
Voice and Handwriting: Fateman Page 1 6/4/2004

Handwriting + Speech for Computer Entry of Mathematics
 Work in Progress

Richard Fateman
Computer Science Division

University of California
Berkeley CA, 94720-1776

Abstract

The entry of mathematics into a computer system
is important in a variety of contexts: educational
training and testing, publishing and communica-
tion of mathematical results, use of conventional
notation for scientific programming. Numerous
keyboard and mouse-activated methods have been
implemented and used in various systems; in their
most ambitious form these have been in computer
algebra systems. Handwriting has been repeatedly
proposed and demo nstrated (since at least 1968).
Yet the use of handwriting alone has never put
into production because of very high error rates.
We now believe that a better prospect may
emerge from using a combination of handwriting
and voice.

Introduction

In an earlier paper, Zhang and Fateman [20] sur-
veyed some of the existing methods for entry of
mathematics into a computer system. Our con-
clusion was that additional methods, in particular
combining voice and handwriting, deserve some
attention for some potential user groups. When
we realized that the discussion of this dual-mode
was taking too much space in that paper and yet
needed more discussion, we broke the paper into
separate parts. This is part two.

In order to be somewhat self-contained, we re-
view just a few specific relevant pieces of tech-
nology discussed in the earlier paper. The first of
these is FFES, freehand formula entry system
which, so far as can be seen from the open litera-
ture, is at least as good as the numerous earlier (or
later) systems (but see also the promising non-
open source Infty system [16], and the system
“Natural Log” by N. Matsakis [2].) FFES was
written principally by James Arvo at CalTech, but
later adopted and refined by Dorothea Blostein
and students at Queens University (Canada). As-
TeR is a program that does a partial inverse of
what we propose, that is, it speaks mathematics
from a TeX representation. While not directly
usable by us, it shows that there is at least one
plausible mapping between TeX and speech.

FFES – Freehand Formula Entry System10

FFES is a handwriting-based mathematical for-
mula editor originally written principally by Steve
Smithies in 1998-99 at Univ. of Otago, under the
supervision of K. Novins. More recently it has
been revised by R. Zanibbi at Queens Univ. under
the supervision of D. Blostein. Zanibbi in particu-
lar rewrote the parser, DRACULAE to be more
efficient and accurate.

One component of FFES is CIT, a recognizer for
handwritten symbols, written principally by J.
Arvo at Caltech.

 The user writes the expression in the window
space provided, editing as needed using options
for “undo”, selection, and deletion. The recog-
nized result is displayed using the TeX typeset-
ting system.

The creators of FFES argue against text -based
equation description languages such as TeX and
formulation of expressions using structure tem-
plates. Their argument is that these require the
user to mentally parse the expression and this is
not normally part of the equation-writing proc-
ess1.

We don’t actually agree, since for a complex ex-
pression a user will think ahead or else be forced
to backtrack to insert parentheses or extend divide
bars etc. Such insertions are possible in FFES.

The FFES authors admit that parsing the mathe-
matical expression is still the slowest and least
accurate part of the program1, hence FFES re-
flects a trade-off between having a system that is
easier and more natural to use versus one that is
faster and has a higher rate of recognition accu-
racy. We suspect that some of the problem is the
need to solve an inherently ambiguous problem
by multiple pattern matching. What is a vertical
stroke? Part of a letter K, the number one, a sym-
bol? (Zanibbi’s work seems to have sped up the
parsing, as it happens; now display is apparently
expensive.)

Voice and Handwriting: Fateman Page 2 6/4/2004

A screenshot of the FFES interface10

Similar in many respects to FFES are three other
formula -input systems, Infty: an elaborate system
which seems to have begun life as a static “OCR”
math recognition environment, Matsakis’ “Natu-
ral Log”, and Ernesto Tapia’s JMathNotes, a Java
program. FFES and JMathNotes are open-source.

Each of these can be downloaded from the Inter-
net for experimentation, although Infty requires a
(free, at the moment) license.

 A kind different kind of technology we feel is
worth highlighting is represented by AsTeR.

AsteR – Audio System for Technical Readings13

AsTeR is T.V Raman’s computer system for ren-
dering technical documents in audio. By analogy
with Text To Speech programs (TTS) Aster pro-
vides spoken mathematics output. Even though
we are primarily interested in input, it is neverthe-
less worthy of mention since it provides a map-
ping between 2-d math expressed in TeX and 1-d
spoken math. It takes in as input a LaTeX expres-

sion and produces an audio formatted output. It
provides insight in the different ways math can be
conveyed. (It is also significant for those who are,
like Raman, vision-impaired, and need to hear
mathematics.) Examples of AsTeR output, tran-
scribed, are in an appendix. The current state of
the art in TTS makes it plausible to provide on
web pages, audible HTML, which with a suitable
browser, can simulate AsTeR. We have written
such a program in two stages. The first returns a
speech xml string when given an expression writ-
ten as a prefix tree in Lisp. This result can then be
fed into a second stage which reads this aloud,
perhaps via a web-enabled speech engine.

Speech Recognition Input

A fairly unexplored area of mathematical input
methods is using speech recognition, except as a
tool for visually handicapped humans. An inher-
ent problem with using speech to describe math is
that math is not generally spoken, and so we are
lacking familiar mo dels. AsTeR provides a
model, but is not especially appealing among
sighted people who expect an accompanying writ-

Voice and Handwriting: Fateman Page 3 6/4/2004

ten presentation. One of the successes of AsTeR,
is that mathematically -aware but otherwise un-
trained humans can often understand AsTeR’s
spoken mathematics, although they would have
difficulty producing similarly nuanced AsTeR-
equivalent speech: humans tend to speak mathe-
matics only under duress, and would in any case
have difficulty learn ing and applying the mathe-
matical rules for fine control of pauses and pitch
used by AsTeR. Alternatives for spoken mathe-
matics have been discussed by Stevens[] and
Chang[].

