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Abstract

This paper investigated the application of fuzzy rule based expert system (FRBES) to the identification of human
thermoregulation system which haslong been modeled as a crisp controller without adaptation by earlier
approaches. In this project, human body is treated as an adaptive fuzzy logic system. An additional fuzzy controller
isimplemented and its effect studied. A fuzzy IF-THEN rule base consisting of a set of intuitive fuzzy rulesis
constructed and applied to the fuzzy thermal controller.

Introduction

An important issue involved in the study of human thermoregulation system is understanding the controlling
mechanism which regulates temperatures of all body parts. This system, dueto the lack of quantitative data and the
difficulty in observation, hasnot been fully understood. Almost all theories are on hypothetical level and most
approaches model the controlling mechanism as a pure mechanica system. In Stolwijk’ § 1] thermoregulation model,
for example, deviation of temperaturesin several body parts from their respective “set points’ are used as error
signalswhich generate control efforts by causing evaporative heat 1oss, heat production from shivering or changesin
the periphera blood flow in the appropriate locations in the body. All of these actions, in turn, form anonlinear
controller. This approach, although can be justified in certain thermal conditions, is only a greatly simplified version
of what isactualy going on inside human body and, inevitably, exhibitsinability to emulate the correct response of
human body in some conditions.

Several things can be challenged.

1. Human body is adaptive. It is known that human body can adjust to its new thermal environment. Not only
some of its physical properties, such as heat capacitance and conductance, can be variant, but also its
thermoregulation mechanism. For example, Eskimos, who live in north pole region, cannot sweat. Thisisalong
time adaptation to their environment. Living in such extreme cold condition, sweating is not only expensivein
terms of energy but also dangerous. However, if they move to awarmer area, they will, eventually, regain their
ability to sweat.

2. Itisquestionable whether human body adopts a “crisp” thermal control mechanism. Cold and warm are all
perceptions and inherently fuzzy. Our knowledge on human sensor mechanism is still incompl ete becauseiit is
not accessibl e to observation and study. It isunlikely that human body relies exclusively on numerical sensor
input as away to regulate its thermal states.

3. Theso-called thermal comfort index, which haslong been investigated but is sill not clearly defined, is actualy
afuzzy concept. Comfort isafuzzy perception and the traditiona “crisp” approach can hardly model it.

This project tries to attack these problems by incorporating fuzzy logic into the human thermoregul ation model.



Basic Concepts of Fuzzy Sets and Fuzzy Logic
Fuzzy Sets and Fuzzy Set Operations

Fuzzy Set: Let U be a collection of objects of interest, and be called the universe of discourse. A fuzzy st FinU is
characterized by a membership function g U —[ 0,1], with 1¢(u) representing the grade of membership of u/J in
thefuzzy set F. A Fuzzy set can be viewed as a generalization of the concept of an ordinary set whose membership
function only takestwo values{ 0, 1}.

Figure 1 shows member functions of three fuzzy sets, namely, “Cold”, “Neutra” and “Warm”, which arethree
common linguistic descriptions of thermal sensations. The universe of discourseis all possible environment
temperatures, i.e. U = [Trin, Trax], Where Trinand T @re minimum and maximum temperatures of a certain
thermal condition.

A
Cold Neutral Warm

L -
Tm’ n Tset Tmax

Figure 1 Member functions of three fuzzy sets

Support, Center, and Fuzzy Singleton: The support of afuzzy F set isthe crisp set of al points u/J such that
HUe(u)> 0. Thatis,

S ={u:ulU,usu) >0}
The center of afuzzy set F includes the point(s) with maximum member function values.
Cr ={u:ulU,ue(u) = ug(v), for all viuU }
If the support of afuzzy set F isasingle point in U at which u¢(u) =1, then F is called afuzzy singleton.

