
Chapter 1

PROBLEM SOLVING ENVIRONMENTS AND SYMBOLIC
COMPUTING

Richard J. Fateman
University of California, Berkeley

Abstract What role should be played by symbolic mathematical computation facilities in
scientific and engineering “problem solving environments”? Drawing upon stan-
dard facilities such as numerical and graphical libraries, symbolic computation
should be useful for: The creation and manipulation of mathematical models;
The production of custom optimized numerical software; The solution of delicate
classes of mathematical problems that require handling beyond that available in
traditional machine-supported floating-point computation. Symbolic represen-
tation and manipulation can potentially play a central organizing role in PSEs
since their more general object representation allows a program to deal with a
wider range of computational issues. In particular Numerical, graphical, and
other processing can be viewed as special cases of symbolic manipulation with
interactive symbolic computing providing both an organizing backbone and the
communication “glue” among otherwise dissimilar components.

Keywords: PSE, “computer algebra”, CAS, optimization, “symbolic computation” Mathe-
matica, Maple, Macsyma, Axiom, glue

1. INTRODUCTION

We can point to many examples of complete and successful “user-friendly”
problem-solvingprograms where the problem domain is sufficiently restricted.
Consider the multiple-choice, non-programmable user interface of an Auto-
matic Teller Machine: you state your queries, and the ATM demonstrates
expert responses. Achieving even modest success in a more ambitious setting
such as solving engineering problems in a broad class is considerably more
challenging. This leads us to the evolving concept of a “problem solving en-
vironment” (PSE [13]). The notion is to computationally support a user in
defining a problem clearly, help search for its solution, and understand that

1

2

solution1. This paper explores some concepts and tools available in symbolic
computation that appear appropriate for PSE construction.

The search for tools to make computers easier to use is as old as computers
themselves. In the few years following the release of Algol 60 and Fortran,
it was thought that the ready availability of compilers for such high-level lan-
guages would eliminate the need for professional programmers — instead, all
educated persons, and certainly all scientists, would be able to write programs
whenever needed.

While some aspects of programming have been automated, deriving pro-
grams from specifications or models remains a difficult step in computational
sciences. Furthermore, as computers have gotten substantially more compli-
cated it is more difficult to get the fastest performance from these systems. Ad-
vanced computer programs now depend for their efficiency not only on clever
algorithms, but also on constraining patterns of memory access. The needs
for advanced error analysis has also grown as more ambitious computations on
faster computers combine ever-longer sequences of computations, potentially
accumulating and propagating more computational error. The mathematical
models used in scientific computing have also become far more sophisticated.

Symbolic computation tools (including especially computer algebra sys-
tems) are now generally recognized as providing useful components in many
scientific computing environments.

1.1 SYMBOLIC VS. NUMERIC

What makes a symbolic computing system distinct from a non-symbolic (or
numeric) one? We can give one general characterization: the questions one
asks and the resulting answers one expects, are irregular in some way. That is,
their “complexity” may be larger2 and their sizes may be unpredictable. For
example, if one somehow asks a numeric program to “solve forx in the equation
sin(x) = 0” it is plausible that the answer will be some 32-bit quantity that we
could print as 0.0. There is generally no way for such a program to give an
answer “{nπ | integer(n)}”. A program that could provide this more elaborate
symbolic, non-numeric, parametric answer dominates the merely numerical

1We can also consider meta-PSE: a PSE for programmers of PSEs. Such a meta-PSE would help the
scientific programmer, as well as the designer of interfaces and other components, to put together a suitable
“application PSE.”
2Although some numeric programs deal with compound data objects, the complexity of the results are rarely
more structured than 2-dimensionalarrays of floating-point numbers, or perhaps character strings. The sizes
of the results are typically fixed, or limited by some arbitrary maximum array-size in Fortran COMMON
allocated at “compile-time”.)

Problem Solving Environments and Symbolic Computing 3

from a mathematical perspective. The single numerical answer might be a
suitable result for some purposes: it is simple, but it is a compromise.

If the problem-solving environment requires computing that includes asking
and answering questions about sets, functions, expressions (polynomials, alge-
braic expressions), geometric domains, derivations, theorems, or proofs, then
it is plausible that the tools in a symbolic computing system will be of some
use.

1.2 A SELECTED HISTORY OF CAS
This decade has seen a flurry of activity in the production and enhancement

and commercial exploitation of computer algebra systems (CAS), but the field
has roots going back to the earliest days of computing.

As an easily achievable early goal, the computer system would be an interac-
tive desk-calculator with symbols. At some intermediate level, a system would
be a kind of “robotic graduate student equivalent”: a tireless, algebra engine ca-
pable of exhibiting some limited cleverness in constrained circumstances. The
grand goal would be the development of an “artificially intelligent” automated
problem solver, or the development of a “symbiotic” human-machine system
that could be expert analyzing mathematical models or similar tasks [25].

W. A. Martin [26] suggested that by continuing to amass more “mathematical
facts” in computer systems, we would eventually build a reasonably complete
problem solver: one that can bridge the gap between a problem and a solution –
including some or all of the demanding intellectual steps previously undertaken
by humans. Indeed, Martin estimated that the 1971 Macsyma CAS contained
500 “facts” in a program of 135k bytes. He estimated that an increase of a factor
of 20 in facts would make the system “generally acceptable as a mathematical
co-worker” (a college student spending 4 hours/day 5 days/week 9 months/year
for 4 years at 4 new facts an hour, forgetting nothing, would have about 12,000
facts). Although Martin did not provide a time line for these developments, it
is clear that the size of the programs available today far exceed the factor of 20.
Yet however clever and useful these packages, 30 years later none is likely to
be considered “generally acceptable as a mathematical co-worker.”

Martin’s oversimplification does not account for the modeling of the work-
ings of a successful human mathematician who manages to integrate “facts”
(whatever they may be) into a synthesis of some kind of model for solving
problems.

The currently available CAS, in spite of the occasional sales hyperbole,
are in reality far less ambitious than Martin’s “artificial mathematician”. Yet
they are more ambitious in scope than a symbolic calculator of algebra. They
are already billed as scientific computing environments, including symbolic
and numeric algorithms, elaborate graphics programs, on-line documentation,

4

menu-driven help systems, access to a library of additional programs and data,
etc.

Will they reach the level of a clever graduate student? I believe there are
barriers that are not going to be overcome simply by incremental improvements
in most current systems. A prerequisite for further progress in the solution of
a problem is a faithful representation of all the features that must be manip-
ulated. Lacking such abstraction makes manipulation of concepts difficult or
impossible.

What can be expected in the evolution of CAS? The last few decades of
system builders, having succeeded in collected the “low hanging fruit” of the
novel (symbolic) computations, have stepped back from some of the challenges
and are instead addressing “the rest” of scientific computing. The grand goal is
no longer to simulate human mathematicalproblem solving. The goal is to wipe
out competing programs! This requires providing a comfortable environment
that allows the user to concentrate on solving the necessary intellectual tasks
while automatically handling the inevitable but relatively mindless tasks—
including transporting and storing files, converting data from one form to
another, and executing tedious algebra and number crunching3.

For the coming decade, we predict that ambitious CAS builders will redou-
ble their efforts to envelop all modes of scientific computation. We already see
numerical systems such as Matlab and MathCAD with added symbolic capa-
bility kits. Computer algebra systems such as Macsyma, Maple, Mathematica,
and Axiom [7] have added more-efficient numerical libraries.

Not to be left in the dust, systems that started as scientific-document word-
processors are also potential players. This seems only natural since most of the
CAS provide “notebooks,” world-wide-web interfaces, documentation. The
question, once again, seems to be who will be eaten by whom. This is not
solely a technical issue, but can be seriously affected by financial and political
considerations.

In order to better understand what can be offered by symbolic computation
in the eventual convergence of such systems, in our next section we discuss
component technology for computer algebra.

2. SYMBOLIC MATHEMATICS COMPONENTS

Computer Algebra Systems (CAS) have had a small but faithful following
through the last several decades, but it was not until the late 1980’s that this
software technology made a major entrance into the consumer and education

3Since the early 1970’s CAS have often tried to use the supposedly superior numerical compilers of the
“outside” computing world by producing numerical source code to compiled externally. Bringing such
activities “in house” helps provide a more robust environment.