Raggett’s EzMath program [12] has a notation
which is “inspired by how expressions are spoken
aloud together with a few abbreviations for con-
ciseness.” For example, “a^m over a^n =
either a^{m-n} when m > n or 1
when m = n or 1 over a^{n-m} when
m < n” produces the following image:

It is possible, presumably, to insert this into a
program this as spoken input, but you would have
to decide how to pronounce each comp onent. For
example is a^m “Ay to the power em” or “Ay
caret em” or “Lower-case ay up-arrow lower-case
em” etc. Caret would likely be recognized as
“carrot.” The gra mmar could be set up to allow
any or all of these variations. To use the existing
Microsoft speech software much of the contextual
grammatical conventions that work so well in
ordinary language must be reconsidered. Exten-
sions may be possible, but in some cases it ap-
pears more likely that reversal of some standard
choices would be needed to include mathematics.
Current speech programs can be given a rather
different language model to provide support for
mathematics, and we have experimented with
grammars to provide higher probabilities for more
likely speech utterances including math operators,
(plus, times, squared), isolated characters from
Latin and Greek alphabets, etc.

The default speech recognizer knows about num-
bers, but makes rather different conventional use
of them than would be done in technical writing.
For example, it sometimes parses a stream of 10
digits as a telephone with area code.
Our experiments are just beginning, to see how
learning and using conventions for mathematics
may be critical factors in success, along with the
quality of the microphone, the uniformity of the
speaker’s voice, the ambient noise, the level of
training, and the quality of the speech program.
At the current quality of recognition technology,
we guess it would be unreasonable to expect first-
time casual users – say students taking a college
entrance examination – dropping in to an un-
trained environment, to find this convenient.

 In the math recognition problem, a system may p
have to switch between grammars or “probable-
word” contexts, while recognizing non-math and
math. In our preliminary tests, mathematics words
are usually not the primary returned object be-
cause they are unusual, or they are placed in un-
expected contexts. “Sum” becomes “some” or
worse. “Sin” becomes “sign” or worse. If we
wish to recommend to the recognizer a collection
of phrases (like “sine of”, “derivative with respect
to”, “to the power”) it is more likely to make sat-
isfactory discriminations. If the number of
phrases can be grown to several thousand, (an
experiment in progress now) so that the roughly
1,200 names of plausible MathML objects can be
included, we have an interesting facility. For
those unfamiliar with speech recognition technol-
ogy, it may come as a surprise that word diction-
aries and grammars play such an important role in
quality recognition. In fact, recognizers benefit
from more connected speech, and have difficulty
with isolated context -free words. The important
context may need to come from a grammar for
mathematics utterances that would accept “open
square bracket x plus y close” and produce [x+y];
and “open paren x plus y close” and produce
(x+y). The fact that the same word, namely
“close” is used for two different symbols is not
necessarily a problem.
Once the stream of words is recognized, using
whatever techniques can be reliably developed,
one could try using a grammar similar to
Raggett’s EzMath as a guide to speech. A close
examination of EzMath suggests it would have to
be extended, perhaps in a major effort, beyond the
current version of EzMath which seems to be
brittle in the face of syntax errors.

Voice and Handwriting: Fateman Page 4 6/4/2004

In practice, voice recognition of math solely from
voice, even in the event that all the symbols are
correctly identified, does not solve ambiguities
already present in linear expressions (“A plus B
over C plus D” versus “A plus B all over C plus
D” etc.
A grammar and parser that we developed for an
online lookup table (for integrals) is much more
forgiving, and may have better prospects for suc-
cess. (It will, for example parse ab sin x as
“a*b*sin(x)”. It will provide several parses for an
expression which is ambiguous, and ask the user
for assistance.

Alternative Design Suggestions

Multimodal

The mix of input channels seems to be an intrigu-
ing way of entering, confirming, or correct ing
handwriting. Mixed input in the common litera-
ture today usually means voice commands as an
alternative to pushing buttons. Speech can be par-
ticularly effective if the options open for consid-
eration are severely restricted, say to one of
“File, Edit, View, Help”.

After some investigation, we believe that a simple
display/laptop mounted microphone is inadequate
for serious use. The software is too sensitive to
noisy input or varying volume and so the head-
mount microphone is essentially necessary. An
auxiliary WACOM tablet can be attached to a
desktop workstation, or a Tablet PC can be used
for writing. Writing proficiently with a mouse is
difficult and slow.

In an education context it seems that students are
already equipped with quality earphone headsets
attached to music systems, but not microphones.
We are not in a position to evaluate the serious-
ness of the need for new (though rather inexpen-
sive) hardware. (Computers themselves have got-
ten sufficiently fast that it is probably impossible
to purchase a new desktop or laptop computer
than lacks sufficient “horsepower” to run current
speech recognition software. Windows XP in-
cludes as standard, speech tools.)

How can we use speech in mathematics? We pro-
ceed from the simplest to the more amb itious.