Intersection, Union, and Complement: Let A and B be two fuzzy setsin U, Theintersection of A and B, AnBisa
fuzzy set in U whose member function is given forall u/J by

U ang(U) = min{ ua(u), ps(U) }

The union of A and B, AUB isafuzzy set in U with member function defined forall u/U by

U ane (U) = max { pa(u), ue(u) }

The complement of A, denoted by A’, isafuzzy set in U with member function defined forall uZU by

Har(U) = 1- pau)
Note that the definitions of intersection, union and complement given here, when A and B are ordinary sets, are
consistent with the corresponding definitions in conventional set theory. It should be mentioned that, however, this
definition shows only one possible choice for these operations. The choice of operations correspondsto one's



interpretation of the meaning of these operations. Based on different interpretation ranging from intuitive
argumentation to empirical or axiomatic justifications, other operators have been suggested in literature.

T-norm: A T-norm, denoted by *, isatwo place operation from[ 0,1] x[ 0,1] - [ 0,1] which includes fuzzy
intersection, algebraic product, bounded product and dragtic product, defined as

min{ x,y} fuzzy intersection
Xy algebraic product
max{ 0, x+y-1} bounded product
xify=1

yifx=1 drastic product
Oifx,y<1

where x, y are values of two fuzzy member functions.

Fuzzy Relations

Fuzzy Relation: Let U and V be two universes of discourse. A fuzzy relationsis a fuzzy set in the Cartesian product
space of U and V, UxV, and is characterized by a member function pg:(u,v): UxV -[0,1] indicating to what extent
therelation istrue.

Sup-Star Compostion: Let Rand Sbe fuzzy relationsin UxV and U X\W, respectively. The sup-star composition of R
and Sisafuzzy relation denoted by R ° Sand is defined by

HUr s(U) = supyod HrUV)* 1 s(v,w) }

where u/J, vV, and * can be any operator in the class of T-norm defined earlier. Itisclear that R ° Sisafuzzy
set in UXW.

Fuzzy relations and compositions are used to obtain the interpretation of fuzzy IF-THEN rules.

Fuzzifier

The fuzzfier mapsa crisp point xZU to afuzzy set Ain U. The most commonly used fuzzifiersare

« Singleton fuzzifier: Aisafuzzy singleton with support x. That is, p/a(u) = 1 for u= x and p a(u) = O for other.
* Nonsingleton fuzzifier: p a(X) = 1and (1 a(u) decreases as u moves away from x.

Fuzzifier isan essentia part of a fuzzy system. It relates numerical information to fuzzy sets.

Defuzzifier

Defuzzfier performs amapping from fuzzy setsin V to a crisp point y//V. There are different methods of doing so,
each of which hasits own suitable application. For details about defuzzifier, please refer to Li-Xin Wang [5] and
Mohammad Jamshidi [7].



UC Berkeley M ultinode Human Physiology and Thermal M odel
Background

Stolwijk’s 25 node model of thermoregulation (Stolwijk and Hardy 1966) set out the fundamenta concept,
algorithm, physical constants and physiological control sub-systems for many contemporary multinode models
(Hwang and Konz 1977). The Berkeley Multinode Comfort Model is based on the Stolwijk model aswell ason
work by Tanabe in Japan (Tanabe, Stuzuki et al. 1995), but includes several significant improvements over the
Stolwijk model. The Stolwijk model is based on six body segments: head, torso, arms, hands, legs, and feet. The
Berkeley model (like the Tanabe model) uses sixteen body segments corresponding to the Berkeley segmented
therma manikin (Tanabe, Arens et al. 1994). Each segment in the model is modeled asfour body layers (core,
muscle, fat, and skin tissues) and a clothing layer. Blood is modeled as a separate series of nodes that provide
convective heat transfer between segments and tissue nodes. The model computes hest transfer between each node
using a standard finite differencing algorithm with variable time-stepping to optimize computational resources while
preserving numerical stability.

The treatment of time as a series of discrete “phases’ of variable length enables the model to simulate amost any
combination of environmenta, clothing and metabolic conditions. Effects of trangent and spatially asymmetric
conditions that are completely lost in whole-body models such as the 2-node PMV model can be predicted by the
model. An example ssimulation might be a person walking from an air-conditioned building to hot summer outdoor
conditions and then getting into a car that has been sitting in the sun, turning on the air-conditioning and driving as
the car beginsto cool off. Applicationsinclude evaluating thermal comfort in spaces with asymmetric or transient
therma environments including automobiles, buildings or outdoors.

