
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Programming Contest P. N. Hilfinger

Fall 2000

2000 Programming Problems

To set up your account, execute

source ~ctest/bin/setup

in all shells that you are using. (This is for those of you using the C-shell. Others will have
to examine this file and do the equivalent for their shells.)

This booklet should contain eight problems on 18 pages. You have 5 hours in which
to solve as many of them as possible. Put each complete C solution into a file N.c,
each complete C++ solution into a file N.cc, and each complete Java program into a file
N.java, where N is the number of the problem. Each program must reside entirely in a
single file. In Java, the class containing the main program for problem N must be named
PN . Each C/C++ file should start with the line

#include "contest.h"

and must contain no other #include directives, except as indicated below. Upon comple-
tion, each program must terminate by calling exit(0) (or System.exit(0) in Java).

Aside from files in the standard system libraries and those we supply, you may not use
any pre-existing computer-readable files to supply source or object code; you must type in
everything yourself. Selected portions of the standard g++ class library are included among
of the standard libraries you may use: specifically, the headers string, vector, iostream,
iomanip, and fstream. Likewise, you can use the standard C I/O libraries (in either C or
C++), and the math library (header math.h). In Java, you may use the standard packages
java.lang, java.io, and java.util. You may not use utilities such as yacc, bison, lex,
or flex to produce programs. Your programs may not create other processes (as with
the system, popen, fork, or exec series of calls). You may use any inanimate reference
materials you desire, but no people. You can be disqualified for breaking these rules.

When you have a solution to problem number N that you wish to submit, use the
command

submit N

1

2000 Programming Problems 2

from the directory containing N.c, N.cc, or N.java. Before actually submitting your
program, submit will first compile it and run it on one sample input file. No submission
that is sent after the end of the contest will count. You should be aware that submit takes
some time before it actually sends a program. In an emergency, you can use

submit -f N

which submits problem N without any checks.
You will be penalized for incorrect submissions that get past the simple test adminis-

tered by submit, so be sure to test your programs (if you get a message from submit saying
that it failed, you will not be penalized). All tests will use the compilation command

contest-gcc N

followed by one or more execution tests of the form (Bourne shell):

./N < test-input-file > test-output-file 2> junk-file

which sends normal output to test-output-file and error output to junk-file. The output
from running each input file is then compared with a standard output file, or tested by a
program in cases where the output is not unique. In this comparison, leading and trailing
blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise,
the comparison is literal; be sure to follow the output formats exactly. It will do no good
to argue about how trivially your program’s output differs from what is expected; you’d be
arguing with a program. Make sure that the last line of output ends with a newline. Your
program must not send any output to stderr; that is, the temporary file junk-file must be
empty at the end of execution. Each test is subject to a time limit of about 45 seconds.
You will be advised by mail whether your submissions pass.

The command contest-gcc N , where N is the number of a problem, is available to
you for developing and testing your solutions. For C and C++ programs, it is equivalent
to

gcc -Wall -o N -O -g -Iour-includes N.* -lstdc++ -lm

For Java programs, it is equivalent to

javac -g N N.java

followed by a command that creates an executable file called N that runs the command

java PN

when executed (so that it makes the execution of Java programs look the same as execution
of C/C++ programs). The our-includes directory contains contest.h for C/C++, which
also supplies the standard header files. The files in ~ctest/submission-tests/N , where

2000 Programming Problems 3

N is a problem number, contain the input files and standard output files that submit uses
for its simple tests.

All input will be placed in stdin. You may assume that the input conforms to any
restrictions in the problem statement; you need not check the input for correctness. Con-
sequently, you are free to use scanf to read in numbers and strings and gets to read in
lines.

Terminology. The term free-form input indicates that input numbers, words, or tokens
are separated from each other by arbitrary whitespace characters. By standard C/UNIX
convention, a whitespace character is a space, tab, return, newline, formfeed, or vertical
tab character. A word or token, accordingly, is a sequence of non-whitespace characters
delimited on each side by either whitespace or the beginning or end of the input file.