Better symbol identification

Independent of a more effective math language
model, a simple objective for multimode input is

to use speech as a correction method for symbols:
that is, to select by voice the best choice for map-
ping a written symbol to one of a list of known
symbols from a visual (or perhaps spoken) menu.
The assumption here is that the user is dictating
symbols or short phrases, and has a very primitive
language model (like Microsoft’s “spelling
mode”). Thus writing the Greek letter µ and say-
ing “myu”. Because this may not be insuffi-
ciently distinct from “u” pronounced “yu” the
computer may whisper into your ear “Did you say
Greek mu ?” and your response may be to speak
“Yes”.
Alternatively a more elaborate message might be
whispered or displayed as a menu: “Do you mean
1. ‘Greek mu’ or 2. Roman ‘u’ ?” And your spo-
ken answer may be “one”.

The usual default of displaying only the most
likely symbol (and suppressing other possibilities
unless asked) makes the recognizer seem rather
brain-damaged when it is wrong, yet only mo d-
estly very clever when it is right. A skilled user
presumably knows how to ask for a list of possi-
ble corrections to a wrong result, but the naïve
user just wonders how the computer could have
gotten the recognition so wrong. In effect the
spoken input should improve the accuracy as well
as the confidence. As an example, the Infty Pro-
ject [] editor never recognizes a vertical stroke (|)
as in |x|. It often recognizes such a written charac-
ter as the digit 1. However, tapping once on that
character replaces it by the next most-likely inter-
pretation, which is the vertical stroke. Similarly
there is only one symbol recognized for “O” and
if you want a zero, you tap once. As a final fea-
ture worth noting in Infty, it will refuse to recog-
nize some letters without help. One of them is the
letter P, indistinguishable without baseline infor-
mation, from p. A solution is to write the former

as .

Enhancing token separation

Consider what we can do to mimic the presenta-
tion of mathematics as traditionally done in the
classroom. In this scenario the presenter speaks
while writing. There are probably several motiva-
tion for a lecturer to speak while writing mathe-
matics. It may improve the accuracy of students
taking notes. It may enliven the presentation. It
certainly fills the gaping silence (except for chalk
noises) that would otherwise prevail. For the

computer environment, writing the “word”
while saying “a plus e” may steer the handwriting
system away from recognizing “ate”. Seeing a+e

Voice and Handwriting: Fateman Page 5 6/4/2004

may steer the speech recognizer into the correct
path so that it would not hear (for example) “ape
loss see,” or worse. Using an example from Mat-
sakis, consider which could either mean 1<x
or KX. The re-parsing of the left-most stroke to
be the digit one or part of a letter K (repeatedly
reconsidered as other strokes are added) is an
interesting feature of Matsaki’s work.

Disambiguating operator types

Writing sin ωx while saying “sign of omega eks”
illustrates not only the characters and tokens, but
also suggest that sin is an operator. The “of” is
not visible, but distinguishes function application
f(a+b) read “eff of ay plus bee” from multiplica-
tion a(a+b) read “ay times ay plus bee” or “ay ay
plus bee”. Many math users are unaware of such
ambiguities in their everyday notation, and com-
puter users are similarly unaware because the
designers of the languages they use remove these
problems. The designers insist on adding opera-
tors like a*(a+b), or in the case of Mathematica,
requiring f[a+b]. Computer users are inured to
capricious and inconsistent requirements that such
syntax rules are hardly noticed.

Enhancing structural identification

In addition to symbol and operator disambigua-
tion, structural information can be supplied: say-
ing A plus B over C plus D while writing

will distinguish the utterance from A+B/(C+D) or
A+(B/C)+D.

Without belaboring this point we think that com-
bined, a tablet and stylus used for free-form input
will be significantly more convenient for the
skilled user, and perhaps the naïve user, than oth-
erwise possible with the tablet alone.

It may be necessary to have a multiplicity of pos-
sibilities mapped into common forms. “A over B”
and “A divided by B” should be alternatives.
Phrases like “eks squared” or “eks to the third
power” may be acceptable. A grammar of forms
and alternatives should be part of an extensible
dictionary of forms. The guidance for contents
could include forms from TeX, AsTeR, Open-
Math, MathML. There is a design process for a
standard XML format for speech grammars at
W3C:
http://www.w3.org/TR/speech-grammar/

An alternative or supplementary approach
through stochastic language models may also be
appropriate. This is discussed (for example) by
W3C in http://www.w3.org/TR/ngram-spec/ .
Making use of either of these approaches would
require a corpus of “people speaking mathemat-
ics” for synthesis and training.

Blank space, pauses, vocal directives

In terms of grammars as suggested above, one
must come up with new markers for certain
mathematical typesetting objectives. It is impos-
sible to write “blank spaces” – at least as blank
spaces. One could use special marks for writing
them or one could use speech to assert informa-
tion on blank space. That is, one could say
“equation number 3.4 on right” or even “right tab
to right margin equation number 3.4”. The key-
board input might have “tab” characters, but the
handwritten material would have “nothing” and
then 3.4. Other kinds of grouping information
may also be verbally conveyed. To explain this
we use an analogy of a student standing at the
blackboard holding a chalk and an eraser and at-
tempting to write something that the instructor is
dictating. The instructor can have “significant
pauses,” verbal commands such as “big open
bracket”, or “ALL over the expression…”., to
signify that everything spoken so far should be
grouped. Both “and” and “all” could be repeated
as kinds of traversals up an algebraic tree repre-
senting the expression. The most useful verbal
clue may be saying “no” to alternatives as they
are presented. A student who knows the context
is going to do a better job of understanding the
voice input.

