in the context of fuzzy set in 1979 [4]. Almost two
decades later, Lin [5] coined the term granular computing
to label a new and fast-growing field of multi-disciplinary
research that includes fuzzy and rough set theories [1], [4],
[6], data mining [7], intelligence systems [8] etc. Granulation
by equivalence relation can be found in many works such as
[9], [10].

The tasks we describe in this paper can be carried out
using Secure multiparty computation (MPC) protocols. MPC
dates back to Yao [11] and Goldreich et al. [12]. Important
works include [13], [14], [15], [16] etc. They provide general
solutions for computing anyn-ary function amongn players
while protecting each player’s private data. Although theo-
retically powerful, these protocols are not practical for large
scale systems due to their heavy use of public-key operations
or zero-knowledge proofs (ZKP).

[3] introduced a new paradigm for performing computations
based on vector addition. In that setting, each user inputs a vec-
tor and the computation is carried out in rounds, each of which
only involves vector addition. As [3] and other works (e.g.
[17]), showed, many non-trivial and non-linear computations
can be done using an iterative algorithm with vector-addition
aggregation steps. Examples include voting, summation, SVD,
regression, and ANOVA etc. The architecture introduced in
[3] is called Peers for Privacy (P4P). It allows the above
algorithms to be computed in much more efficiently than
generic MPC protocols. In addition, [3] also provided a very
efficient protocol that verifies, in zero-knowledge, that the user
input is valid. Our work in this paper builds upon [3]. We
introduce new protocols to the P4P framework and show that
granulation of user data can also be performed efficiently with
privacy in the same setting.

The task our protocols perform bears some similar-
ity with zero-knowledge proofs that prove two commit-
ments/encryptions encode the same number (e.g. [18], [19]
and the disjunctive proof of equality of plaintext (DISPEP) and
proof of equality of plaintext (PEP) of [20]). Both are testing
the equivalence of obfuscated data without revealing the clear
text. However, there is a subtle but fundamental difference:
ours is not aproof system in that there does not exist a prover
who knows the pre-images or the decryption key, as is required
by the ZKPs. Rather, ours is a privatecomputationtask. The
techniques developed in e.g. [18], [19], [20] cannot be applied
directly. This will be further elaborated in Section VI-A.

III. P4P: AN OVERVIEW

In P4P, we assume there is a single computer called the
server, which is operated by a service provider. We also
assume a (small) number of designatedprivacy peers(PP) who
participate in the computation. In contrast to previous work,
privacy peers are assumed to belong to users in the community
and each privacy peer should service a small number of users.
They are not required to be honest, and the protocol ensures
that they cannot break the privacy of the protocol without the
server’s help.

This architecture is a hybrid of client-server and P2P. On
one hand, the server shares the bulk of the computation and
storage, and also synchronizes the protocol. This allows us to
take advantage of its large comoutation/storage capacity and
high availability. It also leads to practical, efficient protocols
that are not possible with fully distributed architecture. On the
other hand, the peers also participate in the computation, and
offload information, thus trust, from the server and provide
privacy. Practical P2P systems such as Gnutella and Napster
showed that the existence of altruistic users who provide
services to others is a pervasive phenomenon in communities.
Therefore it is not a problem to find such users to volunteer as
privacy peers. In certain cases, instead of using peers from the
users, it may be feasible to distribute the computation among
service providers. For example, two hospitals may wish to
mine data from user records. P4P can be used to support this
type of computation by letting one of the service providers
assume the role of a privacy peer in the protocol and the result
is that both hospitals learn the (aggregate) final computation
but neither learns anything about users private data.

The security of a P4P system is based upon the assumption
that the server and the privacy peers won’t be corrupted at
the same time (see adversary model later). This is realistic in
many situations. The key observation is, the server is typically
well-protected (at least cooperations spend large amount of
money trying) therefore the server-peer pair is immune against
external attacks. And we argue that the server and the privacy
peers do not have incentive for collusion because there is
a mutual distrust among them and the risk of discovery
is high: colluding between the server and the privacy peer
requires them to exchange data, and both will be aware of
the cheating. Neither can trust the other not to expose the
cheating (some exposure maybe by accident). This assumption
allows us to leverage the differences between the players and
construct efficient protocols that best utilize their individual
advantages: essentially our system relies on the server for
defending againstoutsideattacks and uses the privacy peers
to protect user privacy against a curious server.