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by
the number of problems solved. Where two or more contestants complete the same number
of problems, they will be ranked by the total time required for the problems solved. The
total time is defined as the sum of the time consumed for each of the problems solved.
The time consumed on a problem is the time elapsed between the start of the contest and
successful submission, plus 20 minutes for each unsuccessful submission, and minus the
time spent judging your entries. Unsuccessful submissions of problems that are not solved
do not count. As a matter of strategy, you can derive from these rules that it is best to
work on the problems in order of increasing expected completion time.

Protests. Should you disagree with the rejection of one of your problems, first prepare
a file containing the explanation for your protest, and then use the protest command
(without arguments). It will ask you for the problem number, the submission number
(submission 1 is your first submission of a problem, 2 the second, etc.), and the name
of the file containing your explanation. Do not protest without first checking carefully;
groundless protests will be result in a 5-minute penalty (see Scoring above).

Notices. During the contest, the Web page at URL

http://http.cs.berkeley.edu/~hilfingr/programming-contest/announce.html

will contain any urgent announcements, plus a running scoreboard showing who has solved
what problems. Sometimes, it is useful to see what problems others are solving, to give
you a clue as to what is easy. Be sure to reload this page from time to time, to keep
information up to date.

2000 Programming Problems 4

1. A puzzle from the soon-to-be famous Garcia collection presents you with a five-by-five
array of square push-buttons, some of which are lit, and asks you to find a set of moves
that turn them all off. A move consists of pushing one of the buttons, which has the effect
of flipping it and each of its north, south, east, and west neighbors (if any: one or two of
these neighbors will be missing on the edges of the puzzle). Here, flipping a button means
turning it off if it is on and vice-versa. You are to write a program that reads an initial
configuration of lights and computes a set of moves to turn them all off. I say “set” rather
than “sequence” because the flipping operations commute with each other and performing
the same flip twice is an identity operation. Therefore, all we need to know is which set of
lights to press, not the order in which to press them. There are thus 225 possible sets of
moves.

An input to your program will consist of five rows of five characters, each character a
‘1’ or a ‘0’, with the rows separated by whitespace. A ‘1’ indicates a light that is on, and
‘0’ a light that is off. Output consists of an echo of the input, and a solution that also
consists of of five rows of five ‘1’s and ‘0’s, with ‘1’ this time indicating a button that must
be pushed, and ‘0’ a button not pushed. Use the format shown in the examples below.

Example 1:

Input Output

01000 11100

01000

00000 00000

Solution to:

01000

11100

01000

00000

00000

is to push:

00000

01000

00000

00000

00000

Example 2:

Input Output

00000

00000

10101

10101

01110

Solution to:

00000

00000

10101

10101

01110

is to push:

00100

01110

10001

00000

00100

2000 Programming Problems 5

2. A certain compiler writer wants to eliminate redundant tests. For this purpose, he
takes an exceedingly abstract view of a program language, in which all statements have
one of the forms

LN A statement label.
x = An assignment of some unknown quantity to

variable x.
goto LN Unconditional branch to label
if x <= M goto LN Branch to LN iff variable x ≤ M .
if x >= M goto LN Branch to LN iff variable x ≥ M .

Here, N and M are ordinary decimal numerals, with 0 < N < 1000, and x is a variable
name: a single lower-case letter. You may assume that each instruction is on one, separate
line, and that there is whitespace space separating each if, goto, variable name, and
numeral M from the surrounding tokens.

After a sequence like

if x <= 2 goto L3

some statements

if x <= 4 goto L4

we know as long as x is not assigned to in some statements and there are no labels in some

statements, the second test is redundant and can be removed. In general,

• If the only ways to reach a conditional statement from the beginning of the program
all guarantee that its condition is true, we replace the statement with a plain goto.

• If the only ways to reach a conditional statement from the beginning of the program
all guarantee that the condition is false, we can remove the statement entirely.

• A label with no branches to it may be removed.

• All statements between an unconditional goto and the next label are unreachable
and can be removed.

You are to use these rules repeatedly to simplify a given program as much as possible,
printing the results in the same format as the input, as shown in the examples on the next
page. Remember that when you remove a statement, you may remove the last branch
to a label, and that when you turn an if into a plain goto, you may make the following
statements unreachable. Assume no program has more than 10000 statements.