Thisimproved Berkeley Multinode Comfort Modd is used as a platform and test bed for the fuzzy control system
discussed later.

Model Overview

The modd treats each body part as lumped thermal mass, called node, and Ssmulates the trangt thermal response of
body by computing the heat transfer between these nodes. The following improvements have been made over the
Stolwijk modd:

¢ Increasein number of body segments from six to sixteen

e Improved blood flow model, including counter flow heat exchangein the limbs
e Addition of a clothing node to model both heat and moisture capacitance

e Addition of heat loss by conduction to surfacesin contact with the body

e Improved convection and radiation heat transfer coefficients

e Explicit radiation heat transfer cal culation using angle factors

e Addition of aradiation heat flux moded (e.g. sunlight striking the body)

Figure 2 shows atypical segment node structure. This configuration can accommodate most environment conditions
and is default implementation. The model, however, is flexible enough and the structure can be modified easily,
without recompiling the code, to suit for specific situation.
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Figure 2. Typical segment node structure showing four parallel heat paths: top, exposed skin with convective and
radiant heat loss; second from top, clothed skin with convection and radiant heat loss; third, clothed skin with
conductive loss to contact surface; bottom, bare skin

Original Thermoregulation System

The lumped node modd of human physiology is a passive system which by itself does not exhibit any control,
rather, it represents a complex transfer function between regulator and disturbance. The regulating system receives
signals from the passive system and exerts corrective effector action on the passive system if thereis deviation from
preferred conditions.

The thermal regul ation mechanism used in thismodel isbased on Stolwijk’s original theory with little modification.
Finer segmentation resulted in an increased number of signals and corresponding gains. Apart from that, however,
the control algorithm remains largely the same.

Three types of effector action are, in aqualitative sense, well known. They are sweating, which resultsin
evaporative heat |oss, shivering with increased heat production, and vasodilation or vasoconstriction which have the
effect of varying skin and muscle blood flow. These action(s) aretriggered by error signa's -- deviations of body
partstemperature from their set points. The gains are modeled by a set of coefficients.

In modeling the regulator, the following assumptions have been made:

1. Sensorsare located in head core, muscle, and evenly distributed in the skin.

2. The signas received from these sensors vary linearly with the local temperature within physiological limits,
insensible to the rate of change of local temperature. Thisisin accord with available experimenta observation.

3. Each of these sensor systems has zero output at alocal temperature corresponding to a set point.

4. Signal from head core plays a far more important role in determining what the major effector action should take,
beit increasing heat 10ss by sweating and/or vasodilation or increasing heat storage by shivering and/or
vasoconstriction.



Itisnot clear what the physical meaning of the set pointsis. It can be viewed as akind of therma neutrality where
the regulator has zero output. However, depending upon the physical properties of the body and the environment,
these set points may not be the preferred temperatures at which the body triesto stay. In other words, at steady state,
body temperatures may be quite different from these set points. Thisresult isnot surprising in that, for a linearized
system, in order for the steady state to track reference, the closed 1oop system must have a pole at origin. This may
not the case in many situations.

Theregulator itself isacomplex nonlinear system which combines error signals from sensors all over the body and
produces control effort. Temperature of each node is compared againgt its set point. The deviations of all skin nodes
are summarized to form one skin signal. It ismultiplied by head core signal. A series of complex, nonlinear
operation is performed on these signals then and the final controller output is produced in the form of 4 numerical
values -- SWEAT, DILAT, STRIC and SHIVER which indicate the extent of four effector actions discussed before,
i.e., sweating, vasodilation, vasoconstriction, shivering, respectively. The passive system model uses these values to
regulate evaporative heat |oss, heat production and the amount of blood flown to skin. For details of the
thermoregulating mechanism, please refer to Stolwijk and Hardy[ 1].