Problem Solving Environments and Symbolic Computing 5

market. It was pushed by cheap memory, fast personal computers and better
user interfaces, as well as the appearance of newly engineered programs.

Now programs like Mathematica,Maple, Macsyma, Derive, Reduce, Axiom,
MuPad, and Theorist are fairly well known. Each addresses at some level
symbolic, numerical, and graphical computing. Yet none of the commercial
systems is designed to provide components that can be easily broken off and
re-used —called by, for example, “Fortran” programs. (but then since Fortran
deals with numbers or arrays of numbers, there is no natural way for a Fortran
program to accept an answer that is an expression!)

Even if one cannot easily break off modules, most CAS make an efforts to
enable a procedure to communicate in two directions with other programs or
processes. These existing tools generally require a delicate hand, in spite of
considerable effort expended to try to support communication protocols and
interconnections.

There have been examples, mostly in research systems when investigators
needed certain separable components in the context of (for example) expert
systems dealing with physical reasoning, or qualitative analysis. Our own
experiences suggest that CAS whose host language is Lisp can be re-cycled
in fairly large modules to be used with other Lisp programs. Lisp provides a
common base representation serving as a lingua franca between programs run-
ning in the same system. Another approach is to provide a relatively primitive
interconnection strategy amounting to the exchange of character streams: one
program prints out a question and the other answers it. This this is clumsy and
fragile4. It also makes it difficult to solve significant problems whose size and
complexity make character-printing impractical. The communication situation
could be likened to two mathematicians expert in different disciplines trying to
solve a problem requiring both of their expertises, but restricting them to oral
communication by telephone. They could try to maintain a common image of
a blackboard, but it would not be easy.

We will get back to the issue of interconnection when we discuss symbolic
math systems as “glue”.

Let us assume we have overcome this issue of re-use, either by teasing
out components or via input/output interfaces for separate command modules.
What components would we hope to get? What capabilities might they have,
in practical terms? How do existing components fall short?

2.1 PROGRAMS THAT MANIPULATE PROGRAMS
The notion of symbolically manipulating programs has a long history. In

fact, the earliest uses of the term “symbolic programming” referred to writing

4For example, handling errors: streams, traps, messages, return-flags, etc. is difficult.

6

code in assembly language (instead of binary!). We are used to manipula-
tion of programs by compilers, symbolic debuggers, and similar programs.
Language-oriented editors and environments have become prominent in soft-
ware engineering: tools for human manipulation of what appears to be a text
form of the program, with some assistance in keeping track of the details, by the
computer. Usually another coordinated model of the program is being main-
tained by the system to assist in debugging, incremental compiling, formatting,
etc. In addition to compiling programs,there are macro-expansion systems,
and other tools like cross-referencing, pretty-printing, tracing etc. These com-
mon tools represent a basis that most programmers expect from any decent
programming environment.

By contrast with these mostly record-keeping tasks, we computers can play
a much more significant role in program manipulation. Historically the Lisp
programming language has figured prominently here because the data repre-
sentations and the program representations have been so close5.

For example, in an interesting and influential thesis project, Warren Teit-
elman [31] in 1966 described the use of an interactive environment to assist
in developing a high-level view of the programming task itself. His PILOT
system showed how the user could “advise” arbitrary programs—generally
without knowing their internal structure at all — to modify their behavior. The
facility of catching and modifying the input or output (or both) of functions
can be surprisingly powerful. While ADVISE is available in most lisp systems,
it is unknown to most programmers in other languages. For example if one
wished to avoid complex results from sqrt one can “advise” sqrt that if
its first argument is negative, it should instead print a message and replace the
argument by its absolute value.

(advise sqrt :before negativearg nil
(unless (>= (first arglist) 0)

(format t "sqrt given negative number.
We return (sqrt(abs ˜s))"

(first arglist))
(setf arglist (list (abs (first arglist))))))

With this change, (sqrt -4) behaves this way:

input: (sqrt -4)
sqrt given negative number. We return (sqrt(abs -4))
output: 2.0

and if you wish to advise sqrt that an answer that “looks like an integer”
should be returned as an integer, that is,

√
4 should be 2, not 2.0, then one can

put advice on the returned value.

(advise sqrt :after integerans nil nil

5Recently, Common Lisp has actually modified this stand on duality by generally making a distinction
between a function and the lists of symbols (data) that describe it.

Problem Solving Environments and Symbolic Computing 7

(let* ((p (first values))
(tp (truncate p)))

(if (= p tp) (setf values (list tp)))))

The details illustrated here are unappealing to the non-Lisp reader, but it
is about as simple as it deserves to be. If we were writing the first piece of
advice in English, we might say “Label this advice “negativeans” in case you
want to remove it or change it later. Advise the system that before each call to
the square-root function it must check its argument. If it is less than zero, the
system should print a message sqrt given a negative number...
and then return the result of computing the square-root of the absolute value
of that argument.” (In fact Teitelman shows how he could have the program
translate such English advice as given above into Lisp, by advising the advise
program. He also demonstrates that he could advise his program to take advice
in German as well!) Notice that absolutely no knowledge of the interior of
sqrt is needed, and that in particular sqrt need not be written in Lisp
(Indeed it is probably taken from a system library!).

We mention this to emphasize the generality that such flexibility is possible
and often lost in the shuffle, when programmers attempt to constrain solutions
to “pipe” or “bus” architectures, or even traditionally compiled languages.

The favorite paradigm for linking general computer-algebra systems with
specific numerical solution methods is to try to define a “class of problem” that
corresponds to a solution template. In this template there are “insertions” with
symbolic expressions to be evaluated, perhaps derivatives or simplifications or
reformulations of expressions, etc. We can point to work as early as the mid-
1970s: ambitious efforts using symbolic mathematics systems (e.g. M. Wirth
[33] who used Macsyma to automate work in computational physics). This
paradigm is periodically re-discovered, re-worked, applied to different problem
classes with different computer algebra systems [23, 14, 32, 7, 29, 5, 2].

While we are quite optimistic about the potential usefulness of some of the
tools, whether they are in fact useful in practice is a complicated issue. An
appropriate meeting of the minds is necessary to convince anyone to use an
initially unfamiliar tool,and so ease of use and appropriate design are important,
as is education, and availability. We also feel an obligation to voice cautions
that there is a clash of cultures: the application programs and the CAS designers
may disagree: some of the “obvious” uses that proponents of CAS may identity
may be directed at parts of a computation that do not need automation. It is also
clear that generating unsatisfactory (inefficient, naive) solutions to problems
that have historically been solved by hand-crafted programs is a risky business.
We must find improvements, not just alternatives.

2.1.1 Example: Preconditioning polynomials. A well-known and use-
ful example of program manipulation that most programmers learn early in

8

their education is the rearrangement of the evaluation of a polynomial into
Horner’s rule. It seems that handling this rearrangement with a program is like
swatting a fly with a cannon. Nevertheless, even polynomial evaluation has
its subtleties, and we will start with a somewhat real-life exercise related to
this. Consider the Fortran program segment from [27] (p. 178) computing an
approximation to a Bessel function:

...
DATA Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9/0.39894228D0,-0.3988024D-1,
* -0.362018D-2,0.163801D-2,-0.1031555D-1,0.2282967D-1,
* -0.2895312D-1,0.1787654D-1,-0.420059D-2/
...

BESSI1=(EXP(AX)/SQRT(AX))*(Q1+Y*(Q2+Y*(Q3+Y*(Q4+
* Y*(Q5+Y*(Q6+Y*(Q7+Y*(Q8+Y*Q9))))))))
...