2000 Programming Problems 6

Example 1:
Input Output

if x >= 11 goto L2

L1

z =

if x >= 20 goto L1

L2

if x >= 11 goto L2

z =

L2

Example 2:
Input Output

if x >= 11 goto L2

L1

x =

if x >= 20 goto L1

L2

if x >= 11 goto L2

L1

x =

if x >= 20 goto L1

L2

Example 3:
Input Output

x =

if x >= 11 goto L100

L2

y =

if x >= 12 goto L102

z =

if y >= 100 goto L101

if x <= 20 goto L2

L102

q =

goto L100

L100

r =

L101

x =

if x >= 11 goto L100

L2

y =

z =

if y >= 100 goto L101

goto L2

L100

r =

L101

2000 Programming Problems 7

3. [D. Garcia] One can obtain a nice fractal pattern by starting with a set of directed line
segments (a directed line segment has one end that is designated the “start” and one the
“end”), then “breaking” each line segment, and repeating this operation some specified
number of times. Breaking a directed line segment means treating it as the hypotenuse of
an isosceles right triangle and replacing it with the two segments that make up the other
two sides of this triangle:

(0,0) (3,0) (0,0) (3,0)

(1.5,1.5)

(0,0) (3,0)

(1.5,1.5)(0,1.5) (1.5,3)

This example shows two steps. The line segment at the left (the arrow shows direction) is
first broken into two. The break is to the left relative to the direction of the arrow. Next
each of the two resulting segments is broken to form the figure on the right. The dashed
lines show the lines that were just broken in each case (the dashed lines are not part of the
output).

The input to your program will consist of five numeric words in free form: x0 y0 x1 y1 B.
(x0, y0) and (x1, y1) are the starting and ending points of the initial line segment. The xi

are floating-point numbers in general. B is an integer giving the number times to break
all the line segments. Zero breaks produce just the single input line as output. One break
produces something like the middle figure in the example above, and two breaks produces
something like the right figure.

Your output will consist of lines giving the starting and ending coordinates of each
resulting line segment, one segment per line, in the format

x0 y0 x1 y1 v

(that’s a literal letter ‘v’ at the end). After all the lines comes the single line

done

Don’t forget that last line. There are examples on the next page. (For your viewing
pleasure, if you create a file, foo, containing a copy of the file ~ctest/lib/fractal.pro

followed by the output of your program, you can view the result using ghostscript:

gs foo

or print it.)

2000 Programming Problems 8

Example 1:
Input Output

0 0 3 0 0 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 v

done

Example 2:
Input Output

0 0 3 0 1 0.00000e+00 0.00000e+00 1.50000e+00 1.50000e+00 v

1.50000e+00 1.50000e+00 3.00000e+00 0.00000e+00 v

done

Example 3:
Input Output

0 0 3 0 2 0.00000e+00 0.00000e+00 0.00000e+00 1.50000e+00 v

0.00000e+00 1.50000e+00 1.50000e+00 1.50000e+00 v

1.50000e+00 1.50000e+00 3.00000e+00 1.50000e+00 v

3.00000e+00 1.50000e+00 3.00000e+00 0.00000e+00 v

done

2000 Programming Problems 9

4. There are numerous systems today that provide ways for laying text out in tabular
format. Typically, one specifies a format for each column (whether text is centered, left-
justified, or right-justified), and then gives a sequence of rows, with the text for each
column in that row. The program then figures out how wide each column must be based
on the largest width of the text for that column over all the rows, and prints the text for
each column of each row according to the specified format. This is your task.

The input is in free form. It begins with a specification of the form

\begin{tabular}{s0f1s1f2 · · · fnsn}

Each si is either missing or is the single character |. Each fi is either the single character
l, r, or c. The specification is a single word with no embedded blanks. Next, there are
zero or more text lines of the form

Text1 & Text2 & · · · & Textn \\

Each Texti consists of a sequence of words that don’t include & or \ characters. The amper-
sand and double-backslash symbols are themselves words (separated from any surrounding
text words by whitespace). After all the rows, there is the closing sequence (again one
word):