One of the major advantages of P4P architecture is that it
allows the main computation to be executed in the “normal”-
sized field where each integer fits into a single memory cell.
Big integer field is used only for verification which involves
only a small number (constant orO(log m) where m is
the size of user data) of big integer operations. In contrast,
generic MPC protocols (e.g. [13], [14], [15], [16], [21]) work
in the big field all the time. In a typical computer today
there is a six order of magnitude difference between the
big integer cryptographic operations (order of milliseconds)
and regular arithmetic operations (fraction of a nano-second)
and P4P provides a practical solution for large scaled private
computation tasks. Our new protocols introduced in this paper
follow similar approach, i.e. main computation is small field
and small number of big integer operations for verification,
thus preserves its efficiency.

Similar to [3], we describe our protocols as 2-way multi-
party computations carried out between the server and a
privacy peer who are referred collectively to astalliers. In
this paper we denote the serverT1 and the privacy peerT2.

IV. PRELIMINARIES

We assume alln users have access to secure channels with
the server and the privacy peer(s). Letφ be a small integer1

(e.g. 32 or 64 bits). Our goal is to support “normal”-sized inte-
ger (or fixed-point) arithmetics. This is what most application
needs and the arithmetics are extremely efficient when each
integer fits into a single memory cell. To provide information-
hiding, we use a(2, 2)-threshold secret sharing to embed this
integer range in the additive group of integers moduloφ.
To support signed values, which is what most applications
require, we consider the specific coset representatives of the
integers mod φ in the range−bφ/2c, . . . , bφ/2c if φ odd, or
−bφ/2c, . . . , bφ/2c − 1 if φ even. We writeZφ for this field.

Let di ∈ Zm
φ be anm-dimensional data vector for useri.

We usex ←R X to denote the assignment tox an element
uniformly randomly selected from a setX. Throughout this
paper we useu · v to denote the inner product of two vectors
u andv.

A. Basic P4P Computation

The goal of the main P4P protocol is to compute the sum
of all user vectors (As we mentioned earlier, many useful
computation can be decomposed into such steps. Please see
[3]). It is performed as follows:

AssumeQ = {1, . . . , n} is the initial set of qualified users.
The basic computation in P4P is carried out as follows:

1) User i generates a uniformly random vectorui ∈ Zm
φ

and computesvi = di−ui mod φ. She sendsui to T1

andvi to T2.
2) Useri gives a ZK proof to both talliers that her input is

valid using the protocol described in [3]. If she fails to
do so, both talliers exclude her fromQ.

3) If enough (e.g. more than 80% of all users) inputs
are collected and pass the validation test,T1 computes
µ =

∑
i∈Q ui mod φ and T2 computesν =

∑
i∈Q vi

mod φ. T2 sendsν to T1, andT1 sendsµ to T2.
4) T1 publishesµ + ν mod φ.

Both the correctness and the privacy of the basic computa-
tion are demonstrated in [3].

B. Adversary Model

In this paper, we only consider the “passive” adversary
model of [3] which is actually a mixed model: an adversary is
allowed to actively corrupt any number of users, causing them
to deviate arbitrarily from the specified protocol, andpassively
corrupts one tallier. That is, the adversary can read data from
the tallier’s memory, but the tallier continues to follow the
protocol. The protocols can be patched with techniques such
as ZKP or consensus to deal with actively corrupted tallier.

V. TOOLS

Our protocols use some standard cryptographic primitives
for homomorphic computation. They have appeared elsewhere,
see e.g. [18], [19]. Here we summarize their key properties.

1It does not have to be a prime if the computation only involves addition.

