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Abstract

In this paper we explore private computation built
on vector addition and its applications in privacy-
preserving data mining. Vector addition is a surpris-
ingly general tool for implementing many algorithms
prevalent in distributed data mining. Examples include
linear algorithms like voting and summation, as well
as non-linear algorithms such as SVD, PCA, k-means,
ID3, machine learning algorithms based on Expectation
Maximization (EM), etc., and all algorithms in the sta-
tistical query model [27]. The non-linear algorithms ag-
gregate data only in certain steps, such as conjugate
gradient, which are linear in the data. We introduce a
new and highly efficient VSS (Verifiable Secret-Sharing)
protocol in a special but widely-applicable model that
allows secret-shared arithmetic operations in such ag-
gregation steps to be done over small fields (e.g. 32 or
64 bits). There are two major advantages: (1) in this
framework private arithmetic operations have the same
cost as normal arithmetic and (2) the scheme admits
extremely efficient zero-knowledge (ZK) protocols for
verifying properties of user data. As a concrete exam-
ple, we present a very efficient zero-knowledge method
based on random projection for verification that uses a
linear number of inexpensive small field operations, and
only a logarithmic number of large-field (1024 bits or
more) cryptographic operations. Our implementation
shows that the approach can achieve orders of magni-
tude reduction in running time over standard techniques
(from hours to seconds) for large scale problems. The
ZK tools provide efficient mechanisms for dealing with
actively cheating users, a realistic threat in distributed
data mining which has been lacking practical solutions.

1 Introduction

Many kinds of analysis depend on mining data from
a group of users. Examples include linear algorithms
like voting and summation, as well as non-linear ones
such as regression, SVD, k-means, ID3, and many ma-
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chine learning algorithms based on the EM (Expecta-
tion Maximization). These analysis methods can be
found in a wide range of applications from E-commerce
to medical research. We consider a fully distributed
setting where each user holds her own data and partic-
ipates in mining tasks managed by a few data miners.
One example scenario could be e.g. two research insti-
tutes analyzing user survey data. In all these cases, it is
very important to protect user privacy to the maximum
extent possible. Indeed in some situations laws even
prohibit service (e.g. health care) providers from dis-
closing customers information, even to other providers.
At the same time, it is important to perform the same
computation with no loss of accuracy (which can mean
lost revenue for the provider, or misleading results for
research institutes). Providers do not benefit directly
from privacy technology, so the costs to them must be
as small as possible, and ideally zero. These are the
constraints that have guided the work reported here.

Privacy-preserving data mining has been an active
area of research since it was introduced by Agrawal and
Srikant [1] and Lindell and Pinkas [28]. Existing solu-
tions use either randomization (e.g. [16, 12]) or crypto-
graphic techniques (e.g. [28, 11, 34, 36, 35]) to protect
privacy. Besides sacrificing accuracy, randomization has
been shown to provide very little privacy protection in
many cases unless sufficient amount of noise is intro-
duced [26, 2, 10]. Works in the second category typically
make use of private computation protocols and enjoy
provable privacy provided by the cryptographic primi-
tives. However, there has been two major inadequacies
with almost all existing cryptography-based solutions:
(1) the schemes are not practical for large scale sys-
tems due to their heavy use of expensive cryptographic
operations, and (2) there is generally no efficient mecha-
nism to handle actively cheating users. All the works in
[28, 11, 34, 36, 35] deal with only passive adversary who
never deviates from specified behavior. The assumption
is clearly not realistic when the data comes from indi-
vidual users, some of whom may incentivized to bias
the computation or have their machines corrupted by
hackers. Securing the system against such threat is a
necessary step in making privacy-preserving data min-



ing into real-world applications.
Regarding the first issue, we note that cryptogra-

phy provides primitives with various level of efficiency
[7, 18, 8, 3]. While both addition and multiplication are
possible in most of these schemes, the practical overhead
for multiplication is much higher. Thus one way to build
a practical private computation scheme is to avoid the
multiplication and focus on algorithms that can be im-
plemented using addition-only steps. Surprisingly, a lot
can be done with such an approach. The standard al-
gorithms for many of the above-mentioned analysis use
gradient steps which sum vector data from the users.
These steps are linear in per user data and can be imple-
mented using an addition-only approach. Implementing
the algorithms using summation forms has been used by
other works as a general approach to parallelize the al-
gorithms and run them in a distributed fashion. For
example, [6] and [9] showed that many popular algo-
rithms has a summation implementation that can be
computed with Google’s MapReduce framework, which
is a distributed programming construct over clusters
that is being successfully deployed in production. The
examples included an EM algorithm for pLSI [24], Lo-
cally Weighted Linear Regression (LWLR), Naive Bayes
(NB), PCA, etc. In fact all the algorithms in the sta-
tistical query model [27] can be expressed in this form.
They demonstrated the versatility of vector-addition in
implementing statistical learning algorithms. This phe-
nomena has also been observed by researchers in pri-
vacy technology field and used as a way to implement
the algorithms with privacy. These works include pri-
vate SVD [3], EM-based collaborative filtering [4], and
link analysis such as the HITS algorithm [14].

Existing private addition-only solutions are still not
always practical due to their heavy use of public-key
operations for information hiding and/or verification.
While these examples have the same asymptotic com-
plexity as the standard algorithms for those problems,
the constant factors imposed by public-key operations
are prohibitive for large scale systems. On a typical
computer today there is a six order of magnitude differ-
ence between the crypto exponentiations (in large field)
needed for secure homomorphic computation (order of
milliseconds) and regular arithmetic operations in small
(32- or 64-bit) fields (fraction of a nano-second). Both
homomorphic arithmetic [8, 3] and VSS (Verifiable Se-
cret Sharing) [5] rely on public-key operations for veri-
fication. Even fast-track VSS [18] does not reduce the
asymptotic number of crypto operations.