(In this case we know |x| > 3.75, AX=ABS(X) and Y=3.75/X)
Partly to show that Lisp, notorious for many parentheses, need not be ugly,

and partly to aid in further manipulation, we can rewrite this as Lisp, abstracting
the polynomial evaluation operation, as:

(setf
bessi1
(* (/ (exp ax) (sqrt ax))

(poly-eval y
(0.39894228d0 -0.3988024d-1 -0.362018d-2 0.163801d-2
-0.1031555d-1 0.2282967d-1 -0.2895312d-1 0.1787654d-1
-0.420059d-2))))

An objection might be that we have replaced an arithmetic expression (fast),
with a subroutine call, and how fast could that be? Indeed, we can define
poly-eval as a program that expands in-line, via symbolic computation,
before compilation into a pre-conditioned version of the above. That is we
replace (poly-eval ...) with

(let* ((z (+ (* (+ x -0.447420246891662d0) x)
0.5555574445841143d0))

(w (+ (* (+ x -2.180440363165497d0) z)
1.759291809106734d0)))

(* (+ (* x (+ (* x (+ (* w (+ -1.745986568814345d0 w z))
1.213871280862968d0))

9.4939615625424d0))
-94.9729157094598d0)

-0.00420059d0))

The advantage of this particular reformulated version is that it uses fewer
multiplies (6 instead of 8). While it uses 9 additions, at least two of them can
be done at the same time. This kind of form generalizes and saves more work
for higher degree.

Computing coefficients in this form required the accurate solution of a cubic
equation, followed by some “macro-expansion” all of which is accomplished at

Problem Solving Environments and Symbolic Computing 9

compile-time and stuffed away in the mathematical subroutine library. Defin-
ing poly-eval to do “the right thing” at compile time for any polynomial
of any degree n > 1 is feasible in a symbolic mathematics environment using
exact rational and high-precision floating-point arithmetic, and also assuming
the programmer is willing to “license” suc a transformation (in a term coined
by my colleague W. Kahan). Consider that the rare carefully-crafted programs
the coefficients and the arithmetic sequence is specified so as to balance off
round-off error but only if the sequence of operations is not modified by “opti-
mization”6 . This is not not the case here: the coefficients were taken from a
1954 paper by E.E. Allen as quoted by Abramowitz and Stegun [1].

As long as we are working on polynomials, we should point out that another
possibility emerges: a simple source code template can be inserted to carefully
compute other items of interest. For example, the derivative of the polynomial,
or a rigorous bound on the error in the evaluation or the derivative. Running
such code typically doubles the time to compute a polynomial.

In some cases if we know in advance the range of input, the “program
manipulation program” could provide a useful error bound for evaluation of a
polynomial BEFORE it is RUN. If, in this Bessel function evaluation context
we know that 0 ≤ x ≤ 3.75, we can determine the maximum error in the
polynomial for any x that region. We could in principle extend this kind of
reasoning to produce, in this symbolic programming environment, a library
routine with an a prior error bound. (As it happens, the truncation error in this
approximation far exceeds the roundoff in this routine).

While the total automation of error analysis requires far more than routine
algebra, local application of rules-of-thumb and some practical expertise in
an arcane subject (error analysis) can be provided in a PSE. We foresee one
difficulty in optimizing: the design objectives and limits are rarely specified
formally. Is the goal to write the fastest or most accurate or most robust possible
numerical program? Is the goal constrained to writing the program that will
run on the widest range of possible computer architectures while giving exactly
the same answers? These are open research areas.

Finally, we should comment that the original Fortran segment displayed
above shows constants given in double-precision syntax The number of figures
given is only about half that precision. It would be delightful to have intelligent
libraries that could on command, reformulate their entries to take advantage of
full accuracy or other considerations by reference to the original mathematical
analysis. Instead we see programmers copying, by proxy, not very accurate
code developed in 1954. In a scheme for computing improved approximations

6For an example of this, see the VAX trigonometric function approximations developed at UC Berkeley for
4BSD UNIX, arranged specifically for VAX roundoff.

10

on command we might also see the elimination of other errors, such as those
caused by copying coefficients.

2.1.2 Example: Generating perturbation expansions. A common task
for some computational scientists is the generation (at considerable mental
expense) of a formula to be inserted into a Fortran or other program. A well-
known example from celestial mechanics (or equivalently, accelerator physics
[8]) is the solution to the Euler equation, E = u + e sin(E). This can be
solved iteratively to form an expansion in powers of the small quantity e. Let
A0 be 0. Then suppose E = u + Ak is the solution correct to order k in e.
ThenAk+1 is computed as e sin(u+Ak) expanded as a series in sin(nu) with
coefficients of degree up to k + 1 in e. This is a natural operation in any CAS
system supporting Poisson series. The Macsyma system computes A4 (and
incidentally, converted it to TEX for inclusion as a typeset formula) for us:

A4 =
e4 sin (4 u)

3
+

3 e3 sin (3 u)
8

+
(
12 e2 − 4 e4

)
sin (2 u)

24
+
(
24 e− 3 e3

)
sinu

24

If we insist on a version in Fortran, as any CAS provides, we get a variety of
(partially) appropriate responses. For example, Mathematica:

FortranForm=
- (24*e - 3*e**3)*Sin(U)/24 + (12*e**2 - 4*e**4)*Sin(2*U)/24 +
- 3*e**3*Sin(3*U)/8 + e**4*Sin(4*U)/3

Historically, it has been important to check such results to make sure the
Fortran is valid. (Mathematica 2.1 converted 1/3 to 1/3, which in Fortran is
simply 0.) Newer versions make some default (and hence sometimes wrong)
decision on how many 3’s there are in 1/3:

FortranForm=
- 1.*e*Sin(U) - 0.125*e**3*Sin(U) + 0.5*e**2*Sin(2.*U) -
- 0.1666666666666666*e**4*Sin(2.*U) + 0.375*e**3*Sin(3.*U) +
- 0.3333333333333333*e**4*Sin(4.*U)

Maple produces

t0 = E**4*sin(4*U)/3+3.0/8.0*E**3*sin(3*U)+(12*E**2-4*E**4)*sin(2*
#U)/24+(24*E-3*E**3)*sin(U)/24

or after floating-point conversion,

t0 = 0.3333333E0*e**4*sin(4.0*U)+0.375E0*e**3*sin(3.0*U)+0.4166667
#E-1*(12.0*e**2-4.0*e**4)*sin(2.0*U)+0.4166667E-1*(24.0*e-3.0*e**3)
#*sin(U)

After rearranging using Horner’s rule we get

t0 = (sin(U)+(sin(2*U)/2+(3.0/8.0*sin(3*U)-sin(U)/8+(-sin(2*U)/6+s
#in(4*U)/3)*e)*e)*e)*e

Problem Solving Environments and Symbolic Computing 11

The last formula (from Maple) has multiple occurrences of sinu. Any
decent Fortran compiler will compute this once and re-use it. However that
compiler wouldn’t notice that from the initial values s = sinu and c = cos u
one can compute all the values needed with remarkably little effort: s2 =
sin 2u = 2 · s · c; c2 = cos 2u = 2c2 − 1; s3 = sin 3u = s · (2c2 + 1);
s4 = sin 4u = 2s2c2; etc.

In fact, any time an expression S of even moderately complicated form is
evaluated at regular grid points in one or more dimensions S[z], the calculus
of divided differences may help in figuring out how to replace calculation of
S[z] as an update to one or more previous values computed nearby. Values of
S[z+∆] computed in this way will typically suffer some slight loss in accuracy,
but this may very well be predictable and correctable if necessary7.

More specifically, if we return to the Euler equation program, We can apply
a more general method useful for k > 3. Here we use a two-term recurrence
which for each additional sin and cos pair requires only two adds and two
multiplies. Using the facts that

0.5 sin(a+ d)/ sin(d) = 0.5 sin(a− d)/ sin(d) + cos(a)
cos(a+ 2d) = cos(a)− 4 sin2(d)0.5 sin(a+ d)/ sin(d)

we can construct a very simple program whose inner loop computes sn =
0.5 sin(nu)/ sin(u).

First set k1 = 2 sin(u) and k2 = k2
1, s0 = 0, s1 = 1/2, c0 = 1, c1 = cosu.

Then for i > 1:

si := si−2 + ci−1

ci := ci−2 − k2 ∗ si−1

Then sin(nu) is k1 ∗ sn and cos(nu) is simply cn. (There is some accumula-
tion of round-off; this can be counteracted if necessary with minor additional
effort.)

