UNIVERSITY OF CALIFORNIA

Department of Electrical Engineering
and Computer Sciences
Computer Science Division

Programming Contest
 Fall 2000

P. N. Hilfinger

2000 Programming Problems

To set up your account, execute

```
source ~ctest/bin/setup
```

in all shells that you are using. (This is for those of you using the C-shell. Others will have to examine this file and do the equivalent for their shells.)

This booklet should contain eight problems on 18 pages. You have 5 hours in which to solve as many of them as possible. Put each complete C solution into a file N.c, each complete C++ solution into a file N.cc, and each complete Java program into a file $N . j a v a$, where N is the number of the problem. Each program must reside entirely in a single file. In Java, the class containing the main program for problem N must be named PN. Each C/C++ file should start with the line

```
#include "contest.h"
```

and must contain no other \#include directives, except as indicated below. Upon completion, each program must terminate by calling exit(0) (or System.exit(0) in Java).

Aside from files in the standard system libraries and those we supply, you may not use any pre-existing computer-readable files to supply source or object code; you must type in everything yourself. Selected portions of the standard g++ class library are included among of the standard libraries you may use: specifically, the headers string, vector, iostream, iomanip, and fstream. Likewise, you can use the standard C I/O libraries (in either C or $\mathrm{C}++$), and the math library (header math.h). In Java, you may use the standard packages java.lang, java.io, and java.util. You may not use utilities such as yacc, bison, lex, or flex to produce programs. Your programs may not create other processes (as with the system, popen, fork, or exec series of calls). You may use any inanimate reference materials you desire, but no people. You can be disqualified for breaking these rules.

When you have a solution to problem number N that you wish to submit, use the command

```
submit N
```

from the directory containing $N . c, N . c c$, or $N . j a v a$. Before actually submitting your program, submit will first compile it and run it on one sample input file. No submission that is sent after the end of the contest will count. You should be aware that submit takes some time before it actually sends a program. In an emergency, you can use

```
submit -f N
```

which submits problem N without any checks.
You will be penalized for incorrect submissions that get past the simple test administered by submit, so be sure to test your programs (if you get a message from submit saying that it failed, you will not be penalized). All tests will use the compilation command

```
contest-gcc N
```

followed by one or more execution tests of the form (Bourne shell):

$$
. / N<t e s t-i n p u t-f i l e>t e s t-o u t p u t-f i l e ~ 2>~ j u n k-f i l e
$$

which sends normal output to test-output-file and error output to junk-file. The output from running each input file is then compared with a standard output file, or tested by a program in cases where the output is not unique. In this comparison, leading and trailing blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise, the comparison is literal; be sure to follow the output formats exactly. It will do no good to argue about how trivially your program's output differs from what is expected; you'd be arguing with a program. Make sure that the last line of output ends with a newline. Your program must not send any output to stderr; that is, the temporary file junk-file must be empty at the end of execution. Each test is subject to a time limit of about 45 seconds. You will be advised by mail whether your submissions pass.

The command contest-gcc N, where N is the number of a problem, is available to you for developing and testing your solutions. For C and C++ programs, it is equivalent to

```
gcc -Wall -o N -0 -g -Iour-includes N.* -lstdc++ -lm
```

For Java programs, it is equivalent to

```
javac -g N N.java
```

followed by a command that creates an executable file called N that runs the command

```
java PN
```

when executed (so that it makes the execution of Java programs look the same as execution of $\mathrm{C} / \mathrm{C}++$ programs). The our-includes directory contains contest.h for $\mathrm{C} / \mathrm{C}++$, which also supplies the standard header files. The files in ${ }^{\sim}$ ctest/submission-tests/ N, where
N is a problem number, contain the input files and standard output files that submit uses for its simple tests.

All input will be placed in stdin. You may assume that the input conforms to any restrictions in the problem statement; you need not check the input for correctness. Consequently, you are free to use scanf to read in numbers and strings and gets to read in lines.

Terminology. The term free-form input indicates that input numbers, words, or tokens are separated from each other by arbitrary whitespace characters. By standard C/UNIX convention, a whitespace character is a space, tab, return, newline, formfeed, or vertical tab character. A word or token, accordingly, is a sequence of non-whitespace characters delimited on each side by either whitespace or the beginning or end of the input file.