A. Homomorphic Commitment

Our protocols use a cryptographic primitive called homo-
morphic commitment. A commitment allows a prover to give
a verifier a commitment to a secret number. The verifier
should not be able to compute any information about the
secret from the commitment. The prover can later open the
commitment by revealing the secret, and any auxiliary random
bits accompanying this commitment, and the verifier can verify
that the commitment indeed “contains” the secret. If the prover
lies about the secret, it will be detected.

Denote by C(a, r) a commitment to an integera with
randomnessr. The scheme should have the standard “hiding”
and “binding” properties as defined in the literature, i.e.
it is (cryptographically or information-theoretically) hard to
either determinea given C(a, r) or find a′ 6= a and r′

such thatC(a, r) = C(a′, r′). In addition, the commitment
is homomorphic if the following holds: GivenA1 = C(a1, r1)
andA2 = C(a2, r2), there exists somer such thatA2A2 =
C(a1 + a2, r).

Many commitment schemes have this homomorphism prop-
erty. We use Pedersen’s discrete log based scheme [18] for it
admits an efficiency ZKP for equivalence. Letp andq be two
large primes such thatq|p−1. LetZ∗p denote the multiplicative
group of integers modulo the primep. We useGq to denote
the unique subgroup ofZ∗p of orderq. The discrete logarithm
problem is assumed to be hard inGq. Let g and h be two
generators ofGq such thatlogg h is unknown to anyone.2

A commitment toa is computed asC(a, r) = gahr mod p
where r ←R Zq. From now on,C(a, r) will denote such
Pedersen commitment function. We will omit the randomness
r from the notation, and simply writeA = C(a), if it is not
necessary to identify it.

B. Multiply by A Constant

Let A be commitment toa ∈ Zq and c ∈ Zq a constant.
One can easily obtain a commitment tod = ac by

D = Ac mod p

This follows immediately from homomorphism. However,
only the prover who knows how to openA can openD.

C. 3-way Commitment and ZKP

For integerc ∈ Zq, a 3-way commitment, denoted(0,±c)-
commitment, is a commitment to one of0, c or −c. For such
commitment we can construct an efficient zero-knowledge
proof.

Let a ∈ {0, c,−c} be the number to be committed to. The
prover computes two commitmentsB andC such that

B = C(0), C = C(0) if a = 0
B = C(1), C = C(0) if a = c

B = C(0), C = C(1) if a = −c

2A generator ofGq can be easily found by selecting an elementa ←R

Z∗p, a 6= 1 and testing ifaq = 1, since any elementa 6= 1 in Gq generates the
group.g andh can chosen by the two talliers using a coin-flipping protocol.

The prover also provides zero-knowledge proofs that both
B andC encode either 0 or 1 using thebit commitmentproof
of [19]. Finally, the commitment toa is simply

A = BcC−c mod p

and the 3-way(0,±c)-commitment proof consists of(B,C)
and their bit commitment proofs.

To verify the proof, a verifier checks thatA = BcC−c

mod p and that the bit commitment proofs are valid. If all
these verifications are successful, the verifier accepts the proof.
Otherwise it rejects it.

It is easy to show that only whenA encodes one of
{0, c,−c} will the verifier accept the proof. And it is zero-
knowledge due to the hiding property of the commitment
scheme. The proof can also be made non-interactive by
hashing the verifiers response.

VI. ZK T EST OFEQUIVALENCE

Equivalence relation can be defined by equality. In this
section we introduce two equality test protocols. One tests
a single element, the other the whole user vector. Both enjoy
the following:

1) No information about user data is leaked;
2) Only a small number of public key operations are

involved;
3) Users do not need to be involved after the initial data

input stage of the main P4P protocol.

A. Equality Test of A Single Element

Let ai be the element of useri that defines the equivalence
relation E which partitionsU . Recall that the two shares
of ai, denotedai1 and ai2, are already sent toT1 and T2,
respectively, in the main P4P protocol. The goal is, given two
user indexesi, j, to determine whetherai = aj .