1.1 Our Results We present a novel private vec-
tor addition protocol in a special but widely-applicable
model (to be elaborated later) based on secret sharing

over small field, which avoids the manipulation of large
integers so that private computation on each server has
the same cost as regular non-private computation. To
address the issue of cheating users, we present a very
efficient probabilistic zero-knowledge protocol that veri-
fies that the L2-norm of user vector is bounded by a con-
stant. This is to prevent a malicious user from exerting
too much influence on the computation. The protocol
uses a linear number of small-field operations, and a log-
arithmic number of large field crypto operations (in the
size of the user data). This improves significantly over
standard techniques that require at least linear num-
ber of such expensive steps. In our scheme, the cost
will be dominated by the linear number of small-field
operations that one has to pay even when the compu-
tation is done directly on user data without privacy. In
a sense, privacy is almost “free” even counting constant
factors. Experimental results with real implementation
show that it is extremely fast for typical data (order of
seconds for a million-element vector).

Our basic approach, VSS-based private com-
putation over small field and random projection-
based method for verifying (in zero-knowledge) high-
dimensional data, also opens doors to many other prac-
tical ZK tools. These include a zero-knowledge vector
equality test [13] and potentially many others. These
protocols also use only a small (constant or logarithm
in the size of input) number of large field operations so
that they preserve the efficiency we obtained by using
small field VSS. Such tools provide practical means to
deal with realistic adversary models which accommo-
date active cheating from the users.

2 Preliminaries

We consider the scenario where a small number κ > 1
of servers belonging to different service providers or
institutes collaboratively mining data collected from n
users. We define a server as all the computation units
under the control of a single entity. It can be a cluster
of thousands of machines so that it has the capability
to support a large number of users. From information-
sharing perspective, it suffices to view all the machines
under a single control as a single entity which is referred
to as a server in this paper.

This is different from the models many privacy-
preserving data mining schemes consider (e.g. [28, 11,
34, 36, 35])). In their models, each server holds either
a subset of attributes of all users, or all attributes of a
subset of users. The former is called vertical partition
[33, 34] and the latter horizontal partition [25, 28]. Our
model generalizes the horizontal partition model. In our
model, no user data ever leaves its owner unprotected
and no server can obtain any information about user



data other than what can be inferred from the final
results as long as at least one server is uncorrupted.
Arguably, this offers much better privacy protection
since it conforms to the “user-owned and operated”
privacy principle that is both natural and effective in
many situations [3].

Threat Model Let α ∈ [0, 1) be the upper bound on
the fraction of the dishonest users in the system. 1 We
consider a computationally bounded adversary whose
capability of corrupting parties is modelled as follows:

1. An adversary may actively corrupt at most bαnc
users, taking full control of their machines and
causing them to deviate arbitrarily from the spec-
ified protocol.

2. In addition to 1, we also allow the same adversary
to passively corrupt κ− 1 server(s). When a party
is passively corrupted, all her data is exposed to
the adversary but the party continues to follow the
protocol.

This threat model is similar to that of [17] in that some
of the participants are actively corrupted while some
others are passively corrupted by the same adversary at
the same time. This is an extension to the general adver-
sary structure introduced by Hirt and Maurer [22, 23].
Our model does not satisfy the feasibility requirements
of [22, 23] and [17]. We avoid the impossibility by con-
sidering addition only computation.

The model models realistic threats in our target
applications. In general, users are not trustworthy.
Some may be incentivized to bias the computation (e.g.
to drive down/up the price of an item), some may have
their machines corrupted by hackers. So we model them
as active adversaries and our protocol ensures that the
active cheating from a small number of users will not
exert large influence on the computation. This greatly
improved over existing privacy-preserving data mining
solutions (e.g. [28, 36, 35, 34]) which handle only purely
passive adversary. The corrupted servers, on the other
hand, are modeled as passive adversaries that can share
data among themselves and with corrupted users. This
is appropriate for many data mining applications where
the servers are cooperative but belong to separate,
non-colluding entities. One example is the case where
two hospitals mine data collected from patients. In
this context service providers benefit from accurate
computation so they do not have the incentive to disrupt

1Most mining algorithms need to bound the amount noise in
the data to produce meaningful results. This means that the

fraction of cheating users must be below a reasonable threshold

(e.g. α < 20%). Under this condition our scheme should give the
honest players fairly good privacy protection.

or bias it. Their threat is therefore mainly to users
privacy thus passive.

2.1 The Computation Let φ be a small integer
(e.g. 32- or 64-bit). Since we need signed values, we
consider the specific coset representatives of the integers
mod φ in the range −bφ/2c, . . . , bφ/2c if φ odd, or
−bφ/2c, . . . , bφ/2c − 1 if φ even. We write Zφ for this
additive group. 2

Let ai be private user data for user i and A be
public information. Both can be matrices of arbitrary
dimensions with elements from arbitrary domains. Our
scheme supports any iterative algorithms whose (t+1)-
th update can be expressed as

A(t+1) = F (
n∑

i=1

d
(t)
i , A(t))

where d
(t)
i = G(ai, A

(t)) ∈ Zm
φ is an m-dimensional data

vector for user i computed locally, and A(t+1) is the
(t + 1)-th update to A. Typical values for both m and
n can range from thousands to millions. Both functions
F and G are in general non-linear.

As mentioned before, this is a powerful model
that includes a large number of popular data mining
and machine learning algorithms. Additional examples
include SVD, k-means, ID3, etc., most gradient-based
and EM algorithms, and all the algorithms in the
statistical query model [27]. Also see [3, 4, 14] for more
examples.