\end{tabular}

Your output consists of a table with n columns. Each row is formatted from one of
the text lines according to the specification at the beginning as follows. Each si is copied
to an output line literally. Each fi is replaced by the corresponding Texti, but with each
sequence of whitespace squeezed down to a single blank. The size of fi is equal to the
length of the longest Texti (after squeezing that is), plus 2 extra characters: a blank at the
left and the right. If fi is ‘l’, the text is left justified (after the leading blank)—that is,
blanks are added after the text as needed to fill up the field. If fi is ‘r’, the text is right
justified, with blanks added to the left to fill the field. If fi is ‘c’, blanks are added to the
left and right (with one more to the left, if there are not an even number to add) so as to
center the field. Because of the blanks added at the beginning and end, the first and last
characters of each field will be blank, and adjacent fields will be separated by two blanks,
or a blank, vertical bar, and a blank.

The result is illustrated in the example on the next page.

2000 Programming Problems 10

Example 1:
Input Output

\begin{tabular}{l|c|r}

Jack & Professor & 70,000 \\

Herman & CEO & 350,000 \\

Susan & Personal

Trainer & 60,000 \\

\end{tabular}

Jack | Professor | 70,000

Herman | CEO | 350,000

Susan | Personal Trainer | 60,000

2000 Programming Problems 11

5. One of the functions performed by a typical GUI-building package (GUI: Graphical
User Interface) is to lay out a set of subwindows within some larger window (in Java, for
example, this is the job of LayoutManagers). In this problem you’ll build part of such
a facility. The basic units we deal with are what we’ll call windows, each of which is a
rectangle whose sides are either vertical or horizontal (no slanting lines). A window may
be a subwindow of a another, in which case it lies entirely inside the other (which is called
its parent).

Here, we’ll do a simplified layout manager. We start with an empty window containing
no children. At each point in the process, there will be a rectangular, unassigned area of
the window, initially all of it. We can add a child window to the top, bottom, left, or right
of this unassigned area. When adding a window to the top or bottom, we must specify its
height, but not width. When adding to the left or right, we specify width, but not height.
The idea is that the child is positioned at the indicated side of the unassigned area, and
that it expands in width (on the top and bottom) or height (on the left or right) to fill the
whole side of the unassigned area. After doing this, we end up with a hierarchy of nested
windows. We’ll assume there is one outermost window containing all the rest. To complete
the process, we specify both a height and width for this outermost window.

For example, consider 7 windows: #1 is the outermost, size 400 × 200 (width times
height). First, we place window #2 with height 50 on the top of #1. Then we put window
#3 with width 100 on the left of #2. Then we place window #4 with width 150 on the left
of the remaining space of #2. Next, we put window #5 with width 120 on the left of the
remainder of window #1. Then, window #6 on the right of #1 with width 140. Finally,
we put window #7 at the bottom of #1 with height 50. Here is the result:

#1
unassigned

#3 #4 #2 unassigned

#5 #6

#7

(0,0)

(0,150)

(0,200) (100,200) (250,200) (400,200)

(400,150)
(100,150)

(120,0)

(120,50)

(260,0)

Window #2 here encloses #3 and #4, and window #1 includes all the rest. Windows
#3–7 are all unassigned space, since they contain no children.

Input to your program is in free form. It begins with two integers, W , and H, the
width and height of window #1, which is the outer window. Next there are entries for
each of the remaining windows, each of the form

2000 Programming Problems 12

N P s d

where N is the number of the window, P the number of its parent, s the dimension (width
or height, depending on placement) of the window, and d is one of the letters T, B, L, or
R, for top, bottom, left, or right. Assume that window numbers are consecutive starting
at 2 for the first non-top-level window, and that parents always precede children.

The output consists of a list of the number, coordinates of the lower-left corner, width,
and height of each window. Use the format shown in the example below, which shows the
input and results from the preceding example.