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by the number of problems solved. Where two or more contestants complete the same number of problems, they will be ranked by the total time required for the problems solved. The total time is defined as the sum of the time consumed for each of the problems solved. The time consumed on a problem is the time elapsed between the start of the contest and successful submission, plus 20 minutes for each unsuccessful submission, and minus the time spent judging your entries. Unsuccessful submissions of problems that are not solved do not count. As a matter of strategy, you can derive from these rules that it is best to work on the problems in order of increasing expected completion time.

Protests. Should you disagree with the rejection of one of your problems, first prepare a file containing the explanation for your protest, and then use the protest command (without arguments). It will ask you for the problem number, the submission number (submission 1 is your first submission of a problem, 2 the second, etc.), and the name of the file containing your explanation. Do not protest without first checking carefully; groundless protests will be result in a 5 -minute penalty (see Scoring above).

Notices. During the contest, the Web page at URL

```
http://http.cs.berkeley.edu/~hilfingr/programming-contest/announce.html
```

will contain any urgent announcements, plus a running scoreboard showing who has solved what problems. Sometimes, it is useful to see what problems others are solving, to give you a clue as to what is easy. Be sure to reload this page from time to time, to keep information up to date.

1. A puzzle from the soon-to-be famous Garcia collection presents you with a five-by-five array of square push-buttons, some of which are lit, and asks you to find a set of moves that turn them all off. A move consists of pushing one of the buttons, which has the effect of flipping it and each of its north, south, east, and west neighbors (if any: one or two of these neighbors will be missing on the edges of the puzzle). Here, flipping a button means turning it off if it is on and vice-versa. You are to write a program that reads an initial configuration of lights and computes a set of moves to turn them all off. I say "set" rather than "sequence" because the flipping operations commute with each other and performing the same flip twice is an identity operation. Therefore, all we need to know is which set of lights to press, not the order in which to press them. There are thus 2^{25} possible sets of moves.

An input to your program will consist of five rows of five characters, each character a ' 1 ' or a ' 0 ', with the rows separated by whitespace. A ' 1 ' indicates a light that is on, and ' 0 ' a light that is off. Output consists of an echo of the input, and a solution that also consists of of five rows of five ' 1 's and ' 0 's, with ' 1 ' this time indicating a button that must be pushed, and ' 0 ' a button not pushed. Use the format shown in the examples below.

Example 1:

Input	Output
0100011100	Solution to:
01000	01000
0000000000	11100
01000	
	00000
00000	
	is to push:
00000	
	01000
	00000
	00000
	00000

Example 2:

Input	Output
00000	Solution to:
00000	00000
10101	00000
10101	10101
01110	10101
	01110
	is to push:
	00100
	01110
	10001
	00000
	00100

2. A certain compiler writer wants to eliminate redundant tests. For this purpose, he takes an exceedingly abstract view of a program language, in which all statements have one of the forms

$\mathrm{L} N$	A statement label.
$x=$	An assignment of some unknown quantity to variable x.
goto $\mathrm{L} N$	Unconditional branch to label
if $x<=M$ goto $\mathrm{L} N$	Branch to $\mathrm{L} N$ iff variable $x \leq M$.
if $x>=M$ goto $\mathrm{L} N$	Branch to $\mathrm{L} N$ iff variable $x \geq M$.

Here, N and M are ordinary decimal numerals, with $0<N<1000$, and x is a variable name: a single lower-case letter. You may assume that each instruction is on one, separate line, and that there is whitespace space separating each if, goto, variable name, and numeral M from the surrounding tokens.

After a sequence like

```
if x <= 2 goto L3
some statements
if x <= 4 goto L4
```

we know as long as x is not assigned to in some statements and there are no labels in some statements, the second test is redundant and can be removed. In general,

- If the only ways to reach a conditional statement from the beginning of the program all guarantee that its condition is true, we replace the statement with a plain goto.
- If the only ways to reach a conditional statement from the beginning of the program all guarantee that the condition is false, we can remove the statement entirely.
- A label with no branches to it may be removed.
- All statements between an unconditional goto and the next label are unreachable and can be removed.

You are to use these rules repeatedly to simplify a given program as much as possible, printing the results in the same format as the input, as shown in the examples on the next page. Remember that when you remove a statement, you may remove the last branch to a label, and that when you turn an if into a plain goto, you may make the following statements unreachable. Assume no program has more than 10000 statements.