If d
(t)
i are computed locally by each user, our

protocol allows calculation of the sum, and thence the
next update A(t+1) without disclosing any information
about d

(t)
i or ai. In the following we only describe the

protocol for one such iteration since the entire algorithm
is simply a sequential invocations of the same protocol.
The superscript is thus dropped from the notation.

2.2 Leakage by the Sums Our private summation
protocol guarantees that no more information beyond
the sums is revealed. One thus must be careful about
the potential leakage caused by the sums. For this
we draw on the work in statistical database privacy
[2, 10, 15]. Roughly speaking, these works showed that
releasing the sums with sufficient amount of additive
random noise could guarantee strong privacy provided
that Tm is bounded where T is the total number of iter-
ations. In our settings, we are able to prove that, when

2Since our computation involves addition only, there is no

requirement that this group be a field. So φ need not be prime,

and indeed it simplifies computation to take φ = 232 or 264 i.e.
word-length or long integers.



n is large, external noise is not necessary for maintain-
ing privacy. Instead, the randomness associated with an
adversary’s inherent uncertainty about unknown data
is enough to provide the same level of protection as
achieved with additive noise [2, 10, 15] but with much
higher precision. We will give this topic a rigorous treat-
ment in another paper. However, the soundness of the
approach introduced in this paper does not have to de-
pend on the new results which are yet to be established:
it will be clear that it is trivial to introduce additive
noise in our framework so the privacy can be guaran-
teed by well-established work in [2, 10, 15]. And in
the event that noise is deemed necessary, the ZK tool
that we introduce in this paper becomes even more cru-
cial: the system needs to bound the magnitude of user-
introduced noise.

As an additional indication that the sums are
benign to privacy, notice that for some algorithms such
as SVD, etc. [31, 3], the sums can be approximated from
the final result so they do not leak more information at
all.

2.3 Security Properties Since all user vectors are
hidden, it is necessary to impose checkable bounds on
the user data. Otherwise a single malicious user could
corrupt the computation with values as large as bφ/2c
and not be discovered. For this purpose, we use a
bound on the L2-norm of each user vector. This is
both computationally natural for many applications,
and also supports a very efficient, randomized check.
The maximum L2-norm for a user vector is defined to
be L, which implies that every component of the user
vector must be in the range [−L,L].

Note that L must be substantially less than φ. First
of all, since n user vectors are added to reach a final
total mod φ, each component value should be less than
1/n times φ/2. Secondly, L should be much smaller
than φ to ensure low probability of modular arithmetic
anomalies (this is made precise in theorem 3.1).

Our protocol achieves the following which are sim-
ilar to those introduced in [3]:

1. Privacy: For any honest user i who follows the
protocol and inputs valid data, no participants,
except herself, should gain any information about
di, except what is implied by the final aggregate
and the validity property below.

2. Validity: A user vector di that is included in the
computation must satisfy that, with high probabil-
ity, |di|2 < L where |di|2 denotes the L2-norm of
the vector di.

3. Correctness: The computation should produce
the correct sum of all valid users data.

We adopt the privacy definition of [19] (Chapter 7)
and prove the privacy of our protocol in a simulation
paradigm that is common in numerous cryptography
works and can be traced back to the notion of zero-
knowledge [21]. Informally, a protocol is private if, for
any adversary that corrupts a subset of the participants
as allowed by the protocol, there exists a feasible
simulator that, given the corrupted parties data and
the final result, can generate a view that, to the
adversary, is indistinguishable from the transcript of
a real execution of the protocol. This guarantees
that whatever information the adversary can obtain
after attacking the protocol can be actually generated
by himself (by running the simulator) thus no more
information about honest parties data is leaked. For
formal definition please see [19] (Chapter 7).

The privacy our protocol achieves is information-
theoretic, i.e. it holds against an adversary with
unbounded computation power, as is provided by the
secret sharing and Pedersen commitment scheme we use
[30, 7]. However, the success of the validity check relies
on some standard assumptions (e.g. DDH or discrete
log) so is only computational.

For validity, we provide an extremely efficient zero-
knowledge protocol that, instead of verifying |di|2 di-
rectly, checks the square sum of the vector’s projections
on some random directions. We show in theorem 3.1
that this check is effective in bounding |di|2. The pro-
tocol is probabilistic and has a small failure probability.
In a particular failure mode (i.e. false rejection), the
protocol leaks one bit of information about user data,
i.e. at least one of the projections is large (but it does
not allow one to infer which direction(s)). This is made
precise in theorem 3.2.

2.4 Bounding the L2-Norm Bounding the L2-
norm of a user’s vector is a natural and effective way
to restrict the amount malicious influence on the com-
putation a cheating user could cause. This can be shown
from several perspectives. Firstly, notice that the result
of the computation depends on the sums of n vectors.
To drive the sums away from correct positions by a large
amount, a malicious user must input a vector with suf-
ficient “length”, which is naturally measured by its L2-
norm. This is especially evident for algorithms whose
results are simply the vector sums (e.g. k-means). In
this case even the precision of the final result is often
measured by the L2-norm of the error vector (see e.g.
[2]), which, by triangle inequality, is bounded by the
sum of the L2-norms of all noise vectors.