We have chosen these illustrations because they show that

1. Symbolic computing can be used to produce small expressions, not just
relatively large ones. Furthermore, the important contribution is to form
sequences of program statements involving clever optimization of inner
loops.

7Often such correction is not needed: Since computing a surface plot of z = f(x, y) does not usually
require full accuracy, such a method can present substantial speedups. E.V. Zima has written extensively on
this [34].

12

2. Some relatively small expressions (just sin and cos) may nevertheless be
costly to compute when they occur in inner loops; there are tools, far
beyond what compilers can do, to make this faster.

3. Having computed expressions symbolically,prematurely converting them
to Fortran (etc.) is generally a mistake unless you are so carefully craft-
ing the program that the Fortran code is exactly what you mean: no more
and no less.

4. As long as we are generating the code, it is in some cases possible to
produce auxiliary program text related to the main computation. For
example, keeping track of accumulated roundoff is often possible.

5. Other auxiliary information such as typeset forms can be routinely pro-
duced for inclusion in papers such as this. These expressions may be
quite different from computationally optimal ones.

By contrast, CAS vendors illustrate their systems’ capability of producing
hugely-long expressions. It is usually a bad idea to dump large expressions
into a Fortran source file. Not only are such expressions likely to suffer from
instability, but their size may strain common-subexpression elimination “opti-
mizers” or exceed the input-buffer sizes or stack sizes. Breaking expressions
into smaller “prograsm statement” pieces as we advocate above is not difficult;
even better may be the systematic replacement of expressions by calculation
schemes such as poly-eval discussed previously.

2.2 DERIVATIVES AND INTEGRALS

Students who study a “symbolic” language like Lisp often see differentia-
tion as a small exercise in tree-traversal and transformation. They will view
programming of closed-form symbolic differentiation as trivial, if for no other
reason than it can be expressed in a half-page of code (e.g. see a 14 line program
[11]).

Unfortunately the apparent triviality of such a program relies on a simplistic
problem definition. A serious CAS will have to deal far more efficiently
with large expressions. It must deal with partial derivatives with respect to
positionalparameters (where even the notation is not standard in mathematics!).
It must deal with the very substantial problem of simplification. Even after
solving these problems the real application is often stated as the differentiation
of a Fortran “function subroutine.” Approached from a computer science
perspective, it is tempting to dismiss this since so much of it is impossible: Can
you differentiate with respect to a do-loop index? What is the derivative of an
“if” statement?

However, viewing a subroutine as a manifest representation of a mathe-
matical function, we can try to push this idea as far possible. If we wish to

Problem Solving Environments and Symbolic Computing 13

indeed compute “derivatives of programs” efficiently and accurately, this can
be a worthwhile endeavor for complex optimization software. One alternative
is computing “numerical derivatives” where f ′(x) at a point a is computed by
choosing some small ∆ and computing (f(x + ∆) − f(x))/∆. Numerical
differentiation yields a result of unknown, but probably low, accuracy.

The collection by Griewank and Corliss [16] considers a wide range of tools:
from numerical differentiation, through pre-processing of languages to produce
Fortran, to entirely new language designs (for example, embodying Taylor-
series representations of scalar values). The general goal of each approach is to
ease the production of programs for computing and using accurate derivatives
(and matrix generalizations: Jacobians, Hessians, etc.) rapidly. Tools such as
ADIFOR (www.mcs.anl.gov/adifor) are receiving more attention.

To again illustrate the importance of programs rather than expressions, con-
sider how we might wish to see a representation of the second derivative of
exp(exp(exp(x))) with respect to x. The answer ee

ex+ex+x
(
1 + ex + ee

x+x
)

is correct and could be printed in Fortran if necessary. But then more useful
would be the mechanically produced program below.

t1 := x
t2 := exp(t1)
t3 := exp(t2)
t4 := exp(t3)
d1t1 := 1
d1t2 := t2*d1t1
d1t3 := t3*d1t2
d1t4 := t4*d1t3
d2t1 := 0
d2t2 := t2*d2t1 + d1t2*d1t1
d2t3 := t3*d2t2 + d1t3*d1t2
d2t4 := t4*d2t3 + d1t4*d1t3

(by eliminating operations of adding 0 or multiplying by 1, this could be
made smaller.)

It is entirely plausible to have a pre-processor or compiler-like system which
automatically and without even exhibiting such code, produces implicitly the
computation of f ′(x) in addition tof(x). Consider that every scalar variable v is
transformed to a vector (v(x), v′(x), v′′(x), ...) and all necessary computations
are carried out to maintain these vectors (to some order). For optimization
programs this is a rather different approach with advantages over the derivative-
free methods or ones that depend on hand-coded derivatives.

What about other operations on programs? Packages exist to altering them
so they compute much higher precision answers. Another possibility is to have
programs return interval answers (every result rigorously bounded).

Programming language designers like to consider alternative modes of eval-
uation (usually delayed) in a kind of compilation. We can consider pre-

14

computing some specializations at compile time such as evaluating an integral
symbolically, replacing a call to a numerical quadrature program. This would
be like a very high order “constant folding” by an optimizing compiler. Or
noticing that the program is computing

∑n
i=1 i and that it can be replaced by

n(n + 1)/2. Given an appropriate “license” for such grand substitutions, it
might be possible to do this by CAS intervention.

It is not obvious that such licenses should be automatically granted since the
closed form may be more painful to evaluate than the numerical quadrature!
Example: f(x) = 1/(1 + z64) whose integral is

F (z) =
1
32

16∑
k=1

ck arctanh
(

2ck
z + 1/z

)
− sk arctan

(
2sk

z − 1/z

)
where ck := cos((2k − 1)π/64) and sk := sin((2k− 1)π/64). [20]

Another favorite examples where the CAS closed form needs to be con-
sidered carefully is one of the most trivial examples:

∫ b
a x
−1dx which most

computer algebra systems give as log b − log a. Even a moment’s thought
suggests a better answer is log(b/a). It turns out that a numerically preferable
formula is “if 0.5 < b/a < 2.0 then 2 arctanh((b−a)/(b+a)) else log(b/a).”
[9]. Consider, in IEEE double precision, b = 1015 and a = b + 1: The first
formula (depending on your library routines) may give an answer of−7.1e−15
or 0.0. The second gives−1.0e− 15, which is correct to 15 places.

In each of two last cases we do not mean to argue that the symbolic result
is mathematically wrong, but only that CAS to date tend to answer the wrong
question. An effort should be undertaken to provide, as an option from CAS
more generally, computer programs not just mathematical formulas.

2.3 SEMI-SYMBOLIC SOLUTIONS OF
DIFFERENTIAL EQUATIONS

There is a large literature on the solution of ordinary differential equations.
For a compendium of methods, Zwillinger’s handbook on CD-ROM [35] is an
excellent source. Almost all of the computing literature concerns numerical
solutions, but there is a small corner of it devoted to solution by power series
and analytic continuation. We pick up on this neglected area of application.

There is a detailed exposition by Henrici[17] of the background includ-
ing “applications” of analytic continuation. In fact his results are somewhat
theoretical, but they provide a rigorous computational foundation. Some of
the more immediate results seem quite pleasing. We suspect they are totally
ignored by the numerical computing establishment.

The basic idea is quite simple and elegant, and an excellent account may be
found in a paper by Barton et al [6]. In brief, if you have a system of differential
equations {y′i(t) = fi(t, y1, ..., yn)} with initial conditions {yi(t0) = ai}

Problem Solving Environments and Symbolic Computing 15

proceed by expanding the functions {yi} in Taylor series about t0 by finding all
the relevant derivatives. The technique, using suitable recurrences based on the
differential equations, is straightforward, although it can be extremely tedious
for a human. The resulting power series could be a solution useful within the
radius of convergence of the series. It is possible, however, to use analytic
continuation to step around singularities (located by various means, including
perhaps symbolic methods) by re-expanding the equations into series at time
t = t1 with coefficients derived from evaluating Taylor series at t0.