Fuzzy Controller

The purpose of introducing fuzzy algorithm into the human thermoregul ating system is to account for the
unmodel ed human physiology. Our qualitative knowledge of human thermoregulation is still very limited and the
human body is greatly simplified in the model. One big challenge for the original crisp control isthat it will produce
exactly the same results given the same environment conditions. Thisis, obvioudy, not the case for areal body.
Human body has adaptation ability which the crisp controller does not model. It ishoped that by applying fuzzy
algorithm this situation can be improved.

Anocther belief isthat it would be presumptuous of us to assume that human body is doing crisp thermal control (The
reason human body is being modeled as a crisp system is that this isthe best we have at hand.). Our choice of fuzzy
logic system may not be the best to attack this problem, or even worse, fuzzy logic system may not be the answer at
al! However, at thispoint, it can, at least, serve as agood starting point.

Structure of Fuzzy Model/Control

Figure 3illustrates the configuration of the fuzzy controller used in this modd.

Fuzzy Inference

Fuzzifier .
Engine

——
xinU

Fuzzy
Rule Base

Figure 3 Configuration of the fuzzy controller



Fuzzifier

Although it seems that singleton fuzzifier iswidely used, we fed nonsingleton fuzzifier ismore suitablein this
problem in that we are mapping temperatures to thermal sensations such as COLD, WARM, etc. and we have some
intuitively natural membership functions for these fuzzy sets (will be discussed later) that we would like to use.

In thismodel, thermal sensation, o, isthelinguistic input to the fuzzy controller. o takes on 7 linguistic values:
extremely cold(EC), very cold(VC), cold(C), neutral(N), warm(W), very warm(VW) and extremely warm(EW). The
controller, after defuzzification, produces four numerical effector actions mentioned before. Internaly, the four
effector actions aretreated aslinguigtic variables too. Their linguigtic values are out put of the fuzzy inference
engine.

Membership Functions

Because of the finer segmentation, each node of the body can have its own set of membership functions for these
thermal sensation values which can be best tuned to match each node’ srole in thermoregulation. Figure 4 shows a
typical membership function set for skin node. Since the head core plays a far more important role in determining
control action (Stolwijk and Hardy[1].), it hasafar narrower Neutral range as shown in figure 5. Also note that the
dlopes of all its membership functions are sharper and the centers are closer to its set point. Thisindicatesthenodeis
more senditive to deviation and has more say in the vote of thermal action.

Membership Function of Fuzzy Sets for Typical Skin
1.2r

EC VvC C N W VW EW

0.8

0.6

0.4

0.2

28 30 32 34 36 38 40 42
T(Dea C)

Figure 4 Membership functions for typical skin node



Membership Functions of Fuzzy Sets for Head
1.2r

EC vVC C N W VW EW

0.81

0.61

0.4f

0.2f

28 30 32 34 36 38 40 42
T(Dea C)

Figure 5 Membership functions for typical head core

Subject studies have indicated that people have asymmetric therma comfort preference. For example, people prefer
awarm back to acold one. They feel uncomfortableif their back is cold athough a colder face can betolerated, or
even preferred. Apart from ahigher set point for back skin node, this observation also leads to the asymmetric
membership function shown in figure 6. Note that the warm part of the functions have slow sl ope and centers that
are far from set point. This makes back less sensitive to warm and more so to cold.

Membership Functions of Fuzzy Sets for Back (Asymmetric Thermal Preference)
1.2r

EC vC C N w VW EW

0.8f

0.6

0.21

28 30 32 34 36 38 40 42
T(Dea C)

Figure 6 Membership functions for back(asymmetric therma preference)

Fuzzy Rule Base

In its simplest form, the fuzzy ruleregulating human thermal comfort should be
IF o= C, THEN u = STRIC and SHIVER (SS), where uisthe control effort.

Thisis, in plane English, equivalent to saying



IF | am cold, reduce my blood flow to skin and shiver.
Similarly, other rules dealing with different situations can be constructed

IF o= VC, THEN u= STRIC HARD and SHIVER HARD (SSH)

IF o= EC, THEN u= STRIC HARDEST and SHIVER HARDEST(SSHST)
IF o= N, THENu=0(2)

IF o= W, THEN u= SAEAT and DILAT (SD)

IF o= VW, THEN u= SWEAT HARD and DILAT HARD (SDH)

IF o= EW, THEN u= SWEAT HARDEST and DILAT HARDEST (SDHST)

Fuzzy Inference Engine

Since each node has its own therma sensation value, g;, it isthe duty of fuzzy inference engine to combine them and
produce an output. We use fuzzy intersection to combine the IF part of the fuzzy rule snce in our case the
relationship among these conditionsisal AND.