 The introduction of keywords creates a longer
and more complex spoken language for the user
to learn. If we need voice to work even in isola-
tion from handwriting, we could provide controls
to add more structure as, for example, grouping
and then naming the sub-expressions. Of course a
voice recognizer could be used as a substitute
keyboard, and so any linear ascii encoding for
mathematics could be used as a proof of concept!

Using spoken commands such as “group” and
“end group” we can instruct the speech recognizer
to group certain sub-expressions. After grouping a
sub-expression, the user can voice the command
“name as” to assign a name to the sub-expression
such as “expression 1”. The advantages of this
method are:

Voice and Handwriting: Fateman Page 6 6/4/2004

• The groups and saved sub-expressions are

ready for re -use immediately
• By breaking down the construction of a com-

plex expression into named smaller sub-
expressions, we put fewer burdens on the
speech/handwriting recognizer which need be
required to handle simpler structures.

This can be appealing only if naming is very con-
venient and users become facile with this concept,
which is fortunately familiar to many users of
graphical programs where structures are similarly
grouped to build compound shapes.

As an example, to enter the expression (x + y)/z,
we say “x plus y group, name as expression 1,
expression 1 over z”. To input the expression x +
y/z would still be “x plus y over z”, but we can
group it as a sub-expression by saying “name as
expression 2”. This allows the use of this expres-
sion in later expressions. For example, if we need
to input the expression, sqrt(x + y/z), we say
“square root of expression 2 .”

Yet another approach would be to have the com-
puter display the possible named subexpression
choices in an indexed menu or list. Expressions
may be enclosed in small display packages using
what are now fairly commonplace typesetting
features. Variable sized characters, “stretchable”
divide bars etc. can be provided. Some subexpres-
sions may be parameterized. That is, they are
more like templates. After placing such an ex-
pression in a target, the parameters may be filled
in by pointing/writing and speaking.

Some Other Considerations

Feedback

It is possible that one could devise techniques to
make use of audio feedback, say by reading back
the handwritten material and thereby teach the
user how to make correct statements in some way,
or warn the user that something is uncertain. It
seems this is an area for some experimentation. It
is unlikely that choosing from an audio menu “if
you want to close this parenthesis now, say close”
is the way to go. The sophistication of possible
math-reading programs like AsTeR [13] provides
some context for building feedback.

Colored Ink

Tablet stylus systems generally allow you to write
in different colors. A recognizer that distinguishes

among colors can specify groupings. i.e. sin x+y
vs. sin x+y. This may help syntactic grouping
ambiguities, and it may help with semantic amb i-
guities such as the expression dx which can be: dx
(the differential of x in an integral) or dx (2 vari-
ables multiplied together). Mathematica uses a
keyboard entry variant  to indicate the differen-
tial marker. Such subtleties may be hard to distin-
guish verbally or by handwriting nuances, so it
may help to utilize a palette of various colors to
disambiguate structural distinctions. Stylus attrib-
utes such as pressure, tilt, or buttons are at the
designers’ disposal, though it is not obvious that
the ordinary user would become skilled in using
these variations.

Handwriting Recognizer with Templates

Given an expression to write, first write the sym-
bols of the expression without worrying about the
structure. The recognizer will process each sym-
bol separately. After all needed symb ols have
been entered, say by Arvo’s symbol recognizer
[1] point and drag them into pre-existing struc-
tured templates. Templates can be selected from a
menu or perhaps can be altered structurally to fit
the structure of the expression. Then you can
point and drag the symbols already created into
the corresponding slots of the empty template.
This separates the character recognition step and
the structural parsing stage of the process, and in
fact disambiguating horizontal lines becomes un-
necessary. The divide bar can only come from a
template.

 Templates provide the first example of promo-
tion of well-formed expressions through forced
entry requirements. That is, specifying a fraction
requires three parts: a numerator slot (a default
fraction line) and a forced denominator slot. The
user must provide two of them. This helps enforce
well-formed expressions as well as a potential
speed up of the structure organization step for the
user. So, in a sense, this is a mixture of the tem-
plate/palette model. Here instead of a palette we
use a symbol recognizer to input the symbols or
construct the palette. A more detailed description
of this design is in a separate draft paper, “State
Transition Chart for Handwriting & Template
Math Entry System”.

Alternative Uses of a Tablet for Math

A simple usage of a tablet is to write math with a
stylus and save it as an image. This note-taking
ability is helpful if an immediate electronic tran-
script, including diagrams and formulas is useful.

Voice and Handwriting: Fateman Page 7 6/4/2004

The application could be as simple as sending an
email attachment of a formula. Oddly, most peo-
ple talking about tablet recognition believe that
temporal data (strokes, directions, delays) are in
some sense important. The reality of formula rec-
ognition seems to deny this. We rarely benefit
from watching someone write a formula; it must
be recognizable from the ink that remains on the
page. Only occasionally when (say) terms in a
matrix are filled up in a particular order, or ele-
ments of a derivation are traced by “canceling
terms” is the temporal dimension used. Even so,
most mathematicians would re-write the formula
after a few transformations. Certainly this simple
act of encoding a written page as a static diagram
to be emailed can solve a good part of informal
electronic math communication.

It need not be this way. That is, temporal informa-
tion could be used through feedback and promp t-
ing. An entry of a symbol (say the integral sign

∫) could provide, as feedback, a picture requir-

ing or suggesting input of additional material
which could then be handwritten in place. That is,
something similar to this:

 ¦
 ? ¦ d¦

 ¦
indicating that plausible further symbols would
start (but not necessarily remain within) one of
the indicated gray areas. This technique of forced
or constrained input works effectively only if the
users’ intent is effectively anticipated. The user
would not be happy if the intended next step were
to modify the symbol to a contour integral,

∫ which is not one of the choices. Similar

forced choices include the supply of a matching
bracketing symbols, so that writing a “[” displays
a matching “]” just as a “d” appeared in the inte-
gral form.