Secondly, many perturbation theories measure the
perturbation to the system in terms of various forms
of (matrix and vector) norms, many of which can be



easily transformed into vector L2-morns. For example,
let ·̃ denote the perturbed quantity and σi the i-th
singular value of a matrix A, the classical Weyl and
Mirsky theorems [32] bound the perturbation to A’s
singular values in terms of the spectral norm ‖ · ‖2 and
the Frobenius norm ‖ · ‖F of E := A− Ã, respectively:

max
i
|σ̃i − σi| ≤ ‖E‖2 and

√∑

i

(σ̃i − σi)2 ≤ ‖E‖F

The spectral norm can be bounded from above by
Frobenius norm: ‖E‖2 ≤ ‖E‖F . And if each row,
denoted ai, of the matrix A is held by a user, the
Frobenius norm of the matrix E can be expressed in
terms of vector L2-norms:

‖E‖F =

√√√√
n∑

i=1

|ãi − ai|22

Clearly bounding the vector L2-norm provides an ef-
fective way to bound the perturbation of the results.
Similar techniques was also used in e.g. [14].

And finally, bounding the L2-norm can also be the
basis of other, more specific checks. For instance, in a
voting application, the protocol can be used with L = 1
to ensure that each user only exercises one vote.

3 Practical VSS-Based Vector Addition

For simplicity, we only describe the protocol for the
case of κ = 2. It is straightforward to extend it
to support κ > 2 servers (by substituting the (2, 2)-
threshold secret sharing scheme with a (κ, κ) one).
Using more servers strengthens the privacy protection
but also incurs additional cost. We do not expect the
scheme will be used with a large number of servers.

3.1 Basic Computation Let Q be the initial set of
qualified users. Let T1 and T2 denote the two servers.
The basic computation is carried out as follows:

1. User i ∈ Q generates a uniformly random vector
ui ∈ Zm

φ and computes vi = di − ui mod φ. She
sends ui to T1 and vi to T2.

2. User i gives a ZK proof to both servers that
her input is valid using the protocol that will be
described in Section 3.2. If she fails to do so, both
servers exclude her from Q.

3. If enough (e.g. more than 80% of all users in the
group) inputs are collected and pass the validation
test, T1 computes µ =

∑
i∈Q ui mod φ and T2

computes ν =
∑

i∈Q vi mod φ. T2 sends ν to T1.

4. T1 publishes F (µ + ν mod φ,A) and updates A.

It is straightforward to verify that if both servers
follow the protocol, then the final result µ + ν mod φ
is indeed the sum of the user data vectors mod φ.
This result will be correct if every user’s vector lies
in the specified bounds for L2-norm, which implies
that the sum over the integers is the same as the
sum mod φ. Appropriate constraints on L will be
given in the statement of theorem 3.1. Privacy of the
computation protocol is summarized, together with that
of the verification protocol introduced in section 3.2, in
theorem 3.2.

3.2 User Data Verification Protocol

3.2.1 Overview A straightforward way of checking
the L2-norm of user vector is given in [3] which works
with each element and requires O(m) public-key oper-
ations and ZKPs. We present a novel protocol that
uses only constant or O(log m) such expensive opera-
tions thus is orders of magnitude more efficient. The key
technique is that, instead of checking each elements, we
check the projections of the user vector on some random
directions. We show that some statistical properties of
these projections are related to the L2-norm of the orig-
inal vector. Therefore by verifying the square sum of a
small number of such projections (in zero-knowledge),
we can check if the L2-norm of a vector with a large
number of elements is within a desired bound. The
overhead to compute the projections is O(m) but these
steps only consist of arithmetic operations in the small
field. As we will show in our experiments, the cost of
such operations is very small compared to the crypto
operations (It is not noticeable when m ≤ 105, and is
fraction of a second when m reaches 106).

3.2.2 Tools The verification protocol requires some
standard primitives for homomorphic computation.
These have appeared elsewhere, see e.g. [7, 3], and we
summarize only their key properties here. All values
used in these primitives lie in the multiplicative group
Z∗q , or in the additive group of exponents for this group,
where q is a 1024 or 2048-bit prime. They rely on El-
Gamal, RSA or discrete log functions for cryptographic
protection of information.

Homomorphic commitment Given an integer value
a, a homomorphic commitment to a with random-
ness r is written as C(a, r). It is homomorphic in
the sense that C(a, r)C(b, s) = C(a + b, r + s). It is
cryptographically hard to determine a given C(a, r).
We say that a prover “opens” the commitment if it
reveals a and r.

ZKP of knowledge A prover who knows a and r



(i.e. who knows how to open A = C(a, r)) can
demonstrate that it has this knowledge to a verifier
who knows only the commitment A. The proof
reveals nothing about a or r.

ZKP for equivalence Let A = C(a, r) and B =
C(a, s) be two commitments to the same value a.
A prover who knows how to open A and B can
demonstrate to a verifier in zero knowledge that
they commit to the same value.

ZKP for product Let A, B and C be commitments
to a, b, c respectively, where c = ab. A prover
who knows how to open A, B, C can prove in
zero knowledge to a verifier who has only the
commitments that the relationship c = ab holds
among the values they commit to.

Bit commitment Let A = C(a, r) be a commitment
to a value a where a ∈ {0, 1}, which is called a
bit commitment. A prover who knows how to open
A can prove in zero knowledge that it commits to
either 0 or 1 (but not which).

ZKP for boundedness Let A = C(a, r) be a com-
mitment to a value a. Using the above meth-
ods, a prover can show that A contains a k-bit
integer, i.e. that it encodes the same value as
Bk−1 · · · B0, where each Bj encodes 0 or 2j . If the
leading “bit” Bk−1 instead encodes 0 or L−2k−1+1
where k = blog2 Lc, then the ZKP proves that
a ∈ [0, . . . , L] for any k-bit positive L. Adding an
additional bit which encodes 0 or −L gives a proof
of boundedness in the range [−L, . . . , L].