Let 0 =[O0, Oa, . . . 0] bethe input to the fuzzy inference engine, where n is the number of nodes. The
combination of the conditions in the IF part of the fuzzy control rule yields a set of membership function values of o
in the n-dimensiona space for the 7 linguigtic fuzzy sets. For example, the membership function value of o for C
would be

Uc(o) =min{ uc(01), uc(02), ... (o)}

Similarly, tve(0),1 ec(0),4N(O), L w(0), 1 \w(0), U enw(0) can aso be obtained. These can be viewed as the vote
from all body parts on the overall body thermal sensation.

A fuzzy IF-THEN ruleisinterpreted as a fuzzy implication. The existence of many different definitions of fuzzy
implication resultsin different interpretations of fuzzy IF-THEN rules (Li-Xin Wang, [] ). Most of them, however,
require before-handed knowledge of membership function of output, thus lack simplicity and intuition. And their
reliability is doubtful. Remember that although the goal of fuzzy logic is reasoning with uncertainty and non-
numerical information, itsimplementation is, at least at this stage of computing technology, exactly the opposite.
That is, it relies on the exact numerical computation and a certain agorithm to achieve a sense of uncertainty and
fuzzy. In an effort to keep theinference ssmple and intuitive, | proposed, and implemented, a simple direct mapping
of IF-THEN rules.

Consider the following fuzzy rule

IFxXisATHENyisB

where A and B are fuzzy sets and x/U, y/ N with the membership function ua( x) and ug(y) . Our goal isto find
Me(y) given ua( X) . Instead of the complicated implication, a simple, monatonic relationship between pa( x) and
Mp(y) isused. That is, theruleisinterpreted as

us(y) = R(ua(X))

where R[ 0,1]->[ 0O, 1], isamonotonic function and is determined by the specific situation we are dealing with, our
confidence in this particular rule, aswell asthe amplification capahility of therule. Figure ?7? shows several possible
choices of mapping. It should be noted that, since we have the freedom to choose R, we are not losing any control
over modeling the problem. On the contrary, proper choice of R may enable usto best characterize our problem.
Form figure ?7? we can see that the simplest mapping would be

Ue(y) = Ha(X)



However, we may consider alarger gain if we have evidence to indicate thisis the case. This depends on the nature
of therule. For example, if x isinput to a system with alarge gain and y isits output and the rule states

IF xishig THENYyisbig.

In this case a function with alarge slope may be appropriate since a small input can produce a big output. Figure ??
also shows the cases where pa( x) and pg(y) arenot linearly related. This may be suitable for some problem
where our confidence in therule of the output should vary with the degree with which xisin A.

Theresults of thisimplementation are quite good( See the section Results).

Direct Mapping of Membership Functions

0.9f
0.8f
0.7f
0.6
Ha(y) 05
0.4f
0.3f
0.2f

0.1

0 0.2 0.4 0.6 0.8 1
Ua(X)

Figure 7 Direct rule mapping

The output of fuzzy inference engine would be a set of membership function values of u for all the possible effector
actionswhich aretreated as fuzzy sets.

Hss(U), UssH(UY), U sshst(V), 4 z(U), #sp(U), 4spH(U) , 4 spHsT(U)

Defuzzifier

Defuzzifier performs a mapping from fuzzy setsin Vto a crisp point y/7V. Again we are faced by different choices
(Lin-Xin Wang [5]). Here center averaged defuzzifier isused. That is,

M

PRI
Z"’ (W)

f

u *)

whereU; isthe center of fuzzy set B i.e, g (U) achieves maximum value and g (U') is the membership function
of the proposed control for fuzzy set B'.