How good are these methods? It is hard to evaluate them against routines
whose measure of goodness is “number of function evaluations” because the
Taylor series does not evaluate the functions at all! To quote from Barton
[6], “[The method of Taylor series] has been restricted and its numerical theory
neglected merely because adequate software in the form of automatic programs
for the method has been nonexistent. Because it has usually been formulated as
an ad hoc procedure, it has generally been considered too difficult to program,
and for this reason has tended to be unpopular.”

Are there other defects in this approach? It is possible that piecewise power
series are inadequate to represent solutions. Or is it mostly inertia (being tied
to Fortran)?

Considering the fact that this method requires ONLY the defining system
as input (symbolically!) this would seem to be an excellent characteristic
for a problem solving environment. Barton concludes that “In comparison
with fourth-order predictor-corrector and Runge-Kutta methods, the Taylor
series method can achieve an appreciable savings in computing time, often by a
factor of 100.” Perhaps in this age of parallel numerical computing, our parallel
methods are so general and clever, and our problems so “stiff” that these series
methods are neither fast nor accurate; we are trying to reexamine them in the
light of current software and computer architectures at Berkeley. Certainly
if one compares the conventional step-at-a-time solution methods which have
an inherently sequential aspect to them, Taylor series methods provide the
prospect of taking both much larger steps, and much “smarter” steps as well.
High-speed and even parallel computation of functions represented by Taylor
series is perhaps worth considering. This is especially the case if the difficulties
of programming are overcome by automation, based on some common models.

2.4 EXACT, HIGH-PRECISION, INTERVAL OR
OTHER NOVEL ARITHMETIC

Sometimes using ordinary machine-precision floating-point arithmetic is
inadequate for computation. CAS provide exact integer and rational evaluation
of polynomial and rational functions. This is an easy solution for some kinds
of computations requiring occasionally more assurance than possible with just

16

approximate arithmetic. Arbitrarily high precision floating-point arithmetic is
another feature, useful not so much for routine large-scale calculations (since it
is many times slower than hardware), but for critical testing of key expressions.
It is more versatile than exact rational arithmetic, allowing for transcendental
and algebraic function evaluations.

The well-known constant exp(π
√

163) provides an example where cranking
up precision is useful. Evaluated to the relatively high precision of 31 decimal
digits, it looks like a 17 digit integer: 262537412640768744. Evaluated to 37
digits it reveals its true nature: 262537412640768743.9999999999992500726.
Other kinds of non-conventional but still numeric (i.e. not symbolic) arithmetic
that are included in some CAS include real-interval or complex-interval arith-
metic. We have experimented with a combined floating-point and “diagnostic”
system which makes use of the otherwise unused fraction fields of floating-
point exceptional operands (“IEEE-754 binary floating ‘Not-A-Numbers). This
allows many computations to proceed to their eventual termination, but with
results that indicate considerable details on any problems encountered along
the way. The information stored in the fraction field of the NaN is actually an
index into a table in which rather detailed notes can be kept.

There is a substantial literature of competing interval or high-precision li-
braries and support systems, including customized compilers that appear to use
conventional languages, but in reality “expand” the code to call on subroutines
implementing software-coded long floats, etc.

2.5 FINITE ELEMENT ANALYSIS, GEOMETRY, AND
ADAPTIVE PRECISION

Formula generation needed to automate the use of finite element analysis
code has been a target for several packages using symbolic mathematics (see
Wang [32] for example). It is notable that even though some of the manip-
ulations would seem to be routine — differentiation and integration — there
are nevertheless subtleties that make naive versions of algorithms inadequate
to solve large problems.

Our colleague at Berkeley, Jonathan Shewchuk [30] has found that clever
computations to higher precision may be required in computational geometry.
That is, one can be forced to compute to higher numerical accuracy to maintain
robust geometric algorithms. He has shown a technique for adaptive-precision
arithmetic (to satisfy some error bound) whose running time depends on the
allowable uncertainly of the result.

Problem Solving Environments and Symbolic Computing 17

2.6 LICENSES AND CODE GENERATION FOR
SPECIAL ARCHITECTURES

Starting from the same “high level” specification we can symbolically ma-
nipulate the information in a machine-dependent way as one supercomputer is
supplanted by the next. Changing between minor revisions of the same hard-
ware design may not be difficult; altering code from a parallel shared-memory
machine such as has been popular in the past to a super-scalar distributed
networked machine would be more challenging.

It is especially difficult to make such a conversion if the original model
is overly constrained by what may appear to be sequential (or even shared-
memory parallel) operations, as written by the programmer, simply because
the language of the computation cannot expose all the available independence
of computations.

While we advocate using a higher-level mathematical model for manipula-
tion, there is still the issue of how to reflect our understanding of acceptable
code to the numerical computing level activity. One way we have already
mentioned with regard to poly-eval earlier, is to change languages and
their compilers to recognize programmer-specified “licenses” in source code.
These license are assertions about the appropriateness of using transformations
on source code that are known to be true not in general, but in this particular
case; these free the compiler to make optimizations that are not universally
allowed. For example, if a programmer knows that it is acceptable in a certain
section of code to apply distributivity when seeking common subexpressions,
a local declaration license this can help the compiler. In our earlier example
of re-arranging polynomial evaluation, in the absence of such a license the
re-arrangement might be ill-advised.

Licenses cannot remove all constraints: unintentional constraints are among
the biggest problems in retaining old source languages. Merely changing the
compiler to target new architectures has the attraction that old code can still run,
but this cannot get the best results. Current state-of-the art compiler technology
is more aimed at architecture: compilers now run a program under controlled
conditions to measure memory access patterns and branching frequencies, and
the efficacy of optimizations may be judged by improved empirical timings
rather than predictions encoded in a code-generator. As examples of possible
improvements through dynamic compiling in new architectures such as the
Intel/HP IA-64:

Speculative execution that can be substantially aided if one can deduce
that a branch “usually” goes one way. (This can be conditioned on
previous branches at that location, or can be statically estimated).

Code can be emitted to recommend the fetching into high-speed cache
of certain sections of memory in advance of their use.

18

Register usage and efficiency can be parameterized in various ways, and
the ebb and flow of registers to memory can affect performance.

The point we wish to make here is that by committing certain methods to
(Fortran) programs, with data structures and algorithms constrained to one
model, we are cutting off potential optimizations at the level of the model.

We are hardly the first to advocate higher-level modeling languages, and it
it interesting to see it has entered the commercial realm8.

2.7 SUPPORT FOR PROOFS, DERIVATIONS

CAS have not been as widely used as specialized “theorem proving” systems
in producing interesting automated theorems. We believe there is potential here,
but theorem-proving software has not broken into applied mathematics, where
it could have more effect on scientific computing.

Perhaps notable is an attempt to merge CAS and proof technology in sev-
eral directions is a current project “Theorema” at RISC-Linz and SCORE at
University of Tsukuba, Japan.

Proofs in “applied mathematics” seem to require far more structure than
proofs in (say) number theory. Of the computer algebra systems now available,
only Theorist makes some attempt to formalize the maintenance of a “correct”
line of user-directed transformations. Systems like AUTOMATH, which sup-
port verification of proof steps rather than production of steps represent another
cut through this area. (There are publications such as the Journal of Automated
Reasoning covering such topics quite thoroughly. In the interests of brevity
We suggest only two references to the “interface” literature [3, 4].) When the
interesting problems of main-line numerical computation are addressed, they
require deeper results to modeling real and complex functions and domains, as
well models of computer floating-point arithmetic for numerical error analysis.
This direction of work remains a substantial challenge.

2.8 DOCUMENTATION AND COMMUNICATION

We believe that the future directions of computer algebra systems are on a
collision course with elaborate documentation and presentation systems. For
decades now it has been possible to produce typeset quality versions of small-
to-medium sized expressions from CAS. Two-way interfaces to documentation
systems are also possible; we have looked at converting mathematical typeset
documents (even those that have to be scanned in to the computer), into re-
usable objects suitable for programming. These scanned expressions can be

8For example, SciComp Inc. builds models this way for PDE solving[2], and more recently various financial
computations.

Problem Solving Environments and Symbolic Computing 19

stored in Lisp or perhaps in XML/MathML web forms, and then re-used as
computational specifications.