3.2.3 Protocol UDVP (User Data Verification
Protocol) Let N be a positive integer which deter-
mines the number of challenges, and sets the statistical
precision of the verification. The protocol is carried out
between each user and the two servers. The execution
will be identical for each user so we drop the user index
in the notation.

1. Setup: After all users send their data to all
servers, T1 broadcasts a random number r to T2

and all users. Using a public PRG (pseudo-random
generator) and r as the random seed, all players
generate N independent m-dimensional challenge
vector ck ∈ {−1, 0, 1}m with each of its elements
generated with IID probabilities { 1

4 , 1
2 , 1

4}, for k =
1, . . . , N .

2. Projection & Commitment: For k = 1, . . . , N ,
the user computes xk = ck · u mod φ, yk = ck · v
mod φ, and sk = ck · (u + v) mod φ. Let sk =
xk + yk + bk over the integers, then bk is either
zero or ±φ. The user computes commitments Xk

to xk, Yk to yk, Sk to sk, Bk to bk and finally
a commitment Zk to the squared sum zk = s2

k

(computed over the large field Zq). The user sends
all 5N commitments to T1 and T2.

3. Consistency Check: T1 and T2 exchange these
values to confirm they received identical data from
the user. If they do not match, the user’s data is
rejected.

4. Commitments Verification: The user opens Xk

for T1, and Yk for T2, for k = 1, . . . , N . Both
servers confirm that the openings match their data,
i.e. T1 confirms that Xk is a commitment to xk

and T2 confirms that Yk is a commitment to yk.
The servers communicate the results to each other.
If either opening fails or if the user failed to send
a complete response to the challenge vector, this
user’s input is rejected.

5. Equivalence ZKPs: For each k, the user proves
in zero knowledge to both servers that Sk encodes
the same value as XkYkBk. The user then proves in
zero knowledge that Bk encodes 0 or ±φ. Finally
the user gives a product ZKP to the servers that Zk

encodes the square of the value that Sk encodes. If
any of these proofs fail, the user’s input is rejected.

6. Boundedness ZKP: The servers computes the
product Z =

∏N
k=1Zk. The user then pro-

vides a ZKP that Z encodes a value in the range
[0, NL2/2]. If this proof succeeds, the user’s input
is accepted and added to the total.

All the ZKPs used should be implemented non-
interactively using the Fiat-Shamir heuristic so that the
users can upload the data to the servers in a batch with-
out further interaction.

Field/Group Sizes
The protocol assumes that the size of the cryptographic
field Zq used for commitments and ZKPs is much larger
than the “small” group Zφ used for additive secret-
sharing. A transition happens when zk is computed
from sk. The value of sk lies in the small group, while
zk = s2

k is computed in the large field. The sum
z =

∑n
i=1 zk should be less than q to avoid modular

reduction of z in the large field. This will almost surely
be true. Since φ is typically 64 bits or less, zk will have
at most 128 bits, while z will be at most 128 + log2 n
which is much less than 1024.

Theorem 3.1. Let |d|2 denote the L2-norm of user
vector d, and L be the specified bound on this norm.
Define δ = L2/|d|22. Then if |d|2 < L, and further δ > 2,
the probability that a user vector is (incorrectly) rejected
is at most:



Pr[z > NL2/2] ≤ (
δ
2 exp(1− δ

2 )
)N

If instead |d|2 > L, the probability that a user vector is
(incorrectly) accepted is at most:

Pr[z < NL2/2] ≤((
7
8 − 5

24δ + 75
288δ2

)
exp

(
1
2δ − 5

12δ2
))N

Furthermore, these bounds are valid using modular
arithmetic as per the above protocol if L satisfies:

L ≤ φ/max(56.5
√

m, 2n)

where n is the number of users and m is the vector
dimension.

The first (false rejection) bound is quite steep. A drop-
off of 2−N is achieved for δ ≈ 5.3566. If δ = 4 (user
vector norm is one half of L), then the roll-off is 0.736N .
The second (false acceptance) bound is considerably
shallower. In the limit as δ → 0, the bound is 7

8

N .
For δ = 0.25 (user vector norm is twice L), the bound
is 0.9265N , while for δ = 0.5, it is 0.9672N .

Theorem 3.2. The computation is private. Further-
more, for the purpose of verifying z < NL2/2, UDVP
is zero-knowledge. When used to bound |d|2, only in the
event of false rejection does it reveal information about
valid user data other than its validity. And this leakage
is exactly the fact that z > NL2/2.

The proof of theorem 3.2 consists of standard simulation
of a secret sharing scheme and straightforward invoca-
tion of sequential composition ZKPs theorem [20], and is
omitted. The proof of theorem 3.1 is given in appendix.

Note that what the protocol actually verifies is
whether z < NL2/2. For this purpose it is zero-
knowledge in that the verifier learns nothing except
the fact when it is true. However, this assertion is
not completely equivalent to |d|2 < L and theorem 3.1
quantifies its effectiveness in bounding |d|2. There is a
small probability of false rejection where |d|2 < L but
z > NL2/2. In this case the verifier learns that at least
one of the projections is large. This does not violate
the zero-knowledge property of the ZKP with regard
to z < NL2/2 because in that context this is treated
as a failed proof and there is no need to protect this
information. In contrast, this is considered a leakage
in our system since the user data is actually valid
(thus should be protected). We believe such leakage
is acceptable in most applications because (1) the false
rejection probability can be reduced exponentially by
using large N and (2) the leakage is very small: the
verifier only learns no more than the fact that at least
one of the projections is large. In particular it does not
learn which projection is large.

