When is crowdsourcing a good way to do work?

Single-sourcing
- Players submit “bids” to enter a crowdsourcing contest
- Players: Workforce is global and decentralized
- Tasks: Project-centric rather than job-centric work
- How can one find the best person for the job and incentivize him to attain peak performance?

Multi-sourcing
- With three or more players, only top two players are active

To Crowdsource or not to Crowdsource?

Gireeja Ranade* and Lav R. Varshney*

*Department of EECS, University of California, Berkeley
*IBM T. J. Watson Research Labs

Single Task Model
Crowdsourcing works well to complete a single task when:
- Managers are uncertain about the skills of workers
- Workers are diverse in their task skills
- Workers have low default effort levels

BUT, with many similar hardworking workers, crowdsourcing is not worth it.

Multiple Task Model

- 2n players, 2n tasks – Multi-player, multi-item auction
- 2 different types of tasks and players
- nt players, n tasks of each type

When is crowdsourcing a good way to do work?

“There is this misconception that you can sprinkle crowd wisdom on something and things will turn out for the best. That’s not true. It’s not magic.”

All-Pay Auction Model
Players submit “bids” to enter a crowdsourcing contest

\[A = \text{prize value} \]

\[c_i = \text{cost of effort for player } i, \; i = 1, 2. \text{ WLG, player 1 is stronger, i.e. } c_2 > c_1 \]

\[x_i = \text{bid submitted by player } i, \; i = 1, 2 \]

Player utilities given by

\[EU_1 = A P(x_1 > x_2) - x_1c_1 \]

\[EU_2 = A P(x_2 > x_1) - x_2c_2 \]

Equilibrium strategy (Hillman and Riley, 1989)

- Stronger player bids \(U(0, A/c_2) \)
- Weaker player bids \(U(0, A/c_2) \) with probability \(c_1/c_2 \) and bids 0 otherwise
- With three or more players, only top two players are active

Task Taxonomy

Model utility gained from task-completion

Conditions for positive task utility

Task-designer utility: function of task, players, bid & reward

\[U_{\text{task}} = f(\epsilon) - A \]

- **Selective** (e.g. software component design)
 \[f(\epsilon) = \max(x_1, x_2, \ldots, x_n) \]

- **Integrative** (e.g. information aggregation, idea generation) perhaps with coordination overhead
 \[f(\epsilon) = a \sum_{i=1}^{n} x_i, \quad \text{or} \quad f(\epsilon) = a \sum_{i=1}^{n} x_i - y_n, \; a, y > 0 \]

- **Involve market creation** (e.g. X PRIZE)

Utility depends on externalities, not player effort (e.g. no. of players, \(\phi \))

\[f(\epsilon) = \alpha n + \beta \]

- For instance, for a basic selective two-player task:
 \[EU_{\text{task}} = \frac{d_2x_1x_2}{c_2} - A \]

Single Task Model

Capture information difference between players & manager

- **Distance measure (cost)** between tasks & players, \(d_1 < d_2 \)
- **Manager** knowledge of players’ skills is noisy
- **Players** have better self knowledge
- **Managerial assignment** requires external motivation
- \(\theta \) denotes base effort
- **Competitions provide endogenous motivation**

\[EU_{\text{opt}} = A \left(\frac{\theta}{d_1} - 1 \right) \]

\[EU_{\text{man}} = A P(\text{right}) \frac{\theta}{d_1} + P(\text{wrong}) \frac{\theta}{d_2} - 1 \]

\[EU_{\text{ca}} = \frac{d_2x_1c_2}{d_2} - A \]

Multiple Task Model

- **2n players, 2n tasks** – Multi-player, multi-item auction
- **2 different types of tasks and players**
- nt players, n tasks of each type

With multiple, diverse tasks to complete:

- Crowdsourcing contests can perform as well as optimal assignment of workers to tasks for non-specialized tasks (i.e. if enough skilled players are available).
- **BUT**
 - Crowdsourcing contests can provide very low utility even with many strong players and just one weak player.
 - Crowdsourcing contests can perform badly for highly specialized tasks. Instead of pulling out highly-skilled workers from a crowd, crowdsourcing could lead to mediocre performance by everyone.