We would not like to depend on the automatic correctness of such optical
character recognition for reliable scientific software; indeed errors in recogni-
tion, ambiguity of expression as well as typographical errors all contribute to
unreliability. Yet in the push toward distributed computation, there is a need
to be able to communicate the objects of interest— symbolic mathematical
expressions— from one machine to another.

If we all agree on a common object program data format, or even a machine
independent programming language source code (like Java), we can in principle
share computational specifications.We do not believe that we can use TEX as
a medium and send integration problems off to a remote server. While we
have great admiration for TEX’s ability in equation typesetting, typeset forms
without context are ambiguous as a representation of abstract mathematics.
Notions of “above” and “superscript” are perfectly acceptable and unambiguous
in the typesetting world, but how is one to figure out what the TEX command
fˆ2(x+1) means mathematically? This typesets as f2(x+1). Is it a function
application of f2 to (x+1), perhaps f(f(x+1))? Or is it the square of f(x+1)?
And the slightlydifferentfˆ{(2)}(x+1) which typesets as f (2)(x+1) might
be a second derivative of f with respect to its argument, evaluated at the point
x+ 1. These examples just touch the surface of difficulties.

Thus the need arises for an alternative well-defined (unambiguous) represen-
tation which can be moved through an environment – as a basis for documen-
tation as well as manipulation. The representation should have some textual
encoding so that it can be shipped or stored as ASCII data, but this should prob-
ably not be the primary representation. When it comes to typesetting, virtually
every CAS can convert its internal representations into TEX on command.

While no CAS can anticipate all the needs for abstraction of mathematics,
there is no conceptual barrier to continuing to elaborate on the representation.
(Examples of current omissions: none of the systems provide a built-in notation
for block diagonal matrices, none provides a notation for contour integrals,
none provides for a display of a sequence of steps constituting a proof, none
understands “Let H be a Hilbert space.”)

A suitable representation of a problem probably should include sufficient text
to document the situation, most likely place it in perspective with respect to the
kinds of tools appropriate to solve it, and provide hints on how results should be
presented. Many problems are merely one in a sequence of similar problems,
and thus the text may actually be nothing more than a slightly modified version
of the previous problem — the modification serving (one hopes) to illuminate
the results or correct errors in the formulation. Working from a “script” to go
through the motions of interaction is clearly advantageous in some cases.

20

In addition to (or as part of) the text, it may be necessary to provide suitably
detailed recipes for setting up the solution. As an example, algebraic equations
describing boundaries and boundary conditions may be important in setting up
a PDE solving program.

Several systems have been developed with “worksheet” or “notebook” mod-
els for development or presentation.

Current models seem to emphasize either the particular temporal sequence of
commands (Mathematica, Maple, Macsyma-PC notebooks) or a spreadsheet-
like web of dependencies (MathCAD, for example). One solves or debugs a
problem by revisiting and editing the model.

For the notebooks, this creates some ad-hoc dependency of the results by
the order in which you re-do commands. This vital information (vital if you
are to reproduce the computation on a similar problem) is probably lost.

For the spreadsheets, there is a similar loss of information as to the sequence
in which inter-relationships are asserted, and any successes that depend on this
historical sequence of settings may not be reproducible on the next, similar,
problem.

In our experience, we have found it useful to keep a model “successful script”
alongside our interactive window. Having achieved a success interactively is
no reason to believe it is reproducible — indeed with some computer algebra
systems we have found that the effect of some bug (ours or the system’s) at the
nth step is so disasterous or mysterious that we are best served by reloading
the system and re-running the script up to step n − 1. We feel this kind of
feedback into a library of solved problems is extremely important. A system
relying solely on pulling down menu items and pushing buttons may be easy
to use in some sense, but it will be difficult to extend such a paradigm to
the solution of more complicated tasks. So-called ‘keyboard macros” seem
like a weak substitute for scripts in which “literate programming” combined
with mathematics can describe constructive, algorithmic solution methods. It
is not clear that this is the best approach, but in the absence of CAS “killer
applications” it is our best guess as to how a major organizing paradigm can
be presented. Centered more effectively around a document combined with
world-class expertise.

3. SYMBOLIC MANIPULATION SYSTEMS AS GLUE
In this section we spend some time discussing our favorite solutions to

interconnection problems.
Gallopoulos et al [13] suggest that symbolic manipulation systems already

have some of the critical characteristics of the glue for assembling a PSE but
are not explicit in how this might actually work. Let’s be more specific about
aspects of glue, as well as help in providing organizing principles (a back-

Problem Solving Environments and Symbolic Computing 21

bone). This section is somewhat more nitty-gritty with respect to computing
technology.

The notion of glue as we have suggested it has become associated with
“scripting languages,” a popular description for a collection of languages in-
cluding Perl, Tcl, Python, Basic, Rexx, Scheme (a dialect of lisp). Rarely is a
CAS mentioned though if the glue is intended to connect programs speaking
mathematics, this suddenly becomes plausible. CAS do not figure prominently
partly because they are “large” and partly because most people doing scripting
are generating e-commerce web pages, or controlling data-bases. (Of course
the CAS could also do these tasks, but mostly without use of any of their mathe-
matical capabilities.) In any case, the common currency of scripting languages
tends to be character strings as a lowest-common-denominator of computer
communication. The other distinction for scripting languages is that they are
interactive in environment and execution. They provide a mechanism to piece
together a string which can then be evaluated as a program. The simultaneous
beauty and horror of this prospect may be what makes scripting languages a
hackers’ playground.

When large-scale program development is part of the objective, the inability
of some scripting languages to be able to handle complicated objects (in partic-
ular, large programs) can be a critical deficiency. The long history of effectively
treating Lisp programs as data and Lisp data as programs is a particular strength
of this language that causes it to rise to the top of the heap for scripting. The
next two sections give some details.

3.1 EXCHANGE OF VALUES

We prefer that the glue be an interpretive language with the capability of
compiling routines, linking to routines written in other languages, and (poten-
tially, at least) sharing memory space with these routines. We emphasize this
last characteristic because the notion of communicating via pipes or remote-
procedure call, while technically feasible and widely used, is nevertheless
relatively fragile.

Consider, by contrast, a typical Common Lisp implementation with a “for-
eign function” interface. (Virtually all systems have this but with minor syn-
tactic differences).

On the workstation at which I am typing this paper, and using Allegro Com-
mon Lisp, if I have developed a Fortran-language package, or if my program
has generated one, in which there is a double-precision function
subroutine FX taking one double-precision argument, I can use it from Lisp by
loading the object file (using the command (load "filename.o")). and
then declaring

(ff:defforeign ’FX :language :fortran
:return-type :double-float :arguments ’(double-float))

22

Although additional options are available to defforeign, the point we
wish to make is that virtually everything that makes sense to Fortran (or C) can
be passed across the boundary to Lisp, and thus there is no “pinching off” of
data interchange as there would be if everything had to be converted to character
strings, as in the UNIX operating system pipes convention. While this would
open up “non-numeric” data, it would be quite inefficient for numeric data,
and quite unsuitable for structures with pointers. Lisp provides tools to mimic
structures in C: (def-c-type) creates structures and accessors for sub-fields
of a C structure, whether created in Lisp or C.

What else can be glued together? Certainly calls to produce web pages,
displays in window systems, and graphics routines. In fact, the gluing and
pasting has already been done and provided in libraries.

We have hooked up Lisp to two arbitrary-precision floating-point packages,
LINPACK and MINPACK, and others have interfaced Lisp to the Numerical
Algorithms Group (NAG) library, LAPACK and the library from Numerical
Recipes. Interfaces to SQL and database management systems have also been
constructed at Berkeley and apparently elsewhere.

3.2 MORE ARGUMENTS FOR LISP

The linkage of Lisp-based symbolic mathematics tools such as Macsyma
and Reduce into Lisp naturally is in a major sense “free” and doesn’t require
any glue at all. It is clear that Fortran can’t provide the glue. C or Java can only
provide glue indirectly: you must first write a glue system in them. (You could,
like most other people, write a Lisp system in C, but you would not exactly be
breaking new ground.)