Input Output

400 200

2 1 50 T

3 2 100 L

4 2 150 L

5 1 120 L

6 1 140 R

7 1 50 B

1. 400x200 @ (0,0)

2. 400x50 @ (0,150)

3. 100x50 @ (0,150)

4. 150x50 @ (100,150)

5. 120x150 @ (0,0)

6. 140x150 @ (260,0)

7. 140x50 @ (120,0)

2000 Programming Problems 13

6. The phrase propositional calculus is just a pretentious term for a logic involving simple
logical formulae containing variables and the logical connectives ‘&’ (and), ‘|’ (or), ‘~’ (not),
and > (implies). For convenient input, we can write a formula such as ‘(x&y) > (~x | y)’
in prefix form like this:

>&xy|~xy

that is, each (sub)expression is either a simple variable or is an operator followed by one
or two operand subexpressions in the same format (recursively). For simplicity, assume
that all logical variables are one-character lower-case letters. The presence or absence of
whitespace has no effect on the meaning of the expression.

An axiom schema has the same format, but may also contain upper-case letters, which
we’ll call pattern variables:

> A

> B A

An axiom schema matches a formula F if one can substitute for all its pattern variables so
as to get F . Thus, ‘> A > B A’ matches ‘> x > x x’ or ‘> & x z > y & x z’ but it does
not match ‘> x & x x’ or ‘> x > x y’. A formula (i.e., not a schema) matches another
formula if they are identical. We never match one schema to another.

A proof with k givens is a sequence of axiom schemata and formulas, X1 · · ·Xn, such
that for all 1 ≤ i ≤ n, either

• i ≤ k (i.e., “Xi is a given.”), or

• There is some j < i such that Xj matches Xi (Xi must be a formula, not a schema),
or

• For some j < i and k < i, Xj is the formula (> Xk Xi). (This is the inference rule
known as modus ponens: if A is true and A implies B, then infer B is true.)

Write a program that reads in a sequence of formulae and indicates whether it is a proof
according to these rules. The givens are separated from the rest of the proof by a single
underscore, ‘_’, which will always appear. The output consists of an echo of the proof up
to either its end, if it is valid, or the first erroneous line, if it is not, with a message about
whether it checks. Use the format illustrated in the examples. [Hint: The conventional
meanings of the connectives is irrelevant in this problem.]

2000 Programming Problems 14

Example 1:

Input Output

> A > B A

x

_

> x

> y x

> y

x

> A > B A

x

_

> x > y x

> y x

Proof OK

Example 2:

Input Output

> A ~A

x

_

> x ~y

~y

> A ~ A

x

_

> x ~ y

Error in proof

Example 3:

Input Output

> A > B A

> > A B

> > A > B C

> A C

_

> x > x x

> > x > x x

> > x > > x x x

> x x

> > x > > x x x

> x x

> x > > x x x

> x x

> A > B A

> > A B > > A > B C > A C

_

> x > x x

> > x > x x > > x > > x x x > x x

> > x > > x x x > x x

> x > > x x x

> x x

Proof OK

2000 Programming Problems 15

7. In my recent interstellar travels, I had occasion to visit the ancient feudal people of
Outer Xyyyy. Their society sets great store on social precedence. Through a complex set
of customs, individuals rank themselves relative to each other, but the customs do not
always guarantee that individuals will agree as to their respective ranks. At parties, it is
the job of the host to determine his guests’ ideas of rank and to specify arrival times on
their invitations that guarantee to the extent possible that whenever individual A believes
himself of higher rank than B, he arrives at the party later than B. It is awkward when
both A and B believe themselves to be of higher rank, or when A and B don’t know
each other, but A believes himself above C who believes himself about B, and B believes
himself above D who believes himself above A. In all such cases, custom reluctantly
allows for all the individuals involved to arrive simultaneously. In the absence of this sort
of disagreement, however, the higher-ranking individual arrives strictly later. When one
individual does not know his rank relative to another, he does not care when he arrives
relative to the other (sooner, later, or simultaneously).

Since parties are typically large, and hosts could use some help. Your problem is to
devise a system to schedule the arrival of guests. Groups of guests should arrive at intervals
of 1 decicronon (a unit of time out there). The idea is for each guest to arrive in some
group as early as possible while obeying the constraints described above.

The input will consist of one or more sequences of names. A name is a word consisting
only of letters, digits, and underscores. A word consisting of a single backslash (\) marks
the end of each sequence. A sequence consisting of words N0 N1 · · · Nk, where k ≥ 0,
indicates that N0 is a guest and that he considers his rank to be higher than that of
N1, N2, . . . , Nk, who are also guests. (It says nothing about the opinions of N1, . . . , Nk.)
Every guest will be N0 in exactly one sequence.