In our application, B"s correspond to the fuzzy sets SS, SSH, SSHST, Z, SD, SDH and SDHST. Each of these fuzzy
sets has a center U; which represents the maximum control it is proposing. For example,

OSTRIG, O

_ _SHIVERT
u =

SS |:| 0 |:|
] ]
[ 0 I
where STRIC, and SHIVER, are real numbers indicating the normal level of vasoconstriction and shivering. The
final output, after the defuzzification, is the membership function weighted average of al the fuzzy set centers.

It is tempting to implement the control given in equation (*) directly. However, it must be noted that since al the
error signals are transformed and weighted only by their membership functions, the numerical correctness of the
controller given by equation (*) depends on

1. Good choice of membership functionsthat characterize the linguigtic variables perfectly, including their weight in
thefinal vote for therma sensation and control action, and
2. Correct identification of the centers of the control fuzzy sets.

The strength of fuzzy logic system, on the other hand, isits ability to reason with nonnumerical information and
model the intuitive knowledge of an expert. This nature makes it not good at finding a sheer numerical solution.
Also the dimenson of the solution space it isdealing with isinfinitein that we have infinite combinations of
membership functions, fuzzifier and defuzzifier, let along the numerous choices of fuzzy implications. Therefore it
ishard to find a satisfactory solution in such alimited time. As suggested in Li-Xin Wang (Li-Xin Wang[], pp60), a
pure fuzzy logic controller may not be sufficient for controlling a system.

Based on the above observation, in this project, the fuzzy controller isused as an intuitive correction to the original
numerical controller which at least models theright trend of thermoregulation system.

The control isimplemented in the following way
u=u’(l, +WA)

where u’ isthe original numerical controller, I, isidentity matrix of proper dimension, W OR™" is a predefined
weighting matrix, A isnxn diagonal matrix whose entries are elements of normalized fuzzy controller U', i.e,,

A =diag{u, ,u; ,..u'}

Normalizing the output of fuzzy controller to be within therange of [0, 1] is essential in that the fuzzy controller is
being used as a correcting factor rather than the actual control action whose scale is not best anticipated by the
linguistic rules. Making them unitless can best utilize our intuitive control rules. It isalso easy to sdect the fuzzy set
centers. For example, since we have 3 levels of intensity of vasoconstriction and shivering (SS SSH, SSHST ), itis
intuitive, once they are normalized, to select centers for these fuzzy sets as following:

/30 [2/30 [0
l l 0
/1357 _ /3 _



The other centers can be selected in the same way.

00 O 00 O 00 00

O, O Oa O 0 0
_%0 g =-0%0g :%)Dandu _ 5
SD |j_/ 3%’ SDH Q/SB, SDHST D_B mg
5/3[ [52/3[ i [%[

W can be selected to determine the weight and scale of the fuzzy controller. Note that since it isanxn matrix, it
maps the fuzzy controller from and into all directions. Thisisanother powerful nub to tune the controller to fit
specific situation.

Implementation

The mode has been implemented in an object-oriented (OO) approach using C++. Much effort has been spent to
make the data structure and simulation procedure resemble the physical model as much as possible. In addition, we
have kept the internal model structure very flexible, so that changes to the model can be implemented easily, often
without recompiling the code. For example, the node structureis read from text input files so that adding a node or
reconfiguring existing nodes only requires modifying program input. The choice of an object-oriented language has
greatly simplified this approach.

Several objects are defined to represent each element of the physical model. The node object isthe basic unit in this
object structure. All the actual Smulation procedures — heat production, heat transfer and regulating control
mechanism -- are done within node objects. Multiple nodes are organized into atree-like structurewhich is
maintained by a higher level object, the segment object. A segment aso has a blood object which contains an artery
and avein. Figure 8 showsthereationship of these objects. The body conssts of several segmentsthat are
connected with each other viablood. Nodes exchange heat with their adjacent nodes via conduction and as well as
with blood.