Example 1:

Input	Output
if $\mathrm{x}>=11$ goto L2	if $\mathrm{x}>=11$ goto L2
L1	$\mathrm{z}=$
$\mathrm{z}=$	L2
if $\mathrm{x}>=20$ goto L1	
L2	

Example 2:

Example 3:

Input	Output
$\mathrm{x}=$	$\mathrm{x}=$
if x >= 11 goto L100	if x > $=11$ goto L100
L2	L2
$\mathrm{y}=$	$\mathrm{y}=$
if x >= 12 goto L102	$\mathrm{z}=$
$\mathrm{z}=$	if y >= 100 goto L101
if y >= 100 goto L101	goto L2
if x <= 20 goto L2	L100
L102	$\mathrm{r}=$
q =	L101
goto L100	
L100	
$\mathrm{r}=$	
L101	

3. [D. Garcia] One can obtain a nice fractal pattern by starting with a set of directed line segments (a directed line segment has one end that is designated the "start" and one the "end"), then "breaking" each line segment, and repeating this operation some specified number of times. Breaking a directed line segment means treating it as the hypotenuse of an isosceles right triangle and replacing it with the two segments that make up the other two sides of this triangle:

This example shows two steps. The line segment at the left (the arrow shows direction) is first broken into two. The break is to the left relative to the direction of the arrow. Next each of the two resulting segments is broken to form the figure on the right. The dashed lines show the lines that were just broken in each case (the dashed lines are not part of the output).

The input to your program will consist of five numeric words in free form: $x_{0} y_{0} x_{1} y_{1} B$. $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ are the starting and ending points of the initial line segment. The x_{i} are floating-point numbers in general. B is an integer giving the number times to break all the line segments. Zero breaks produce just the single input line as output. One break produces something like the middle figure in the example above, and two breaks produces something like the right figure.

Your output will consist of lines giving the starting and ending coordinates of each resulting line segment, one segment per line, in the format

$$
\begin{array}{lllll}
x_{0} & y_{0} & x_{1} & y_{1} & \mathrm{v}
\end{array}
$$

(that's a literal letter ' v ' at the end). After all the lines comes the single line

```
done
```

Don't forget that last line. There are examples on the next page. (For your viewing pleasure, if you create a file, foo, containing a copy of the file ${ }^{\text {ctest/lib/fractal. pro }}$ followed by the output of your program, you can view the result using ghostscript:

```
gs foo
```

or print it.)

Example 1:

Input	Output
00300	$0.00000 \mathrm{e}+000.00000 \mathrm{e}+003.00000 \mathrm{e}+000.00000 \mathrm{e}+00 \mathrm{v}$ done

Example 2:

Input		Output	
00301	$0.00000 \mathrm{e}+00$ $0.00000 \mathrm{e}+00$ $1.50000 \mathrm{e}+00$ $1.50000 \mathrm{e}+00$ $1.50000 \mathrm{e}+00$ $3.00000 \mathrm{e}+00$	$0.00000 \mathrm{e}+00 \mathrm{v}$	
done			

Example 3:

Input	Output		
00302	$0.00000 \mathrm{e}+00$	$0.00000 \mathrm{e}+00$	$0.00000 \mathrm{e}+00$

4. There are numerous systems today that provide ways for laying text out in tabular format. Typically, one specifies a format for each column (whether text is centered, leftjustified, or right-justified), and then gives a sequence of rows, with the text for each column in that row. The program then figures out how wide each column must be based on the largest width of the text for that column over all the rows, and prints the text for each column of each row according to the specified format. This is your task.

The input is in free form. It begins with a specification of the form

$$
\backslash \text { begin }\{\text { tabular }\}\left\{s_{0} f_{1} s_{1} f_{2} \cdots f_{n} s_{n}\right\}
$$

Each s_{i} is either missing or is the single character \mid. Each f_{i} is either the single character $1, r$, or c. The specification is a single word with no embedded blanks. Next, there are zero or more text lines of the form

$$
\text { Text }_{1} \& \text { Text }_{2} \& \cdots \text { \& Text }{ }_{n} \backslash \backslash
$$

Each Text ${ }_{i}$ consists of a sequence of words that don't include \& or \backslash characters. The ampersand and double-backslash symbols are themselves words (separated from any surrounding text words by whitespace). After all the rows, there is the closing sequence (again one word):

```
\end{tabular}
```

Your output consists of a table with n columns. Each row is formatted from one of the text lines according to the specification at the beginning as follows. Each s_{i} is copied to an output line literally. Each f_{i} is replaced by the corresponding Text ${ }_{i}$, but with each sequence of whitespace squeezed down to a single blank. The size of f_{i} is equal to the length of the longest Text $_{i}$ (after squeezing that is), plus 2 extra characters: a blank at the left and the right. If f_{i} is ' l ', the text is left justified (after the leading blank)-that is, blanks are added after the text as needed to fill up the field. If f_{i} is ' r ', the text is right justified, with blanks added to the left to fill the field. If f_{i} is ' c ', blanks are added to the left and right (with one more to the left, if there are not an even number to add) so as to center the field. Because of the blanks added at the beginning and end, the first and last characters of each field will be blank, and adjacent fields will be separated by two blanks, or a blank, vertical bar, and a blank.