The output will consist of groups of guests numbered by arrival time, with the first
group arriving at time 0 decicronons. Use the format shown in the example on the next
page. Within a single group, print the names of guests in the order they appear as instances
of N0 (that is, if Xerccx appears at the beginning of one input sequence, and Alphrrt at
the beginning of a later input sequence, and they are both to arrive at the same time, print
Xerccx first.)

2000 Programming Problems 16

Example 1:
Input Output

Glorrk Groggg Alphrrt Kzyxx

Qqqrt \

Alphrrt Kzyxx Groggg \

Qqqrt Alphrrt \

Kzyxx Zwort \

Zwort Alphrrt \

Marvin \

Groggg Tlll \ Tlll \

0. Marvin Tlll

1. Groggg

2. Alphrrt Kzyxx Zwort

3. Qqqrt

4. Glorrk

Example 2:
Input Output

Zwort \ Alphrrt \ Kzyxx \ 0. Zwort Alphrrt Kzyxx

2000 Programming Problems 17

8. Parties arriving at the famous Le Dindon Vert restaurant in East Biscuit, New Jersey
are seated as soon as a table becomes available. Unfortunately, due to staffing problems,
the restaurant’s service tends to slow down considerably as more tables are filled.

The rate at which a party progresses through its meal at any time is 1/(1+0.5(N −1))
of the rate at which a single party, alone in the restaurant, progresses, where N is the
number of parties in the restaurant. As people leave, in other words, the rate of everybody
else’s progress increases. So, if a lone party can eat dinner in 1 hour once seated, then
two can eat it in 1.5 hours. If I arrive at an empty restaurant and after 1/2 hour, another
party arrives, I will take a total of 1.25 hours to eat (0.5 hour at full speed, and 0.75 hours
at 2/3 speed).

Furthermore, parties differ as to tolerance for waiting to be seated, and in the time they
have to eat. They will give up and leave the waiting line after some period of time after
their arrival that we can call their waiting threshold, and they will leave the restaurant
abruptly, whether or not they are finished, at some point after their arrival that we may
as well call their sitting threshold.

Given a set of arrival times and thresholds for a sequence of parties arriving at Le
Dindon Vert, you are to compute the total number of parties that reach one of their
thresholds and leave, and the average waiting time and average total times spent over all
parties. These averages are to include parties who give up waiting and are never seated
(whose waiting time and total time are both their waiting threshold) and parties who leave
before finishing (whose total time is just their sitting threshold).

Input is in free form. First, there is an integer, N , giving the number of tables. Next is
an integer, E, giving the eating time of a party alone in the restaurant (in minutes). The
rest of the input is a sequence of triples of integers. Each triple, T W S, gives the arrival
time of a party (in minutes since opening time), their waiting threshold (in minutes since
arrival), and their sitting threshold (in minutes since arrival). There may be any number
of inputs, but you may assume that the values of T strictly increase.

Output should be in the format illustrated in the example on the next page. Internal
calculations should be conducted precisely (so people can leave at fractional times), but
all time averages that you report are to be rounded to the nearest minute.

2000 Programming Problems 18

Example:
Input Comments

3 60

0 15 120 Party 1. Eats 30 minutes at full speed + 1 minute with
2 parties at 2/3 speed + 58 2/3 minutes with 3 parties
at 1/2 speed. Leaves at 89 2/3 past opening time.

30 15 120 Party 2. Eats 1 minute with 2 parties at 2/3 speed, and
118 2/3 minutes with 3 parties at 1/2 speed. Leaves at
149 2/3.

31 15 160 Party 3. Eats 120 minutes with 3 parties at 1/2 speed.
Leaves at 151.

45 15 120 Party 4. Gives up after waiting 15 minutes.
46 60 120 Party 5. Waits 43 2/3 minutes. Eats for 60 minutes with

3 parties at 1/2 speed, then 1 1/3 minutes with 2 parties
at 2/3 speed, then 15 minutes alone. Has to leave at 166
because of sitting threshold.

Output

There were 5 parties.

Average waiting time: 12 minutes

Average total time: 93 minutes

Never seated: 1

Left before finishing: 1