How many such templates are available? The
Mathematica computer algebra system has an
extensive collection of such possible (but o me-
times only remotely plausible) arrangements. A
palette, which in this case also includes an easy
way of entering some of the symbols not on the
keyboard, looks like this:

(note that this is only part of a much larger scroll-
ing palette, and only one of several palettes in that
program.

Returning to our handwriting mode, note that
there are tools available in the Microsoft SDK for
the Tablet PC which suggest that handwriting
cues (“factoids”) and grammars could be offered
to the recognition program. Thus the requirement
that (say) a “+” operator is NOT like ly to occur as
a superscript or just following another “+” may be
helpful.

A possible variant on matching in palettes is in-
spired by the handwriting input (as is offered on
the Tablet PC operating system). You write in the
panel, typically docked at the bottom of the
screen. After a pause in writing, or perhaps when
prompted by clicking on “insert” the material
written on the panel is inserted into the chosen
application. There may in fact be several panels
or sections of this panel. For instance, a section in
which writing would produce capital letters, an-
other section for lower case, and one for numeri-
cal input. We can suggest that for each palette a
panel can be used to recognize only elements on
the palette. Thus the Greek palette would have no
difficulty with recognizing a handwritten a.

Tablets = Display?

The tablet PC makes it possible to display on the
writing surface, as opposed to an opaque add-on
tablet [9]. This saves space but is not entirely an
advantage. It takes some practice, since one’s
hand can obscure what is displayed below or near
the stylus. A two-surface arrangement with a
horizontal tablet and a separate display gives an
unimpeded view of the screen, but requires some
adaptation to be comfortable. In either case, writ-
ing on a slick surface with a plastic-pointed pen is

Voice and Handwriting: Fateman Page 8 6/4/2004

perhaps the greatest initial displacement from
expectations. It is also worth noting that the “ink-
ing” program for Office tools not running on a
Tablet seems far less accommodating than some
other tablet management programs which take
advantage of pressure and speed to make your

 look more like . We

would not be surprised if this difference is easily
remedied.

Experimentation with Speech
It is fairly clear (July, 2003) that using the default
speech application, especially with a cheap mi-
crophone, will not allow for serious input of
mathematics. Saying “a plus b” has a low prob-
ability of getting close. Fortunately a quality
headset/microphone (August, 2003: Sony DR-
260) does much better: With considerable train-
ing, with four trials I can get in succession “a+B.
eight plus B a+B. A.+B.” The extra punctuation
and capitalization is annoying but perhaps repair-
able. On the other hand “a or b” is, so far as I can
tell, impossible to say acceptably. It comes out “a
war be”. The word “or” is not the problem, since
it easily recognizes “wet or dry.” “True or false”
is easy, “false or true” is harder. Additional train-
ing of (my) voice beyond about 15 minutes does
not seem to help much, but 15 minutes of training
may suffice.
It seems that provision of a good microphone is
an absolute requirement, even on a Tablet PC
(We tested, in May, 2004, a second generation
Tablet PC, the Toshiba M205-S810. It does not
overcome the need for a separate microphone.)
Providing some voice training opportunity for a
naïve user would also be a strong recommenda-
tion, given the current level of speech technology
and the high accuracy that cannot otherwise be
attained.
We are exploring a grammar-based language
model for spoken mathematics, which may be
constructed using the Microsoft speech tools . This
in principle seems to provide a method for defin-
ing well-formed recognition segments and the
possibility of associated semantics. A simple ef-
fort for speaking mostly context -free letters and
symbols seems like a retreat from the phrase-
based recognition of the default speech applica-
tions, and there are other hazards of home-built
grammars (including the inability of the current
(SDK 5.1 speech application) to allow for alterna-
tive recognition. We are working to find alterna-
tives for this situation, as well as design some
experiments that will allow us to explore the sta-
tistical usefulness of spoken n-gram phrases for
recognizing mathematics more reliably than text.

The topic of understanding spoken mathematics
(but not simultaneously with handwriting) is dis-
cussed by Stevens in the Mathtalk project[], and
is briefly mentioned in the survey by Kajler and
Soiffer [].

Experimentation with Handwriting

Experiments (September, 2003) with a WACOM
tablet (Graphire 2 model) on handwriting provide
another insight into how easy (or hard) it would
be to write mathematics using the built in Micro-
soft handwriting API. We observe that in particu-
lar there is no mode in Microsoft Office tools by
which handwritten text is absorbed into the appli-
cation except as a linear string of words. Thus x2
which requires the input of characters on two
lines is not possible. There is a drawing comp o-
nent which allows a user to create (by handwrit-

ing on a drawing pad) the image , and insert it
into the text as we have just done here. It might
also be possible to write the material into the text
in place by writing the mathematics as x squared
as we just did.

Here are some examples of how well and how
poorly the Microsoft handwriting recognition
program works (Sept. 15, 2003). The handwriting
tool allows you to revisit a result and ask for pos-
sible corrections. In the first three examples, we
find it nearly impossible to write “a+b”. On the
third try the seventh alternative selection among
possible corrections is the expected string of
characters. By contrast, “5+6”, “1+1=2” and Illi-
nois are correct on the first try. Note that the first
three letters of Illinois are indistinguishable as
symbols from each other as well as from the nu-
meral one or the vertical line in absolute value.
Thus recognition of Illinois would challenge is o-
lated symbol programs. Also note that “1/2+2/3”
has the correct result as the second alternative,
and A/B+C is recognized as two phrases, “A/” is
the 4th alternative for the first part, “B+C” is the
6th alternative for the second.