This task is not as trivial as it appears. It is true that, with ho-
momorphic commitment, verifying whether two commitments
contain equal numbers in zero-knowledge is easy provided
there is a prover holding the pre-images [18], [19]. Our setting,
however, is a different model. Namely, in P4P, there is no such
a prover who knows both numbers. Instead, each tallier holds a
share of each number. Collaboratively they want to determine
whether the two are equal. In other words, ours is not a zero-
knowledge proof task. Rather, it is a zero-knowledge test or a
two-party computation problem computing a boolean function
that returns 1 ifai = aj and 0 otherwise. This, of course must
be done without leaking any information about the numbers.

The difficulty in applying existing ZKP lies in the fact that
the definition of zero-knowledge in a ZKP system protects
prover’s privacy only when the statement is true. To see this,
let Ai = C(ai, ri) andAj = C(aj , rj) where the prover knows
(ai, ri, aj , rj). The technique for provingAi and Aj contain
the same number involves the prover revealingδ = ri − rj

and the verifier checking ifAiA
−1
j = hδ holds [18], [19].

The problem is, ifai 6= aj , revealingδ also reveals some
information aboutai − aj . Namely once the random mask is
exposed, one can obtaingai−aj = AiA

−1
j h−δ mod p. And

when ai − aj is small, it is easy to recover it. In a standard
ZKP setting, the prover can just admitai 6= aj when it is the
case, thus avoiding leaking information. But this trick is not
possible in P4P where no such prover exists. The same is true
for the DISPEP and PEP [20] techniques which use ElGamal
encryption.

We develop the following protocol to address this issue. To
enable equality test, the users first escrow some information
with the talliers. Specifically, forj = 1, 2, user i and the
talliers perform the following:

1) User i computesAij = C(aij , rij) whererij ←R Zq.
She also prepares a 3-way(0,±φ)-commitmentBi with
pre-imagebi = ai− (ai1 +ai2) and randomnesssi. She
then shares bothbi andsi:

si1 ←R Zq, si2 = si − si1 mod q

bi1 ←R Zq, bi2 = bi − bi1 mod q

She sends(Aij , rij , bij , sij) to Tj and broadcasts to both
talliers Bij = C(bij , rij), Bi and its corresponding 3-
way (0,±φ)-commitment proof.

2) Tj verifies thatAij = C(aij , rij) andBij = C(bij , rij).
Both talliers verify thatBi = Bi1Bi2 and that the
(0,±φ)-commitment proof is valid. If any of the ver-
ification fails, useri is excluded from the computation.

The above is executed in the user input stage together
with data validation [3]. It is the only stage involving user
interaction. The actual test can be carried out between the two
tallier afterwards. The users do not have to be online at all
times.

EQUALITY-TEST:

Without loss of generality, suppose we want to check ifa1 =
a2. In the following description,j ∈ {1, 2}.

1) Both talliers compute

A1 = A11A12B11B12 mod p

A2 = A21A22B21B22 mod p

and∆ = A1A
−1
2 mod p.

2) Tj computesδj = (r1j + s1j)− (r2j + s2j) mod q.

3) Tj generates a random numberkj ←R Z∗q \ {1} and
computes∆j = ∆kj mod p, Hj = hkj mod p.

4) The two talliers exchange(∆j ,Hj). If Ti finds Hj =
h, j ∈ {1, 2}, j 6= i, he aborts the protocol.

5) T1 publishesH̄1 = (H1H2)δ1 which is hkδ1 , and T2

publishesH̄2 = (H1H2)δ2 which equals tohkδ2 , where
k = k1 + k2 mod q.

6) Both talliers verify if

∆1∆2 ≡ H̄1H̄2 (mod p) (1)

If it holds, thena1 = a2. Otherwisea1 6= a2.

Theorem 1:The above protocol correctly tests ifa1 = a2.
Furthermore it does not leak any information about user data.

Proof: The completeness of the protocol follows the
homomorphism property. Note that∆ computed in Step 1 is
a commitment toa1− a2 with randomnessδ1 + δ2. It follows
that∆1∆2 in Equation 1 is a commitment tok(a1−a2) with
randomnessk(δ1 + δ2). If a1 = a2, ∆1∆2 should open to 0,
and Equation 1 should hold.