COMPLEXITY The protocol computes O(N) com-
mitments and square ZKPs. In addition, the bounded-
ness ZKP at the last step involves O(log(NL)) steps. As
theorem 3.1 shows, the failure probability is exponen-
tially decreasing with N . In practice a small constant
N (e.g. 50) can provide fairly good guarantee. So the
total cost caused by the expensive large integer opera-
tions is O(log(L)). In most cases L is either constant or
polynomial in m (recall that L is the bound on the L-2
norm of an m-dimensional vector). Therefore the num-
ber of large integer operations is bounded by O(log m).
This is far superior to using standard techniques which
requires O(m) such operations.

4 Simulations of Typical Behavior

The bounds we derived earlier show that any user vector
whose L2-norm is substantially below L will almost
surely be accepted, while any vector that is substantially
above will surely be rejected. In terms of actual
behavior however, the tail bounds we derived may not
be very tight. Here we present some simulations for
typical user data to show what behavior would be
expected. Simulation could also potentially be useful
to honest or dishonest users: in either case, a user
with an actual input vector di can determine through
simulation the probability of that value being accepted
by the server. We choose 3 specific cases:

1. Random uniform values: every component d[j] of
the user vector is drawn from the same uniform
distribution.

2. Zipf distribution: component d[j] has value propor-
tional to 1/j.

3. Single element: only one value in in the user vector
is non-zero.

In all cases, user vectors are normalized so their L2-
norm is fixed at some value Vd. We will vary this
value relative to the threshold L and determine the
probability of acceptance.

The first two cases are representative of likely user
data, e.g. case 1 could represent ratings for movies
while case 2 could represent word counts in email or text
messages. The third case is representative of a user who
wants to bias the total by using a maximum value for
one item. A second reason for these choices is that cases
1 and 3 represent probable extremes of distributions
of user vectors. All sums sk are sums of 3-valued
sk[j]. The more terms in this sum and the more similar
those terms, the closer will be the final distribution
to a gaussian. The sk produced by case 1 are almost
perfectly gaussian. The sk for Zipf distributed data
are mixtures of terms with very different weights, and
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Figure 1: (a) Linear and (b) log plots of probability of user input acceptance as a function of Vd/L for N = 50.
(b) also includes probability of rejection. In each case, the steepest (jagged curve) is the single-value vector (case
3), the middle curve is Zipf vector (case 2) and the shallow curve is uniform vector (case 1)

are “less” gaussian. Finally, the sk for single-element
vectors retain a 3-valued distribution and are very far
from gaussian. Any distribution the user can produce
will be a sum of such sk[j], and will probably lie between
the extremes of cases 1 and 3.

The simulations used N = 50, m = 100, and were
repeated 106 times. Figure (1) shows probabilities of
acceptance or rejection for the 3 cases as a function
of the ratio Vd/L. Increasing N by a factor α should
cause the log plots to scale by α in their y-values.
When N = 50, the upper tail bound from theorem 1
has an asymptotic slope of 25 in log(Pr) vs. log(δ)
plots. The lower tail bound slope is significantly
shallower because of “saturation” of the probability to
7
8

Nas δ → 0. The x-axes in figure 1 involve |d|/L

which is 1/
√

δ. The expected slopes from the tail
bounds would be 12.5 for the rejection probability curve,
and less for the acceptance curve. The actual slope
observed for rejection is about 50, while it is around
35 for acceptance. So the typical threshold behavior
for the probabilistic L2-bound is much sharper than the
asymptotic bounds from theorem 3.1.

5 Implementation and Evaluation

We have implemented the protocols in Java using a Na-
tiveBigInteger implementation from the I2P anonymous
network (http://www.i2p.net/). We measured the per-
formance on a 2.8GHz Xeon. All tests were carried out
using El-Gamal commitments and ZKPs [7] in a large
field Zq for a 1024-bit prime q. N was 50, and L was
either a 40-, 20- or 10-bit number. The basic bit com-
mitment ZKP takes 33.7 ms for the verifier and 57.3
ms for the prover. The square ZKP takes 35.7 ms veri-

fier time and 24.3 ms prover time. Figure 2 plots prover
(user) and verifier times for the L2-norm validation pro-
tocol as a function of the vector size m. Both were
dominated by cryptographic operations in these exper-
iments, even at m = 106. Other steps, such as random
vector generation, or computation of all the products
ck · d by the prover, took a fraction of a second. At
m = 106, verifying one user’s vector takes only a few
seconds. In contrast, using standard techniques which
requires O(m) square ZKPs, as is done in [3], both the
verifier and prover time is in hours (about 10 hours for
the verifier and 6.7 hours for the prover). Our protocol
is orders of magnitudes more efficient. The server can
easily process over 15000 users each day with a single
PC. Since the protocol for each user is independent of
each other, the server can support larger user group with
a cluster, which is a common practice for today’s service
providers. Most of the applications such as collabora-
tive filtering require only infrequent update (once per
day or more), the performance we obtained is more than
enough for them. The communication overhead is also
very small since it passes very few large integers. The
communication per client is only a few kilobytes, while
other solutions require some hundreds of megabytes.

6 Conclusion and Future Work

This paper shows that private vector addition with
verification can be done at extremely low cost in
many realistic settings. It opens the door to a va-
riety of applications built on such primitive. Most
components described in this paper have been im-
plemented and the source code is made available
as a toolkit for the general public. Please visit



http://www.cs.berkeley.edu/∼duan/research/p4p.html
for download and other information. In the near future,
we plan to add some “middle tier” common statistical
aggregate components such as ANOVA, SVD, etc.
Supporting general algorithms within the paradigm
(VSS over small field and random projection-based
verification) is also being actively explored. Our goal is
to make it a useful tool for developers in data mining
and others to build privacy preserving real-world
applications.
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A Proof of Theorem 1

We first present proofs for the tail bounds assuming the
total sk on each round exactly represents the weighted
sum of user vectors sk =

∑m
j=1 ck · d. Because the

sums are actually computed mod φ, sk may differ by a
multiple of φ from the total over the integers. We deal
with modular arithmetic effects later in this section.