Handwriting Result Correct
Alternate

 Atb --

 At b --

 Atb 7

 5+6 1

Voice and Handwriting: Fateman Page 9 6/4/2004

 Sinx --

 ants --

 1+1=2 1

 Illinois 1

 112+213 2

 4th --

 458 7

 Al Btc 4,6

 Fe, --

The handwriting API has settings for the recogni-
tion of separate characters (as is, for example,
necessary for Chinese), thus we are not totally at a
loss for potential software re-use. On the other
hand, it may be more fruitful to work from a more
targeted and simpler technology base, such as
FFES or JMathNotes in which the relationship of
characters on the screen is more nuanced. In par-
ticular, the Microsoft handwriting recognizer as-
sumes a linear stream of character, and thus the

best one could hope for out of would be the
sequence of strokes a, -, b. And that is not espe-
cially probable. Our current plan is to separate
stokes ourselves, providing a geometric basis for
inserting symbols on the screen (other than at the
current insertion point) and then use the handwrit-
ing recognizer on the strokes to determine prob-
able symbols for those locations.

From our existing programming experiments, it is
clear that the applications for speech recognition
and handwriting recognition can be run at the
same time; it is also clear that support in the Mi-
crosoft framework for two such simultaneous
modes has not been a priority.

The Mixture

Mixed or multimodal input has a literature that
seems not to include mathematics, but for other
domains, see, for example the work of Suhm et.al
[21] and Oviatt et.al [22]. A pen device is most
often used for a limited repertoire of gestures for
pointing or editing. Early efforts in this area have
tried to solve the problems of this technology at a
rather lower level than we are, as will become
evident.

Multimodal Design of Math Input

Consider the handwritten notation which

the Microsoft handwriting system recognizes as
K2, but with alternatives in this set: {k2, 1<2,
122,12, I<2, 112, ||2, 222}. We would prefer the
3rd choice, namely 1<2 for this form. Consider the
spoken “one less than two” which, when I spoke
it, was recognized exactly that way. It has alterna-
tives of {one less than to, one than two, when less
than two, one less in two, one in two, one < two}.
Actually the correct interpretation appears no-
where in that list, at least if we insist on “1<2”
and reject “one less than two”. It seems clear that
it will pay to accept the speech recognizer’s
spelled-out version. We have a more restrictive
grammar that allows the digits “1” and “2” but
excludes the words {one, won, Juan, when, …,
two, too, to}. Although this cuts down on the
range of recognition results, the built-in dictation
grammar is quite sophisticated and provides
ranked alternatives, not possible with a user-
defined grammar.

The basic design looks like this:

A main system processes events on a shared
(multiprocessing) queue. The event queue in-
cludes data, including the beginning time and
duration of the events for each of the following
modes:

Handwriting recognition results, the alterna-
tive recognition results.

Speech recognition results, the alternative rec-
ognition results .

Keyboard events.

Mouse events. mouse events, will, in most
configurations, be stylus events that occur out-
side the handwriting “writing pad” regions.
For example, one can select from a menu us-
ing the stylus.

Handwriting or speech gestures or commands.
The conventional dictation grammar for MS
allows the phrase “voice command” to shift to
a mode where one can say “File, Print.” To re -
turn to dictation one would say “Dictation”. It
may be plausible to design a system that al-
lows “Dictate Mathematics”. The conven-
tional handwriting recognizer can provide ac-
cess to commands based on gestures, where a
“scribble” can delete an object. Knowing
when and where to allow a scratchout gesture

Voice and Handwriting: Fateman Page 10 6/4/2004

in a natural way requires some careful design.
In fact, pointing may be especially important
in an editing mode where one might point at a
subexpression and say “replace this with 23”
or “raise this to the power n”.

The main process controls the display and
renders the mathematics. Each handwriting
event (which may normally be segmented into
“stroke neighborhood” and “content” must be
examined for correlation with zero or more
speech events, past, present and future. Each
speech event must similarly be examined for
correlation with zero or more handwriting
events (It is less likely that a speech event will
precede its associated handwriting event. We
expect that the speech events will generally
follow the corresponding handwriting, by zero
to (say) two seconds.)

The processes that put events on the queue are
built out of existing technology: currently we are
using

1. The Microsoft Tablet PC handwriting rec-
ognition software (note: we are not actu-
ally using a Tablet PC, but an add-on
WACOM tablet). This handwriting ap-
plication knows nothing about mathemat-

ics, and is rendered as, in preference

order {Atb, atb, ate, alb, auth,
att., antsy, Atbs,a+b}

2. The Microsoft Speech SDK 5.1 package.

It is not our intention to teach the handwriting
system about our math input: there are no tools
for this purpose in the Microsoft package, and the
prospects of pushing the prototype demonstra-
tions systems such as JMathNotes further, is
daunting. Neither is it our intention to build and
train a system that would “fuse” the input data at
this early stage where we can adjoin to the “ink”

information for the “audio” information

“plus” to yield the unique symbol “+” While it is
plausible that one could train something like a
neural network to handle the audio and ink infor-
mation as just “more bits” it seems to us that the
separate technologies that have been developed at
considerable expense for ink and for speech sepa-
rately could more easily be used for further de-
velopment. This is not to say that a combined
approach might have better accuracy, but only
that building such a system would require major
effort in a tangent to most other needs, and we

would like to first see if re-use of technology can
get us substantially higher accuracy.