The soundness is guaranteed by the binding property of the
commitment and the fact that the probability ofk1 + k2 ≡
0 mod q is very small (only1/q).

To show that the protocol is zero-knowledge, we construct
a simulator that takes as inputs the corrupted player’s data, the
public information, and the final output, and interacts with the
adversary in a simulated execution of the protocol. We need to
show that this execution is indistinguishable to the adversary.

Without loss of generality, let us suppose tallierT1 is
corrupted. Note that∆ is common inputs to both talliers
computed from users’ public commitments. The simulator only
needs to produce the rest of the conversation.

Let Z̄∗q = Z∗q \ {1}. The view of the adversary (i.e.T1)
during a real execution of the protocol is:3

V IEWT1
Real = [h, k1, δ1, h

k2 , h(k1+k2)δ2]k1,k2←RZ̄∗q ,δ1,δ2←RZq

For a non-passing execution (i.e. one that outputsa1 6=
a2), the simulator just generates two random numbersk′2 ∈
Z̄∗q , δ′2 ←R Zq and usesk′2, δ

′
2 in place ofk2, δ2 in the protocol.

Clearly the transcript of the simulation follows the same
distribution as that of an actual execution of the protocol and
only with negligible probability will the simulated protocol
(incorrectly) outputa1 = a2.

For a passing test (i.e. one execution that outputsa1 = a2),
the simulator works as follows:

It generatesk′2 ←R Z̄∗q and computes∆2 and H2 as
specified by the protocol but withk′2 in place of k2. It
then computes the rest of the information as required by the
protocol as

H̄2 = ∆1∆2/H̄1 mod p

= h(k1+k′2)δ2 mod p

The adversary’s view in the simulated execution is then

V IEWT1
Sim = [h, k1, δ1, h

k′2 , h(k1+k′2)δ2]k1,k′2←RZ̄∗q ,δ1,δ2←RZq

Clearly this distribution is identical toV IEWT1
Real, the

adversary’s view in a real execution.
And finally the final output revealsgk(a1−a2), not ga1−a2 .

Whena1 6= a2, this quantity leaks no information about either
a1 or a2, or their difference. This is because whena1 6= a2,
the difference is in the multiplicative groupZ∗q and has an
inverse modq. For any given valuec and a1, a2, there is a

3We omit the public commitments since they are uniformly randomly
distributed inGq (recall that Pedersen’s commitment scheme is information-
theoretic hiding [18]).

k = c(a1 − a2)−1 mod q such thatk(a1 − a2) ≡ c mod q.
In other words,a1− a2 is equally likely to take any values in
Z∗q evenk(a1 − a2) is revealed.

The use ofBj in the protocol is to deal with modular
reduction. Note thatai, ai1 andai2 are all in the small fieldZφ.
In order for the sharesai1 andai2 not to leak any information
about ai, they should be computed asai1 ←R Zφ, ai2 =
ai − ai1 mod φ. This meansbi = ai − (ai1 + ai1) can be
0 or ±φ. Using Bj in the protocol is to correct the modular
reduction and obtain the actual commitment toai. Also note
that the sharing ofbi is in the big fieldZq and there is no
modular reduction problem here because of commitment is in
Gq, the cyclic group of orderq.

B. Equality Test of the Whole Vector

Equality test of the whole vector can be done viam element
tests introduced in Section VI-A. However, this involvesO(m)
public key operations and is not practical for largem. The
following protocol, in contrast, requires onlyO(1) public key
operation and is very efficient.

Our protocol uses similar ideas as in [3], i.e. instead of
checking every element, it checks the projections of the vectors
on a random challenge vector. We show later that, if two
vectors have equal projections on these directions then, with
high probability, the two vectors are equal.

Suppose we are checking ifd1 = d2. Recall that after the
input and validation stage in [3],T1 holdsu1, u2 andT2 has
v1, v2 such thatd1 = u1 + v1 mod φ and d2 = u2 + v2

mod φ.