The result is illustrated in the example on the next page.

Example 1:

Input	Output			
\begin\{tabular\}\{l\|c	r\} } $&{\text { Jack }} &{\text { Professor }} &{70,000} \\ {\text { Jack \& Professor \& 70,000 \\ }} &{\text { Herman }} &{\text { CE0 }} &{350,000} \\ {\text { Herman \& CEO \& 350,000 \\ }} &{\text { Susan }} &{\text { Personal Trainer }} &{60,000} \\ {\text { Susan \& Personal }} &{ } &{ } &{ } \\ {\text { Trainer \& 60,000 \\ }} &{ } &{ } &{ } \\ {\text { lend\{tabular\} }} &{ } &{ } &{ }$			

5. One of the functions performed by a typical GUI-building package (GUI: Graphical User Interface) is to lay out a set of subwindows within some larger window (in Java, for example, this is the job of LayoutManagers). In this problem you'll build part of such a facility. The basic units we deal with are what we'll call windows, each of which is a rectangle whose sides are either vertical or horizontal (no slanting lines). A window may be a subwindow of a another, in which case it lies entirely inside the other (which is called its parent).

Here, we'll do a simplified layout manager. We start with an empty window containing no children. At each point in the process, there will be a rectangular, unassigned area of the window, initially all of it. We can add a child window to the top, bottom, left, or right of this unassigned area. When adding a window to the top or bottom, we must specify its height, but not width. When adding to the left or right, we specify width, but not height. The idea is that the child is positioned at the indicated side of the unassigned area, and that it expands in width (on the top and bottom) or height (on the left or right) to fill the whole side of the unassigned area. After doing this, we end up with a hierarchy of nested windows. We'll assume there is one outermost window containing all the rest. To complete the process, we specify both a height and width for this outermost window.

For example, consider 7 windows: $\# 1$ is the outermost, size 400×200 (width times height). First, we place window $\# 2$ with height 50 on the top of $\# 1$. Then we put window $\# 3$ with width 100 on the left of $\# 2$. Then we place window $\# 4$ with width 150 on the left of the remaining space of $\# 2$. Next, we put window $\# 5$ with width 120 on the left of the remainder of window $\# 1$. Then, window $\# 6$ on the right of $\# 1$ with width 140 . Finally, we put window $\# 7$ at the bottom of $\# 1$ with height 50 . Here is the result:

Window $\# 2$ here encloses $\# 3$ and $\# 4$, and window $\# 1$ includes all the rest. Windows \#3-7 are all unassigned space, since they contain no children.

Input to your program is in free form. It begins with two integers, W, and H, the width and height of window $\# 1$, which is the outer window. Next there are entries for each of the remaining windows, each of the form

$$
N P s d
$$

where N is the number of the window, P the number of its parent, s the dimension (width or height, depending on placement) of the window, and d is one of the letters $\mathrm{T}, \mathrm{B}, \mathrm{L}$, or R, for top, bottom, left, or right. Assume that window numbers are consecutive starting at 2 for the first non-top-level window, and that parents always precede children.

The output consists of a list of the number, coordinates of the lower-left corner, width, and height of each window. Use the format shown in the example below, which shows the input and results from the preceding example.

Input	Output			
400	200	1.400×200 @ (0,0)		
2	1	50 T		
3	2	100 L		
4	2	150 L		
5	1	2. 400×50 @ $(0,150)$		
6	1	140 R		
7	1	50 B		3. 100×50 @ $(0,150)$
:---				

6. The phrase propositional calculus is just a pretentious term for a logic involving simple logical formulae containing variables and the logical connectives ' $\&$ ' (and), ' I ' (or), ' \sim ' (not), and > (implies). For convenient input, we can write a formula such as '(x\&y) > ($\sim \mathrm{x} \mid \mathrm{y}$)' in prefix form like this:
$>\left.\& x y\right|^{\sim} x y$
that is, each (sub)expression is either a simple variable or is an operator followed by one or two operand subexpressions in the same format (recursively). For simplicity, assume that all logical variables are one-character lower-case letters. The presence or absence of whitespace has no effect on the meaning of the expression.