The voice-recognition system development kit
(SDK 5.1) from Microsoft at first glance seems
far more flexible for the programmer, allowing
for the development of new grammars and word-
lists. Unfortunately, writing one’s own gra mmar
in the provided fashion disables the capability we
require for the return of alternatives to the recog-
nition. We are seeking a way around this.

The handwriting system development kit is avail-
able only for use on the Tablet PC operating sys-
tem, although the developed code (recognizers)
can apparently be run on other (Windows 2000,
XP) systems.

Current Status
As of April, 2004, we have a main process control
program that displays mathematics entered with a
combination of keyboard and mouse events,
which also allows speech input. That is, one can
point to a location (perhaps a pre-existing expres-
sion in a box) on the screen and speak into it. The
first alternative of the spoken utterance is inserted
in the box.
The main program is written in Common Lisp.

Because of peculiarities in the Speech and/or Lisp
development environment, peculiarities that we
hope to iron out soon, speech is not yet nicely
integrated into this system. Ideally we would like
speech to run as a separate process within Lisp’s
multiprocessing paradigm, inserting material as
Lisp (or “foreign”) data into our event queue.
Instead the current implementation for the speech
recognition process is written as a half-page of
server-side jscript, using Microsoft’s Automation
facility. It writes the results into a file. This
jscripted process is started/stopped from Lisp as
necessary; within the Lisp is a process that grabs
data when the speech-results file is written.

The lower-level components of the handwriting
mechanism provided by Microsoft, namely “Ink”
collection and stroke information, can be used
nearly directly from Lisp. What is needed is a
linkage from Lisp to the handwriting API so that
Lisp can ask “What does this ink represent in
ASCII” (and what are alternatives to it). The
handwriting recognition API development envi-
ronment is needed for this next step, and requires
a Tablet PC, which we have been promised by
Microsoft.

Voice and Handwriting: Fateman Page 11 6/4/2004

Discussion of program design issues remain-
ing, assuming we have solved the display issues,
and that voice and handwriting data are enqueued,
with alternatives, on an event queue.

a. As items appear in the event queue we
cannot process them individually: we
must generally wait for additional poten-
tially correlated events, for some period
of time. If we wait too long, the system
may seem sluggish. We could try decod-
ing the meanings as soon as possible,
and post them, subject to correction. If
we cannot make sense of the utterance,
the user should have some clue as to
what is going on. A small window that
has speech and handwriting results, in-
crementally, separately, and combined,
might be useful. How might the user
might intervene and correct material be-
fore it is committed?

b. When we actually find a correlation be-
tween voice and handwriting (by statisti-
cal estimation of the most-likely com-
mon contents of the queue among
various alternatives), we presumably
have a rank-ordered set of alternatives of
which we provide the most likely, but
with some backup choices. What do we
do with those alternatives? (Maybe make
them available with corrections, as well
as the speech-only, or handwriting-only
possibilities, if that includes other possi-
bilities.)

c. When we post the result(s) to the display
window, what exactly do we do with the
raw data? (We could display the hand-
writing or just its recognized version; we
can have a hyperlink to the voice.)

d. Given the multimodal version of the data
on the display, what should we really do
to dump the information to (say)
MathML or a computer algebra system?
We could reduce it to “merely” text or
try to convey the full data. This latter
version might be vital if we are (for ex-
ample) trying to manage an examination
and need to look at potentially mis -
recognized expressions for partial credit .
Thus having the handwritten material
might be vital.

Voice and Handwriting: Fateman Page 12 6/4/2004

Acknowledgments

This research was supported in part by NSF grant
CCR-9901933 administered through the Electron-
ics Research Laboratory, University of California,
Berkeley. Thanks to Lucy Zhang for participat-
ing in early discussions. Ms Zhang was supported
in part by an undergraduate research grant from
the College of Engineering, UC Berkeley. Rich-
ard Fateman’s visit to ORCCA, University of
Waterloo and University of Western Ontario,
June, 2003 was useful in refining some of these
ideas.
Students participating in this project include
Kevin Lin, Michael Chen, Ojan Vafai, Cassandra
Guy, Grigoriy Krimer, Steven Stanek, Michael
Jurka.

Conversations with Kuansan Wang, Paul Viola,
Cory Linton of Microsoft have been helpful. I
also thank Richard Zanibbi for comments as well
as updates to FFES.

References
 (reorder these eventually)

[1] James Arvo, Kevin Novins, Steve Smithies. A
Handwriting-Based Equation Editor.
http://www.cs.queensu.ca/drl/ffes

[2] Nicholas E. Matsakis. “Recognition of Hand-
written Mathematical Expressions,” Department
of Electrical Engineering and Computer Science,
MIT, 1999
http://www.ai.mit.edu/projects/natural-log/

 [3] Kam-Fai Chan and Dit -Yan Yeung. Mathe-
matical Expression Recognition: A Survey. Tech-
nical Report HKUST-CS99-04, April 1999.

[4] Richard Fateman. More Versatile Scientific
Documents. University of California, Berkeley.
http://www.cs.berkeley.edu/~fateman/MVSD.htm
l

[5] Zhao Xuejun, Liu Xinyu, Zheng Shengling,
Pan Baochang and Yuan Y. Tang. Online Recog-
nition of Handwritten Mathematical Symbols.
ICDAR 97

[6] An Automated Conversion of Structured
Documents into SGML. Distributed Object Co m-
putation Testbed, Technical Report.