EQUALITY-TEST-V:

1) T1 and T2 generate a random challenge vectorsc ←R

Zm
q using the a common random seedr they agreed

upon with some protocol (e.g. [3]).
2) T1 computesx = c ·(u1−u2) mod φ andT2 computes

y = c · (v1 − v2) mod φ.
3) T1 commits to x with X = C(x, δ1), δ1 ←R Zq.

Similarly T2 commits toy: Y = C(y, δ2), δ2 ←R Zq.
The two exchangeX,Y and compute the following 3
numbers:

Z1 = XY mod p

Z2 = XY gφ mod p

Z2 = XY g−φ mod p

4) For i = 1, 2, 3, the two talliers run steps 3 to 6 of the
single element equality test protocol, with∆ replaced
by Zi. If any of the three runs outputs positive result
(meaning the two numbers being tested are equal),
outputd1 = d2. Otherwise outputd1 6= d2.

Theorem 2:Let O be the output of protocol EQUALITY-
TEST-V. Let O = 1 if the protocol concludes thatd1 = d2

and 0 otherwise. Ifd1 6= d2, the probability that the protocol
(incorrectly) outputs 1 is at most

Pr(O = 1) ≤ 1
φ

Proof: Let δ = d1 − d2. Note thatc · δ = c · ((u1 +
v1) − (u2 + v2)) mod φ = x + y mod φ. Consider them-
dimensional vector spaceW over Zφ. W hasφm elements.
For anyδ ∈ Zm

φ , there are at mostφm−1 vectors in this space
that are orthogonal to it, i.e. those on a hyperplaneV which
is a codimension-1 vector subspace ofW and has sizeφm−1.
Sinceδ is not known to either tallier and thec is randomly
drawn, we have

Pr(c · δ = 0) ≤ 1
φ

Now we show that the protocol actually tests onc · δ. Note
that Z1 = XY mod p encodesx + y. And c · δ = x + y
mod φ = x + y + b whereb is one of 0 or±φ. Clearlyx + y
mod φ = 0 is equivalent to one ofx+y, x+y+φ andx+y−φ
is 0, which is what the protocol tests.

In terms of privacy, note that the talliers compute the
projection of the user vectors on a random direction and then
test equality on the projections. Due to the zero-knowledge
property of the EQUALITY-TEST protocol, this protocol does
not leak information either.

In practice,φ is typically 232 or 264, so that the number
fits into a machine word. This gives a failure probability of
2.4× 10−10 or 5.4× 10−20. This should be enough for most
applications.

The protocols described in Section VI-A and VI-B represent
two ends of a spectrum, i.e., partitioning the universe by the
equivalence relationEA defined by a single element and the
whole vector, respectively. If we want to test only certain
elements of the user vectors, we can use the second protocol
but with challenge vectors having 0’s at certain places to mask
out irrelevant elements.

VII. C ONCLUSION AND FUTURE WORK

In this paper we demonstrated possible applications of a
private computation framework in GrC. We presented efficient
protocols that can be used to granulate user data while
preserving user’s privacy. These protocols can also support
meaningful applications by themselves. For example, consider
a location-based service (LBS) application. A user may wish
to find all her friends nearby. The user vector in this case will
be locations. The user sets the element corresponding to her
current location to 1 and the rest 0’s. She then uploads the
vector to the system. The system can use the vector equality
test protocol presented in this paper to match, among her
friends, those who have equal location vectors.

The P4P framework and the protocols described in
this paper are being actively developed. Please visit
http://www.cs.berkeley.edu/∼duan/research/p4p.html for fur-
ther information. We have measured the performance of the
key components of the framework on a 2.8GHz Xeon and
the numbers were reported in [3]. The results showed that
the protocols are indeed practical for large systems (e.g. with
m = 106).

In the near future, we plan to build some “middle tier”
components to support more concrete applications. We will
include not only vector addition primitives, but some common

statistical aggregates such as ANOVA, SVD, correlation, and
sparse factor analysis. We believe it will be a valuable tool for
developers in areas such as GrC, data mining and others, to
build privacy preserving real-world applications.