Statement Let zk = s2
k, and z =

∑N
k=1 zk. Let V =

E[zk] for k = 1, . . . , N and δ = (L/|d|2)2 = L2/(2V ).
Then the probability that a user input fails the test is
probability that Pr[z > NL2/2] = Pr[z > δNV ], and
we claim that

Pr[z > δNV ] ≤ (
δ
2 exp(1− δ

2 )
)N

where δ > 2

Conversely, with the same definitions and if δ < 1, the

user will pass the test if Pr[z < NL2/2] = Pr[z <
δNV ], which has a bound

Pr[z < δNV ] ≤ ((
7
8 − 5

24δ + 75
288δ2

)
exp

(
1
2δ − 5

12δ2
))N

where 0 < δ < 1

Proof Since sk is a sum of independent random
variables, the pdf of sk typically has gaussian-decay
tails, but the squares zk = s2

k in general are not
gaussian and have simple exponential tails. We can
still prove Chernoff-style bounds for the tails of z that
show exponential decrease in the number of trials, but
the bounds have only simple-exponential decrease away
from the mean. In all cases, we use bounds of the
moments of zk which are derived later in Lemma 1.

Upper Tail
First, for the upper tail let δ > 1, and since E[z] = NV ,
we evaluate

Pr[z > δNV ] = Pr[exp(tz) > exp(tδNV )]

and applying a Markov bound we obtain

(1.1) Pr[z > δNV ] ≤ E[exp(tz)]
exp(δNV )

and since the zk are independent for k = 1, . . . , N ,
we can factor the expected value as the product of
E[exp(tzk)]. Since we have all the moments of zk, we



can compute this value as a power series:

E[exp(tzk)] =
∞∑

i=0

tiE[zi
k]/(i!)

≤
∞∑

i=0

(tV/2)i(2i)!/(i!)2

=
∞∑

i=0

(tV/2)i

(
2i

i

)

and since
(
2i
i

) ≤ 4i, this series will converge so long as
2tV < 1. The series is then geometric, and has a bound
of:

E[exp(tzk)] ≤ 1
1− 2tV

and substituting into (1.1) gives

(1.2) Pr[z > δNV ] ≤ 1
(1− 2tV )N exp(tδNV )

and this bound is optimized by maximizing (1 −
2tV ) exp(tδV ). Taking derivatives and solving gives
t = 1/(2V ) − 1/(V δ). The bound is valid so long as
0 < t < 1/(2V ), which is true if δ > 2. Substituting, we
obtain:
(1.3)

Pr[z > δNV ] ≤ (
δ
2 exp(1− δ

2 )
)N

where δ > 2

Lower Tail
Now let δ > 0, E[z] = NV , we evaluate

Pr[z < δNV ] = Pr[exp(−tz) > exp(−tδNV )]

for t > 0, and applying a Markov bound we obtain

(1.4) Pr[z < δNV ] ≤ E[exp(−tz)]
exp(−tδNV )

the expected value factors as before into terms
E[exp(−tzk)]. The expansion is an alternating sum
which is difficult to bound, so instead we truncate it
using the inequality

exp(−y) ≤ 1− y + y2/2

which holds for all y > 0. This gives the bound:

E[exp(−tzk)] ≤ E[1− tzk + t2z2
k/2]

= 1− tV +
t2

2
E[z2

k]

≤ 1− tV +
3
2
t2V 2(1.5)

where the last step used the moment bounds from
Lemma 1. Substituting into (1.4) gives

(1.6) Pr[z < δNV ] ≤ (
(1− tV + 3

2 t2V 2) exp(tV δ)
)N

Minimizing the RHS involves solving a quadratic equa-
tion which is a function of δ. The solution can be ap-
proximated as t ≈ (1/2 − 5/12δ)/V . We can use this
value as a bound in any case, giving:
(1.7)
Pr[z < δNV ] ≤ (( 7

8 − 5
24δ + 75

288δ2) exp( 1
2δ − 5

12δ2))N

Dealing with Modular Arithmetic
In order for the secret shares not to leak information
about user data, modular arithmetic is used. We use
the notation x[i] for the ith component of the vector
x. We denote by s̄k =

∑m
j=1 ck[j]d[j] the sum over the

integers, and by sk this sum reduced mod φ, which is
what the protocol actually computes. Then we have

s̄k = sk + wφ

for some integer w. The modular arithmetic provides
additional ways for the user to cheat. e.g. the user
might set some components of her vector to φ/2. If an
even number of those are included in the checksum, they
will be removed by the modular arithmetic, leading to a
small sk. However, we show now that any such “large”
components will cause the protocol to fail almost surely.
We consider the following two cases:

1. All components d[i] of the user’s vector are in the
range [−4L, 4L]

2. Some component d[i] has magnitude larger than
4L.

Note that case 1 includes both legal and illegal inputs,
since the largest legal magnitude for any component is
L. Case 2 vectors have overall magnitude greater than
L and are strictly illegal.

Case 1: If all components of the user vector are in
the range [−4L, 4L], then the maximum variance of this
vector is V = 32mL2. The reduced sk will be equal to s̄k

as long as s̄k is in the range Zφ, i.e. as long as |s̄k| ≤ φ/2.
By setting δ to the ratio of squared limit over variance
δ ≥ φ2/(32mL2), and N = 1 we can use the upper tail
bounds computed earlier to bound a single sk.