We return in part to an argument in our first section. Linkage from a large
PSE to symbolic tools in CAS is typically supported via a somewhat narrow
character-string channel. Yet one would might have considerable difficulty
tweezing out just a particular routine like our Euler Fortran example function
above. The systems may require the assembling of one or more commands
into strings, and parsing the return values. It is as though each time you wished
to take some food out of the refrigerator, you had to re-enter the house via the
front door and navigate to the kitchen. It would be preferable, if we were to
follow this route, to work with the system-providers for a better linkage – at
least move the refrigerator to the front hall.

Yet there are a number of major advantages of Common Lisp over most
other languages that these links do not provide. The primary advantage is
that Common Lisp provides very useful organizing principles for dealing with
complex objects, especially those built up incrementally during the course of an
interaction. This is precisely why Lisp has been so useful in tackling artificial
intelligence (AI) problems in the past, and in part how Common Lisp features

Problem Solving Environments and Symbolic Computing 23

were designed for the future. The CLOS (Common Lisp Object System)
facility is one such important component. This is not the only advantage; we
find that among the others is the posibilityof compiling programs for additional
space and time efficiency. The prototyping and debugging environments are
dramatically superior to those in C or Java even considering the interpretive C
environments that have been developed. There is still a vast gap in tools, as well
as in support of many layers of abstraction, that in my opinion, gives Lisp the
edge: Symbolic compound objects which include documentation, geometric
information, algebraic expressions, arrays of numbers, functions, inheritance
information, debugging information, etc. are well supported.

Another traditional advantage to Lisp is that a list structure can be written
out for human viewing, and generally read back in to the same or another
Lisp, with the result being a structure that is equivalent to the original9. By
comparison, if one were to design a structure with C’s pointers, one cannot do
much debugging without first investing in programs to read and display each
type of structure.

In spite of our expressed preference, what about other possible glues? Script
languages seem to have little special regard for symbolic mathematics, although
several mentioned in our earlier list are quite interesting. Ambitious CAS
vendors certainly would like to come forward; using proprietary code is one
barrier. Nevertheless, we hope to benefit from the current surge in exploration
and design of languages for interaction, scripting, and communication as a
reaction to the dominant “thinking in C” of previous decades.

4. TWO SHORT-TERM DIRECTIONS FOR
SYMBOLIC COMPUTING

Martin’s [26] goal of building a general assistant, an artificially intelligent
robot mathematician composed of a collection of “facts” seems, in retrospect,
too vague and ambitious. Two alternative views that have emerged from the
mathematics and computer science (not AI) community resemble the “top-
down” vs “bottom-up” design controversy that reappears in many contexts. A
top-down approach is epitomized by AXIOM [18]. The goal is to lay out a
hierarchy of concepts and relationships starting with “Set” and build upon it all
of mathematics (as well as abstract and concrete data structures). While this
has been shown to be reasonably successful for a kind of constructive algebra,
an efficient implementation of higher constructs seems to be difficult. Perhaps

9Modern Lisps tend to back away from this principle of built-in universal read/write capabilities for non-list
structures: Although every structure has some default form for printing, information-preserving print and
read methods may have to be programmed.

24

this reflects an underlying problem relating to approximations to continuum
engineering mathematics.

By contrast, the bottom-up approach attempts to build successful applica-
tions and then generalizing. At the moment, this latter approach seems more
immediately illuminating.

We discuss these approaches in slightly more detail below.

4.1 THE TOP-DOWN APPROACH
As we have indicated, the approach implicit or occasionally explicit in some

CAS development has started from the abstract: Make as much mathemat-
ics constructive as possible, and hope that applications (which, after all, use
mathematics) will follow.

In addition to the challenge of overcoming such humble beginnings, is that
general constructive solutions may be too slow or inefficient to put to work on
specific problems.

Yet it seems to us that taking the “high road” of building a constructive model
of mathematics is an inevitable, if difficult, approach. Patching it on later is not
likely to be easy. Of the commercial CAS today, AXIOM sees to have the right
algebraic approach, at least in principle. Software engineering, object-oriented
programming and other buzzwords of current technology may obscure the
essential nature of having programs and representations mirror mathematics,
and certainly the details may change; the principles should remain for the core
of constructive algebra.

We hope this is not incompatible with the view of the next section; with
perseverance and luck, these two approaches may converge and help solve
problems in a practical fashion.

4.2 BOTTOM UP: LEARNING FROM SPECIFICS
As an example of assessing the compromises needed to solve problems

effectively, consider the work of Fritzson and Fritzson [12] who discuss several
real-life mechanical design scenarios. One is modeling the behavior of a 20-
link saw chain when cutting wood, another is the modeling of a roller-bearing.
To quote from their introduction.

“The current state of the art in modeling for advanced mechanical analysis of
a machine element is still very low-level. An engineer often spends more than
half the time and effort of a typical project in implementing and debugging
Fortran programs. These programs are written in order to perform numerical
experiments to evaluate and optimize a mathematical model of the machine
element. Numerical problems and convergence problems often arise, since the
optimization problems usually are non-linear. A substantial amount of time is
spent on fixing the program to achieve convergence.

Problem Solving Environments and Symbolic Computing 25

Feedback from results of numerical experiments usually lead to revisions in the
mathematical model which subsequently require re-implementing the Fortran
program. The whole process is rather laborious.
There is a clear need for a higher-level programming environment that would
eliminate most of these low-level problems and allow the designer to concentrate
on the modeling aspects.

They continue by explaining why CAD (computer aided design) programs
don’t help much: These are mostly systems for specifying geometrical proper-
ties and other documentation of mechanical designs. The most general systems
of this kind may incorporate known design rules within interactive programs
or databases. However such systems provide no support for the development of
new theoretical models or the computations associated with such development...
[the] normal practice is to write one’s own programs.

The Fritzsons’ view is quite demanding of computer systems, but empha-
sizes, for those who need such prompting, the central notion that the PSE must
support a single, high-level abstract description of a model. This model can
then serve as the basis for documentation as well as computation. All design
components must deal with this model, which they have refined in various ways
to an object-oriented line of abstraction and representation. If one is to make
use of this model, the working environment must support iterative development
to refine the theoretical model on the basis of numerical experiments.

Thus, starting from an application, one is inevitably driven to look at the
higher-level abstractions. These are not likely to be initially a close match to
modern algebra but there may be some common ground nevertheless.

5. THE FUTURE

What tools are available but need further development? What new directions
should be explored? Are we being inhibited by technology?

There are some impressive symbolic tools available in at least one non-trivial
form, in at least one CAS. Often these can and should be extended for use in
PSEs.

Manipulation of formulas, natural notation, algebraic structures, graphs,
matrices

Categories of types that appear in mathematical discourse.

Constructive algorithmic mathematical types, canonical forms, etc.

Manipulation of programs or expressions: symbolic integrals and quadra-
ture, finite element calculations: dealing with the imperfect model of the
real numbers that occurs in computers.

Exact computation (typically with arbitrary precision integer and rational
numbers).

26

Symbolic approximate computation (Taylor, Laurent or asymptotic se-
ries, Chebyshev approximations)

Access to numerical libraries

Typeset quality equation display / interactive manipulation

2-D and 3-D (surface) plots

On-line documentation, notebooks.

There are tools, capabilities, or abstractions fundamentally missing from
today’s CAS, although many of them are available in some partial implemen-
tation or are being studied in a research context. They seem to us to be worthy
of consideration for inclusion in a PSE, and probably fit most closely with the
symbolic components of such a system.

Assertions, assumptions

Geometric reasoning

Constraint-based problem solving

Qualitative analysis (Reasoning about physical systems)

Derivations, theorems, proofs

Mechanical, electronic, or other computer-aided design data

As an example of another area in which CAS can support PSEs in the future,
consider plotting and visualization.

To date, most of the tools in scientific visualization are primarily numerical:
ultimately computing the points on a curve, surface or volume, and displaying
them. In fact, when current CAS provide plotting, it is usually in two steps.
Only the first step has a symbolic component: producing the expression to be
evaluated. The rest of the task is then essentially the traditional numerical one.

