Comments on unknown channels
Kristen Woyach, Kate Harrison, Gireeja Ranade, and Anant Sahai
Wireless Foundations, EECS Department, UC Berkeley

1. Introduction
This paper is in tribute to Prof. Tom Cover whose seminal paper discovered degraded broadcast models while investigating unknown (compound) channels.

PROBLEM STATEMENT

Our problem:

Rateless coding:

- Block of m message bits
- Achieved rate

Minmax Regret

- R^f: differential rate allocation
- $eta$: outage capacity
- Regret: $\xi(R^f,\beta) = \int R^f(\beta) d\beta$

Comparing different metrics

- Gaussian, $\beta = 1$
- Gaussian, $\beta = 5$

Technical results

- Gaussian: Given rate region $P = P_{C_1} + \int_{C_0}^\infty P(\beta)e^{-\beta}d\beta$, $R(C_0) = \ln(1 + P_{C_1} + N(C_0)) + \beta C_0$, $R(\beta) = R(C_0) + \beta C_0 - \beta C_0$, the conjectured solution (true if lemma 3.3 holds for Gaussians as well) is that $\xi_m(C_0)$ is equal to $\frac{1}{\beta}$.

Optimal rate allocation and regret

Outage vs. regret

Deterministic: $\xi_m(C_0) = 1 \quad \forall C_0$.

Deterministic (slope = 0)

BEC (slope = -.95ln(10))

Gaussian, $\beta = \beta_{max} = 1$

Gaussian, $\beta_{max} = 5$

Contact information: Anant Sahai, 267 Cory Hall, Department of EECS, University of California, Berkeley, Berkeley, CA 94720 Email: sahai@eecs.berkeley.edu
This work was supported in part by the U.S. NSF (Graduate Research Fellowships, and NSF Grants CNS-034247, CNS-0932440)