REFERENCES

[1] Z. Pawlak,Rough Sets: Theoretical Aspects of Reasoning about Data.
Norwell, MA, USA: Kluwer Academic Publishers, 1992.

[2] Y. Y. Yao and N. Zhong, “Granular computing using information tables,”
pp. 102–124, 2002.

[3] J. F. Canny and Y. Duan, “Practical private computation of
vector addition-based functions or: Can privacy be for free?”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2006-12, February 8 2006. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-12.html

[4] L. A. Zadeh, “Fuzzy sets and information granularity,” pp. 3–18, 1979.
[5] T. Y. Lin, “Granular computing, announcement of the bisc special

interest group on granular computing,” 1997.
[6] Z. Pawlak, “Reasoning about data - a rough set perspective,” inRSCTC

’98: Proceedings of the First International Conference on Rough Sets
and Current Trends in Computing. London, UK: Springer-Verlag, 1998,
pp. 25–34.

[7] T. Y. Lin, “Granular computing on binary relations,” inTSCTC ’02:
Proceedings of the Third International Conference on Rough Sets and
Current Trends in Computing. London, UK: Springer-Verlag, 2002, pp.
296–299.

[8] A. Skowron, “Toward intelligent systems: Calculi of information gran-
ules,” inProceedings of the Joint JSAI 2001 Workshop on New Frontiers
in Artificial Intelligence. London, UK: Springer-Verlag, 2001, pp. 251–
260.

[9] Y. Y. Yao, “A partition model of granular computing,”LNCS Transac-
tions on Rough Sets, vol. 1, pp. 232–253, 2004.

[10] Y. Y. Yao and C.-J. Liau, “A generalized decision logic language
for granular computing,” inFUZZ-IEEE’02: The 2002 IEEE World
Congress on Computational Intelligence, 2002, pp. 1092–1097.

[11] A. C.-C. Yao, “Protocols for secure computations,” inFOCS ’82. IEEE,
1982, pp. 160–164.

[12] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game — a completeness theorem for protocols with honest majority,” in
Proceedings of the 19th ACM Symposium on the Theory of Computing
(STOC), 1987, pp. 218–229.

[13] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” inPro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing,
STOC’88. ACM, May 2–4 1988, pp. 1–10.

[14] O. Goldreich, “Secure multi-party computation,” Working Draft, 2000.
[Online]. Available: citeseer.nj.nec.com/goldreich98secure.html

[15] D. Beaver and S. Goldwasser, “Multiparty computation with faulty
majority,” in Proceedings of Advances in Cryptology – CRYPTO ’89,
ser. Lecture Notes in Computer Science, vol. 435. Springer-Verlag,
1989, p. 589.

[16] S. Goldwasser and L. Levin, “Fair computation of general functions in
presence of immoral majority,” inAdvances in Cryptology – CRYPTO
’90, ser. Lecture Notes in Computer Science, vol. 537. Springer-Verlag,
1991, pp. 77–93.

[17] J. Canny, “Collaborative filtering with privacy,” inIEEE Symposium on
Security and Privacy, Oakland, CA, May 2002, pp. 45–57. [Online].
Available: http://citeseer.nj.nec.com/canny02collaborative.html

[18] T. Pedersen, “Non-interactive and information-theoretic secure verifiable
secret sharing,” inAdvances in Cryptology – CRYPTO ’91, ser. Lecture
Notes in Computer Science, vol. 576. Springer-Verlag, 1991, pp. 129–
140.

[19] R. Cramer and I. Damg̊ard, “Zero-knowledge proof for finite field
arithmetic, or: Can zero-knowledge be for free?” inCRYPTO ’98, ser.
Lecture Notes in Computer Science, vol. 1642. Springer-Verlag, 1998.

[20] J. Markus and J. Ari, “Millimix: Mixing in small batches,” Tech. Rep.,
1999.

[21] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified vss and fast-track
multiparty computations with applications to threshold cryptography,” in
PODC ’98: Proceedings of the seventeenth annual ACM symposium on
Principles of distributed computing. ACM Press, 1998, pp. 101–111.