An axiom schema has the same format, but may also contain upper-case letters, which we'll call pattern variables:

$>\mathrm{A}$

$>B \mathrm{~A}$
An axiom schema matches a formula \mathcal{F} if one can substitute for all its pattern variables so as to get \mathcal{F}. Thus, ' $>\mathrm{A}>\mathrm{B} \mathrm{A}^{\prime}$ matches ' $>\mathrm{x}>\mathrm{x}$ x' or ' $>$ \& $\mathrm{x} \mathrm{z}>\mathrm{y} \& \mathrm{x} \mathrm{z}^{\prime}$ but it does not match ' $>\mathrm{x}$ \& x x' or ' $>\mathrm{x}>\mathrm{x} \mathrm{y}^{\prime}$. A formula (i.e., not a schema) matches another formula if they are identical. We never match one schema to another.

A proof with k givens is a sequence of axiom schemata and formulas, $X_{1} \cdots X_{n}$, such that for all $1 \leq i \leq n$, either

- $i \leq k$ (i.e., " X_{i} is a given."), or
- There is some $j<i$ such that X_{j} matches X_{i} (X_{i} must be a formula, not a schema), or
- For some $j<i$ and $k<i, X_{j}$ is the formula ($>X_{k} X_{i}$). (This is the inference rule known as modus ponens: if A is true and A implies B, then infer B is true.)

Write a program that reads in a sequence of formulae and indicates whether it is a proof according to these rules. The givens are separated from the rest of the proof by a single underscore, ' \quad ', which will always appear. The output consists of an echo of the proof up to either its end, if it is valid, or the first erroneous line, if it is not, with a message about whether it checks. Use the format illustrated in the examples. [Hint: The conventional meanings of the connectives is irrelevant in this problem.]

Example 1:

Input	Output
$>\mathrm{A}>\mathrm{B} \mathrm{A}$	$>\mathrm{A}>\mathrm{B} \mathrm{A}$
x	x
-	$-\quad>\mathrm{x}>\mathrm{y} \mathrm{x}$
$>\mathrm{x}$	$>\mathrm{y} \mathrm{x}$
$>\mathrm{y} \mathrm{x}$	*Proof OK*
$>\mathrm{y}$	

Example 2:

Input	Output
$>\mathrm{A} \sim \mathrm{A}$	$>\mathrm{A} \sim \mathrm{A}$
x	x
$-\quad \mathrm{Px} \sim \mathrm{y}$	$>\mathrm{x} \sim \mathrm{y}$
\sim_{y}	*Error in proof*

Example 3:

7. In my recent interstellar travels, I had occasion to visit the ancient feudal people of Outer Xyyyy. Their society sets great store on social precedence. Through a complex set of customs, individuals rank themselves relative to each other, but the customs do not always guarantee that individuals will agree as to their respective ranks. At parties, it is the job of the host to determine his guests' ideas of rank and to specify arrival times on their invitations that guarantee to the extent possible that whenever individual A believes himself of higher rank than B, he arrives at the party later than B. It is awkward when both A and B believe themselves to be of higher rank, or when A and B don't know each other, but A believes himself above C who believes himself about B, and B believes himself above D who believes himself above A. In all such cases, custom reluctantly allows for all the individuals involved to arrive simultaneously. In the absence of this sort of disagreement, however, the higher-ranking individual arrives strictly later. When one individual does not know his rank relative to another, he does not care when he arrives relative to the other (sooner, later, or simultaneously).

Since parties are typically large, and hosts could use some help. Your problem is to devise a system to schedule the arrival of guests. Groups of guests should arrive at intervals of 1 decicronon (a unit of time out there). The idea is for each guest to arrive in some group as early as possible while obeying the constraints described above.

The input will consist of one or more sequences of names. A name is a word consisting only of letters, digits, and underscores. A word consisting of a single backslash (\backslash) marks the end of each sequence. A sequence consisting of words $N_{0} N_{1} \cdots N_{k}$, where $k \geq 0$, indicates that N_{0} is a guest and that he considers his rank to be higher than that of $N_{1}, N_{2}, \ldots, N_{k}$, who are also guests. (It says nothing about the opinions of N_{1}, \ldots, N_{k}.) Every guest will be N_{0} in exactly one sequence.