Yet by maintaining a hold on the symbolic form, more insight may be
available. Instead of viewing an expression as a “black box” to be evaluated
at some set of points, the expression can be analyzed in various ways: local
maxima and minima can be found to assure they are represented on the plot.
Points of inflection can be found. Asymptotes and other limiting behaviors can
be detected (e.g. “for large x approaches log x from below). By using interval
arithmetic [10], areas of the function in which additional sampling might be
justified, can be detected. In some cases exact arithmetic, rather than floating-
point, may be justified. These techniques are relevant to functions defined
mathematically and for the most part do not pertain to plots of measured data.

Finally, we feel that a the recent interest in communication in the MathML/XML
OpenMath communities may provide a foundation for a better appreciation of
the merits of symbolic computation in a broad context of PSEs.

Problem Solving Environments and Symbolic Computing 27

6. ACKNOWLEDGMENTS

Discussions and electronic mail with Ken Rimey, Carl Andersen, Richard
Anderson, Neil Soiffer, Allan Bonadio, William Kahan, Bruce Char and others
have influenced this paper and its predecessor notes. Some of this material
appeared in an unpublished talk at the Third IMACS Conference on Expert
Systems for Numerical Computing, 1993.

This work was supported in part by NSF Infrastructure Grant number CDA-
8722788 and by NSF Grant number CCR-9214963 and CCR-9901933.

References

[1] M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Func-
tions, Dover publ. 1964.

[2] R. Akers, E. Kant, C. Randall, S. Steinberg, and R. Young, "SciNapse: A
Problem-Solving Environment for Partial Differential Equations," IEEE
Computational Science and Engineering, vol. 4, no. 3, July-Sept. 1997,
32–42. (see http:/www.scicomp.com/publications)

[3] C. Ballarin, K. Homann, and J. Calmet. “Theorems and Algorithms: An
Interface between Isabelle and Maple.” Proc. of ISSAC’95, ACM Press,
(1995). 150–157.

[4] A. Bauer, E. Clarke, and X. Zhao. “Analytica, an Experiment in Combin-
ing Theorem Proving and Symbolic Computation,”J. of Autom. Reasoning
vol. 21 no. 3 295–325, (1998)

[5] G.O. Cook, Jr. “Code Generation in ALPAL using Symbolic Techniques,”
Proc. of ISSAC’92 ACM Press (1992), 27–35.

[6] D. Barton, K. M. Willers, and R. V. M.Zahar. “Taylor Series Methods
for Ordinary Differential Equations – An evaluation,” in Mathematical
Software J. R. Rice (ed). Academic Press (1971) 369–390.

[7] M.C. Dewar., Interfacing Algebraic and Numeric Computation, Ph. D.
Thesis, University of Bath, U.K. available as Bath Mathematics and
Computer Science Technical Report 92-54, 1992. See also Dewar, M.C.
“IRENA – An Integrated Symbolic and Numerical Computational Envi-
ronment,” Proc. ISSAC’89, ACM Press (1989) 171 – 179.

[8] R. Fateman. “Symbolic Mathematical Computing: Orbital dynamics and
applications to accelerators,” Particle Accelerators 19 Nos.1-4, pp. 237–
245.

[9] R. Fateman and W. Kahan. “Improving Exact Integrals from Symbolic Al-
gebra Systems,” Ctr. for Pure and Appl. Math. Report 386, U.C. Berkeley.
1986.

28

[10] R. Fateman. “Honest Plotting, Global Extrema, and Interval Arithmetic,”
Proc. ISSAC’92 ACM Press, (1992) 216–223.

[11] R. Fateman. “A short note on short differentiation programs in lisp, and a
comment on logarithmic differentiation,” ACM SIGSAM Bulletin vol. 32,
no. 3, September, 1998, Issue 125, 2-7.

[12] P. Fritzson and D. Fritzson. The need for high-level programming support
in scientific computing applied to mechanical analysis. Computer and
Structures 45 no. 2, (1992) pp. 387–395.

[13] E. Gallopoulos, E. Houstis and J. R. Rice. “Future Research Directions
in Problem Solving Environments for Computational Science,” Report of
a Workshop on Research Directions in Integrating Numerical Analysis,
Symbolic Computing, Computational Geometry, and Artificial Intelli-
gence for Computational Science, April, 1991 Washington DC Ctr. for
Supercomputing Res. Univ. of Ill. Urbana (rpt 1259), 51 pp.

[14] B.L. Gates, The GENTRAN User’s Manual : Reduce Version, The RAND
Corporation, 1987.

[15] K. O. Geddes, S. R. Czapor and G. Labahn. Algorithms for Computer
Algebra. Kluwer, 1992.

[16] A. Griewank and G. F. Corliss (eds.) Automatic Differentiation of Algo-
rithms: Theory, Implementation,and Application.Proc. of the First SIAM
Workshop on Automatic Differentiation. SIAM, Philadelphia, 1991.

[17] P. Henrici. Applied and Computational Complex Analysis vol. 1 (Power
series, integration, conformal mapping, location of zeros) Wiley-
Interscience, 1974.

[18] Richard D. Jenks and Robert S. Sutor. AXIOM, the Scientific Computation
System. NAG and Springer Verlag, NY, 1992.

[19] N. Kajler, “A Portable and Extensible Interface for Computer Algebra
Systems,” Proc. ISSAC’92 ACM Press, 1992, 376–386.

[20] W. Kahan. “Handheld Calculator Evaluates Integrals,” Hewlett-Packard
Journal 31, 8, 1980, 23-32.

[21] E. Kant, R. Keller, S. Steinberg (prog. comm.) AAAI Fall 1992 Sym-
posium Series Intelligent Scientific Computation, Working Notes. Oct.
1992, Cambridge MA.

[22] D. E. Knuth. The Art of Computer Programming, Vol. 1. Addison-Wesley,
1968.

[23] D.H. Lanam, “An Algebraic Front-end for the Production and Use of
Numeric Programs”, Proc. ACM-SYMSAC-81 Conference, Snowbird,
UT,August, 1981 (223—227).

Problem Solving Environments and Symbolic Computing 29

[24] E.A. Lamagna, M. B. Hayden, and C. W. Johnson “The Design of a User
Interface to a Computer Algebra System for Introductory Calculus,” Proc.
ISSAC’92 ACM Press, 1992, 358–368.

[25] J. C. R. Licklider, “Man-Computer Symbiosis,” IRE Trans. on Human
Factors in Electronics, March 1960.

[26] W. A. Martin and R. J. Fateman. “The MACSYMA System” Proc. 2nd
Symp. on Symbolic and Algeb. Manip ACM Press, 1971, 59–75.

[27] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Nu-
merical Recipes (Fortran), Cambridge University Press, Cambridge UK,
1989.

[28] J.’ Purtilo. “Polylith: An Environment to Support Management of Tool
Interfaces,” |em ACM SIGPLAN Notices, vol. 20 no. 7 (July, 1985) pp
7–12.

[29] Sofroniou M. Symbolic And Numerical Methods for HamiltonianSystems,
Ph.D. thesis, Loughborough University of Technology, UK, 1993.

[30] J.R. Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast
Robust Predicates for Computational Geometry,” Discrete and Compu-
tational Geometry 18:305-363, 1997. Also Technical Report CMU-CS-
96-140, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, May 1996.

[31] W. Teitelman. Pilot: A Step toward Man-computer Symbiosis, MAC-TR-
32 Project Mac, MIT Sept. 1966, 193 pages.

[32] P. S. Wang. “FINGER: A Symbolic System for Automatic Generation of
Numerical Programs in Finite Element Analysis,” J. Symbolic Computing
vol. 2 no. 3 (Sept. 1986). 305–316.

[33] Michael C. Wirth. On the Automation of Computational Physics PhD.
diss. Univ. Calif., Davis School of Aplied Science, Lawrence Livermore
Lab., Sept. 1980.

[34] E.V. Zima. “Simplification and optimization transformation of chains of
recurrences.” Proc. ISSAC-95, ACM Press (1995) 42–50.

[35] D. Zwillinger. Handbook of Differential Equations, (CD-ROM) Academic
Press, Inc., Boston, MA, 1989.