[7] Scott MacKenzie, Abigail Sellen, and William
Buxton , “A comparison of input devices in ele-
mental pointing and dragging tasks,”. Proceed-
ings of the CHI `91 Conference on Human Fac-
tors in Computing Systems, pp. 161-166. New
York: ACM.

[9] Wacom America.
http://www.wacom.com/lcdtablets/index.cfm

[10] Free Formula Entry System.
http://www.cs.queensu.ca/drl/ffes/

[11] LiveMath. http://www.livemath.com.

[12] EzMath.
http://www.w3.org/People/Raggett/EzMath/

[13] AsTeR.
http://www.cs.cornell.edu/Info/People/raman/aste
r/demo.html
See also T.V. Raman. “An audio view of (La)TeX
documents,” TUGboat 13, no. 3 Proc. of the 1992
Annual Meeting, 372-379. (1992).

[14] MacKichan Software Inc.
http://www.mackichan.com

[15] J-Y Toumit, S. Garcia -Salicetti, H. Emptoz,
“A Hierarchical and Recursive Model of Mathe-
matical Expressions for Automatic Reading of
Mathematical Documents,” Proc. Int’l Conf. On
Document Analysis and Recognition (ICDAR) 99
119-122.

[16] R.Fukuda, Sou I, F. Tamari, X. Ming, M.
Suzuki, “A Technique of Mathematical Expres-
sion Structure Analysis for the Handwriting Input
System,” ICDAR 99, 131-134.
Also
H. Okamura, T. Kanahori, M. Suzuki, W. Cong,
F. Tamari, “Handwriting Interface for Computer
Algebra systems,” see reports and software
download at
http://infty.math.kyushu-u.ac.jp/index.html

[17] TILU: Table of Integrals Look-up.
http://torte.cs.berkeley.edu:8010/tilu

[18] C. Faure, References on math formula rec-
ognition
http://www.tsi.enst.fr/~cfaure/math.html

[19] S. Lavirotte and L. Pottier, Optical Formula
Recognition, ICDAR97.

Voice and Handwriting: Fateman Page 13 6/4/2004

http://www-
sop.inria.fr/cafe/Stephane.Lavirotte/Ofr/root.html
also, On-Line Handwritten Formula Recognition
using Hidden Markov Models and Context De-
pendent Graph Grammars,
in ICDAR99

[20] L. Zhang and R. Fateman, “Survey of User
Input Models for Mathematical Recognition:
Keyboards, Mice, Tablets, Voice” July, 2003
(draft)
[21] Bernard Suhm, Brad Myers, Alex Waibel,
“Multimodal error correction for speech user in-
terfaces ,” ACM Transactions on Computer-
Human Interaction (TOCHI) (1) 2001 60-98.

[22] Sharon Oviatt, Phil Cohen, Lizhong Wu,
John Vergo, Lisbeth Duncan, Bernhard Suhm,
Josh Bers, Thomas Holzman, Terry Winograd,
James Landay, Jim Larson, David Ferro, “Design-
ing the User Interface for Multimodal Speech and
Pen-Based Gesture Applications: State-of-the-Art
Systems and Future Research Directions,”
HUMAN-COMPUTER INTERACTION, 2000,
Volume 15, 263–322. Also

Sharon Oviatt, .Multimodal interfaces. in The
Human-Computer Interaction Handbook: Fun-
damentals, Evolving Technologies and Emerging
ApplicationsJ. Jacko and A.Sears, eds. Lawrence
Erlbaum Assoc., Mahwah, NJ, 2003, chap.14,
286-304.

[23] M. Suzuki, Infty Project,
http://infty.math.kyushu-u.ac.jp/index-e.html

[] N. Kajler and N. Soiffer.
“A Survey of User Interfaces for Computer Alge-
bra Systems,” J. Symbolic Computing 25 (2):
127-159 (1998) also see Norbert Kajler (editor).
Computer-Human Interaction in Symbolic Co m-
putation, Springer-Verlag, Wien, New-York,
1998. ISBN: 3-211-82843-5.

[] R. Stevens, Mathtalk:
http://www.cs.york.ac.uk/maths/robert/mathtalk.h
tml
R. Stevens and A. Edwards, “A Sound Interface
to Algebra,” also
[] L. A. Chang, Handbook for Spoken Mathemat -
ics , Lawrence Livermore Laboratory, The Re-
gents of the University of California, 1983.

[] Mathtype and WebEQ,
http://www.dessci.com/en/products

Richard Zanibbi, Dorothea Blostein, and James R.
Cordy. “Recognizing Mathematical Expressions
Using Tree Transformation”, IEEE Transactions
on Pattern Analysis and Machine Intell igence,
Vol. 24, No. 11, pp. 1455-1467, November 2002.

Appendix: Some AsTeR examples:

(a3+b3 = (a+b)(a2-ab+b2) is spoken as “a cubed
plus b cubed equals quantity a plus b times quan-
tity a squared minus a b plus b squared. The smaller
typefont is used to indicate a voice with lower
volume. Notice the use of the word “quantity” to
signal a grouping. Also notice that “a b” is the
same as “a times b”.

(1+sqrt(5))/2 is spoken as “fraction one plus square
root 5 divided by 2.”

∫
∞

−−

1

1
2

dxxxe is spoken as “Integral from x

equals one to infinity of e raised to x squared mi-
nus x minus 1 d x.” In this case the smaller font is
read in a higher (squeaky) voice.

6/4/2004 1:55:02 PM, Richard Fateman