Pr[|s̄k| > φ/2] = Pr[zk > δV ] ≤ (
δ
2 exp(1− δ

2 )
)

A typical safe value would be δ = 100, giving a
failure probability of 2.6 × 10−20. The bound L must
satisfy L ≤ φ/

√
32δm, which for δ = 100 becomes

L ≤ φ/(56.5
√

m). This constraint would normally be
satisfied in any practical system, because L must be
small enough to allow s̄k totals to be computed without
wrapping mod φ. That is if there are n users, the
bound L should be such that nL ≤ φ/2, because a legal



user input may have a value of L in one element only.
Satisfying both constraints gives us the result: L ≤
min(φ/(56.5

√
m), φ/(2n)) or L ≤ φ/max(56.5

√
m, 2n)

Case 2: Some |d[i]| > 4L. Fix this i, and let s̄−i denote
the sum

∑
c[j]d[j] of all terms j 6= i over the integers.

Now either s̄−i is in some range [−2L, 2L] + kφ or it
isnt (we say it is “legal” it is is in such a range). The
final total s̄ = c[i]d[i] + s̄−i differs from s̄−i by either
0 or d[i] where 4L ≤ |d[i]| ≤ φ/2. If s̄−i is legal, then
s̄−i ± d[i] must be illegal, which has probability 1/2.
If s̄−i is illegal to begin with, then at most both the
offsets ±d[i] will be legal, which again has probability
1/2. If p is the probability that s̄−i is legal at first, the
probability that s̄ is legal is at most 1

2p + 1
2 (1− p) = 1

2 .
Now let q ≤ N be the number of challenges for

which s̄k is illegal, i.e. the number of k for which
s̄k > 2L. For each of these zk > 4L2 and the total z
will be at least 4qL2. The overall user data verification
will (incorrectly) succeed if z < NL2/2, which can only
happen if q < N/8. The probability that this happens
is the tail of a Bernoulli distribution over uniform trials
with probability ≥ 1

2 . Using standard formulae [29],
this probability is bounded by:

Pr[z < NL2/2] ≤ 0.8173N

This probability is strictly less than the lower tail bound
derived above which is never better than 7

8

N = 0.875N .
So the latter bound dominates, and we do not separately
quote the probability for modular wrap-around error.

A.1 Lemma 1 For independent random variables
c[j] in {−1, 0, 1} with probabilities { 1

4 , 1
2 , 1

4} respec-
tively, and let s =

∑m
j=1 c[j]d[j], and z = s2. Then

all positive moments of z satisfy:

E[zq] ≤ (2q)!
q!2q

V q = (1 · 3 · 5 · · · (2q − 1))V q ≤ (qV )q

where V = E[z] = E[s2] as before.

Proof We rewrite the sum for each moment as:
E[zq] = E[s2q] = E[(

∑m
i=1 s[i])2q] and fully expanding

the last term gives:
(1.8)

E[zq] =
2q∑

r=1

1≤i1,...,ir≤2q∑

i1+···+ir=2q

(
2q

i1, . . . , ir

)
E[s[j1]i1 · · · s[jr]ir ]

where 1 ≤ j1 < j2 < · · · < jr ≤ m. Next we notice that
each s[j] is symmetric: Pr[s[j] = v] = Pr[s[j] = −v].
So every term containing an odd power of some s[j] has
expected value zero. wlog we can assume that every
index i1, . . . , ir in the expression above is even.

The expected values in the last formula can be
computed directly since the sj are independent:

E[s[j1]2i1 · · · s[jr]2ir ] =
1
2r

d[j1]2i1 · · · d[jr]2ir

Rewriting (1.8) using this expansion, and using only
even powers gives:

E[zq] =(1.9)
2q∑

r=1

1≤i1,...,ir≤q∑

i1+···+ir=q

(
2q

2i1, 2i2, . . . , 2ir

)
2(−r)d[j1]2i1 · · · d[jr]2ir

In order to simplify this last expression, we consider the
expansion of (2V )q which is:

(d[1]2 + · · ·+ d[m]2)q =(1.10)
q∑

r=1

1≤i1,...,ir≤q∑

i1+···+ir=q

(
q

i1, i2, . . . , ir

)
d[j1]2i1 · · · d[jr]2ir

which contains exactly the same products of d[j]’s. We
take the ratio of the coefficients of d[j1]2i1 · · · d[jr]2ir in
(1.9) and (1.10), giving

(1.11) R = 2−r

(
2q

2i1, . . . , 2ir

)
/

(
q

i1, . . . , ir

)

We expand this first as

(2q)!
q!

i1!
(2i1)!

· · · i1!
(2ir)!

2−r

and notice that ij !
(2ij)!

≤ 2−ij /(ij)!. Making these
substitutions gives

R ≤ (2q)!
q!

1
2i1i1!

· · · 1
2ir ir!

2−r = (q)q 1
i1! · · · ir!2r

and finally it is easy to show that i1! · · · ir!2r ≥ 2q.
This can be done inductively by starting with r = q,
and all ij = 1, and “walking” to any desired partition
i1 + · · · + ir of q, each step merging some ij which is
= 1 with another. The number of groups r decreases
by 1 at each step which reduces 2r by 2, but some il is
incremented at the same time, and so il! is multiplied
by at least 2. Substituting for these expressions in the
denominator of R in the last equation gives:

R ≤ (2q)!
q!

4−q

Now if we multiply equation (1.10) by this value, we
guarantee that every term in its expansion is at least as
great as the coefficient in equation (1.9). Or in other
words,

E[zq] ≤ (2q)!
q!2q

V q = (1·3·5 · · · (2q−1))V q ≤ (qV )q QED