The output will consist of groups of guests numbered by arrival time, with the first group arriving at time 0 decicronons. Use the format shown in the example on the next page. Within a single group, print the names of guests in the order they appear as instances of N_{0} (that is, if Xerccx appears at the beginning of one input sequence, and Alphrrt at the beginning of a later input sequence, and they are both to arrive at the same time, print Xercce first.)

Example 1:

Input	Output
Glorrk Groggg Alphrrt Kzyxx	0. Marvin Tlll
Qqqrt \	1. Groggg
Alphrrt Kzyxx Groggg \} $&{\text { 2. Alphrrt Kzyxx Zwort }} \\ {\text { Qqqrt Alphrrt \ }} &{\text { 3. Qqqrt }} \\ {\text { Kzyxx Zwort \ }} &{\text { 4. Glorrk }} \\ {\text { Zwort Alphrrt \} } &{ } \\ {\text { Marvin \ }} &{ } \\ {\text { Groggg Tllı \ Tlll \ }}\end{array}$	

Example 2:

Input	Output
Zwort \ Alphrrt \ Kzyxx \} $&{0 . \text { Zwort Alphrrt Kzyxx }}$	

8. Parties arriving at the famous Le Dindon Vert restaurant in East Biscuit, New Jersey are seated as soon as a table becomes available. Unfortunately, due to staffing problems, the restaurant's service tends to slow down considerably as more tables are filled.

The rate at which a party progresses through its meal at any time is $1 /(1+0.5(N-1))$ of the rate at which a single party, alone in the restaurant, progresses, where N is the number of parties in the restaurant. As people leave, in other words, the rate of everybody else's progress increases. So, if a lone party can eat dinner in 1 hour once seated, then two can eat it in 1.5 hours. If I arrive at an empty restaurant and after $1 / 2$ hour, another party arrives, I will take a total of 1.25 hours to eat (0.5 hour at full speed, and 0.75 hours at $2 / 3$ speed).

Furthermore, parties differ as to tolerance for waiting to be seated, and in the time they have to eat. They will give up and leave the waiting line after some period of time after their arrival that we can call their waiting threshold, and they will leave the restaurant abruptly, whether or not they are finished, at some point after their arrival that we may as well call their sitting threshold.

Given a set of arrival times and thresholds for a sequence of parties arriving at Le Dindon Vert, you are to compute the total number of parties that reach one of their thresholds and leave, and the average waiting time and average total times spent over all parties. These averages are to include parties who give up waiting and are never seated (whose waiting time and total time are both their waiting threshold) and parties who leave before finishing (whose total time is just their sitting threshold).

Input is in free form. First, there is an integer, N, giving the number of tables. Next is an integer, E, giving the eating time of a party alone in the restaurant (in minutes). The rest of the input is a sequence of triples of integers. Each triple, $T W S$, gives the arrival time of a party (in minutes since opening time), their waiting threshold (in minutes since arrival), and their sitting threshold (in minutes since arrival). There may be any number of inputs, but you may assume that the values of T strictly increase.

Output should be in the format illustrated in the example on the next page. Internal calculations should be conducted precisely (so people can leave at fractional times), but all time averages that you report are to be rounded to the nearest minute.

Example: Input	Comments
360	
015120	Party 1. Eats 30 minutes at full speed +1 minute with 2 parties at $2 / 3$ speed $+582 / 3$ minutes with 3 parties at $1 / 2$ speed. Leaves at $892 / 3$ past opening time.
3015120	Party 2. Eats 1 minute with 2 parties at $2 / 3$ speed, and $1182 / 3$ minutes with 3 parties at $1 / 2$ speed. Leaves at 149 2/3.
3115160	Party 3. Eats 120 minutes with 3 parties at $1 / 2$ speed. Leaves at 151.
4515120	Party 4. Gives up after waiting 15 minutes.
4660120	Party 5. Waits $432 / 3$ minutes. Eats for 60 minutes with 3 parties at $1 / 2$ speed, then $11 / 3$ minutes with 2 parties at $2 / 3$ speed, then 15 minutes alone. Has to leave at 166 because of sitting threshold.

Output

```
There were 5 parties.
Average waiting time: }12\mathrm{ minutes
Average total time: }93\mathrm{ minutes
Never seated: 1
Left before finishing: 1
```