Nodes in each segment form alinked tree. Multiple parallel branches may be included in each segment to simulate
different heat flow paths. The structure of each segment does not need to be identical. This provides the capability
to model different body parts having quite different physical structures and/or non-identical environmental
conditions. For example, if the subject iswearing shorts, the model will generate both a clothed and a bare-skin path
for the thigh segment. If the subject is wearing long pants, only the clothed path will be generated.
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Segment
——> Heatflow > Massflow

Figure 8. Segment object schema



3D Visualization

Thismodel aso has agraphic user interface with 3D visualization implemented using OpenGL®. It is capable of
updating body temperature in real time. Simulation results are mapped to the 3D objects and shown with different
color. Figure 9 is the screen image after one smulation. Different temperatures are represented by different colers.
Figure 10 shows the solar load of a car. Solar 1oad is used as an input to the human physiology model and isavery
important thermal factor while smulating the thermal conditionsinside a car.
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Results

Initial Validation

A sound mathematical platform is essential for successfully implementing and testing the control theory. Thisinitial
stage of validation isnot an effort to obtain realistic result which matches experimental data. Rather, its purposeisto

gain confidence in the mathematical correctness of the model.

A greatly smplified version of the model, with constant blood flow rate and temperature, ignoring evaporative heat

loss, is governed by the following differential equation:
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T istemperature of thei™ node, M; is heat capacity and bf; is besal blood flow rate. H, and H, are heat transfer
coefficients.

This equation can be easily solved by MATLAB using OED23. Figure 11 shows the comparison between simulation
result(a) and the MATLAB solution(b) for one segment, Head. It could be seen that they match each other perfectly.
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Performance of Fuzzy Controller

It has been found that fuzzy controller gives us more control over the response of the model. By varying its
parameters, W, member functions, etc., we can tune the mode to achieve the response we desired.

Figure 12 isthe steady state responses of average skin temperature to a step environment change. The condition is
20°C air temperature with 0 air velocity and 30% relative humidity. Both the outputs of the model with and without
fuzzy controller are plotted. Note that the response with fuzzy controller sabilizes at alower temperature Thisis
exactly theresult we desired because the original result isalittle high compared experimental data. The fuzzy
controller istuned to drag it down.
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Figure 13 isamore realistic scenario where simulation results are compared againg measurement data. The initial
experiment was done by Stolwijk and Hardy (.Stolwijk and Hardy 1966, Stolwijk 1971 ) to investigate the response
of human subjects to environmental step changes. In their studies, subjects wearing shorts were transferred from
normal to high temperature environment, or from high temperature environment to normal condition. Figure 13
shows the results of one such experiment in which subjects were put into a chamber with temperature as high as
43°C for about hour, then moved to a cold environment with temperature of 17°C. Thelast stageisto return the
subjects to the 43°C environment again. After fine tuning the fuzzy controller, the result matches measurement data
perfectly.
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Conclusion

Itisfar too early to call it a success because there are still so many unknowns. Also measurement datais scarce,
making validation difficult. However, this project shows that fuzzy controller has great potential, offering more
freedom than traditional controller, for modeling systems with unidentified dynamics. In fact, sometimes it does
such a good job that caution should be taken not to over tune the controller to fit a particular set of datatoo well
because, due to lack of information about the data source, this may not be the condition we are moddling.

Due to limited time, many other possible explorations areleft undone (We have so many nubs here!). However
fuzzy controller has shown its potential and we may pursue in thisfield in the future.

Future Work

1. Explorethe advantage of using different fuzzy logic system. The very nature and goal of fuzzy logic determined
that thereare alot of fuzzy systems for modeling the same system. As mentioned in section 7?, besides the
existence of many interpretations of fuzzy IF-THEN rule which resultsin different mappings of fuzzy inference
engines, we also have different types of fuzzifiers and defuzzifiers. The combinations of these provide arich
pool of choices. With the progress of our understanding of a particular problem, we sure would find better fuzzy
logic systems which fit our most up-to-date empirical knowledge.

2. Investigate the effect of other types of member functions. Again, as a benefit of our improved understanding of
thereal problem, other member functions may be found to be superior.

3. Trytogain intuitive understanding of the controller. For example, the weighting matrix W has 16 entries. That
meansit can modify the fizzy controller in al directions. So far only identity matrix is used, giving up most of
the choices. It should be most interesting to study itsimpact to a full extent.
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