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Abstract

We advocate the use of a Common Lisp as a central organizing envi-
ronment for building scientific computing systems, based on its debugging
features, interactivity, memory model, existing code-base for computer al-
gebra and user interfaces, and its ability to dynamically load modules writ-
ten in other languages. In this paper we primarily address one example of
mixing pre-existing (non Lisp) code into this system: an elaborate FOR-
TRAN system written by David Bailey for arbitrary-precision floating-
point numeric calculation. We discuss the advantages and disadvantages
of wholesale importing such a system into Lisp. The major advantage
is being able to use state-of-the art packaged software interactively while
overcoming the disadvantages caused by FORTRAN’s traditional batch
orientation and weak storage model. In this paper we emphasize in par-
ticular how effective use of imported systems may require one to address
the contrast between the functional (Lisp-like) versus state-transition-
based (Fortran-like) approaches to dealing with compound objects. While
our main example is high-precision floats, we mention other highly-useful
packages including those for simulation, PDE solutions, signal processing,
statistical computation, linear algebra (LAPACK) that have also been
used with Lisp. We provide pointers to additional applications of this
kind of mixture.

1 Introduction

One of the traditional advantages of Lisp as a programming language is that it
is relatively supportive of language extensions to data abstractions, even those
not specifically anticipated in the language design. As such, the language has
adapted to the dramatically increased interest in object-oriented programming
via its CLOS (Common Lisp Object System); it has been augmented more
recently to provide support for web-based computation. Since at least 1978 we
at Berkeley have emphasized the need to access numeric functionality available
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through subroutine libraries written in other languages. (The first VAX Franz
Lisp, circa 1978, had array and numeric data types identical to that in Fortran.
In particular as soon as the Macsyma computer algebra system was brought up,
and early projects included interchanging data with MINPACK and a version
of MATLAB.) The current interest in the building of scientific problem solving
environments [12] seems to be just such a situation in which Lisp should be
useful: Its native support for “algebraic” trees as well as its call-outs to graphics,
numerics, and (recently) web-based communications.

In fact there are numerous application areas for what have been described
generically as scripting languages. Especially with the emergence of small pro-
grams for web page support, there have been new entrants.Popular alterna-
tive scripting languages, each with some selling points, include Visual Basic,
Javascript, Perl and Tcl/TK. Detailed comparisons among scripting languages
is somewhat beyond the scope of this paper, but some of the advantages (but
not all) of Lisp accrue to users of any of the alternative scripting languages.

Compared to conventional languages such as Fortran, C++, or Java, these
are the typical selling points for ANSI Common Lisp.

• It has an interactive base, supportive of debugging.

• It has a compiler which is integrated with the system, so that any modules
can be compiled or run interpretively.

• Although the base language is rather simple, it has been extended to
provide many advanced language features.

• There is thorough support for object-oriented programming. CLOS (the
Common Lisp Object System) has probably the most versatile object
model of any language. The Meta Object Protocol allows the program-
mer to define new models making other tradeoffs between compile-time
and runtime. This system can ease the burden of extending existing op-
erations to new data types.

• Lisp is known for the general ease with which one can build new languages
(most compilers have what amounts to a private version of Lisp inside
them!).

In particular one might consider building models of data using the same
operators PLUS and TIMES, extending their meaning to depend on what is
being added or multiplied1. In this way, various investigators have, without
particularly great violence to the language, extended Lisp to incorporate new
operations on polynomials, intervals, matrices or other abstractions while pre-
serving the same general mathematical or algebraic structure.

One such extension that has repeatedly appeared as user-implemented pro-
grams is that of a multiple-precision floating-point number system. A design for
such a system in Fortran goes back at least as far as Wyatt [23]. A later and for

1This kind of facility is familiar to users of newcomer languages such as C++ and Java,
which have implemented the “easy parts” of object inheritance.
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its time widely used and well-regarded library was written by Brent’s [5]. An
early implementation in Lisp is described by Fateman [9]. Other implementa-
tions have been written through the last several decades. We note a few more:
Sasaki [19] wrote programs in Lisp for the Reduce system; for the SAC-I system
see Pinkert [17]; most other programs seem to have been written in C such as
the desk-calculator (dc) in the UNIX system [21], and components of Maple
[6], Mathematica [22], PARI [4] and Saclib [13]. For more recent stand-alone
programs (one hopes each them is superior to the others on some benchmarks,
or has some identifiable advantage) see also LiDIA [14] Haible’s CLN [11].

The modern purveyors of several of the subroutine libraries for applications
seem to claim much higher efficiency than any of those routines incorporated in
an interactive framework, though it is not clear why this would have to be the
case. It seems fairly clear that Maple or Mathematica or Common Lisp could
call the absolutely fastest bigfloat system in the world2.

Distaining any existing interactive system, a number of the earlier of the
Fortran-based system providers (e.g. Wyatt, Brent, and Bailey) include as an
option, some kind of pre-processor or interpreter to make access to the subrou-
tines “easier”.

As should be clear by now, our view is that the environment of a computer
algebra system written in Lisp generally provides a ready-made interface, one
familiar to Lisp programmers. For those already engaged in writing large sys-
tems in Lisp who need long floating-point routines, this direct access from Lisp
is ideal. For programmers ignorant of Lisp, this is of course yet another burden.

2 Strategies for Implementation

Because Lisp systems today already include built-in arbitrary precision integers,
it would seem that implementation of arbitrary-precision floating-point numbers
would be easy. The main question, and it appears to be a thorny one, for the
implementer is usually whether to use a decimal (10 or 10n) or binary (2 or 2n)
radix. Decimal radix3 makes input and output easier, but may waste space or
time on internal computations, compared to speed in base 2 (or a power of 2).
Using decimal radix, which therefore eliminates binary-to-decimal conversion,
the system provides more of a what-you-see-is-what-you-computed view of the
bigfloat regime, making certain kinds of “explanations” unnecessary. These in-
clude explaining to the human observer the anomalies causes by translations
between binary “unit in the last place (ulp)” and decimal ulp, rounding, trun-
cation, etc. The Reduce system [19] uses decimal. In our own bigfloat imple-
mentation package, we wrote two versions (the differences are limited to a few

2Indeed, some recent (1999)CAS releases recognize special cases of certain matrix compu-
tations. In such ases they copy their data into conventional arrays, perform the numerically
standard operations, and copy back. In some implementations it should be possible to merely
transfer pointers to objects without having to copy them.

3or sometimes, as used in Maple, radix = largest power of 10 that fits in a word or half-word
size
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places in the code), with the more recent one being binary; Bailey’s MPFUN
went through two versions, settling on a binary version.

But all such Lisp implementations (including our own earlier work) suffer a
major (although non-technical) flaw: There are too few programmers to main-
tain such a package in the face of continually improving algorithms, changing
Lisp environments, and even changing computer architectures. For efficiency, it
is generally much better to re-use a state-of-the-art package, written by another
person who is an expert on the latest algorithmic advances and perhaps polished
for the latest hardware wrinkles, than to implement an elaborate algorithm in
your own language and system. Fortunately, David H. Bailey has done an ex-
cellent job of building a multiple-precision package in a Fortran4 system. To
quote from Bailey’s abstract[1] describing MPFUN:

This package features (1) virtually universal portability, (2) high per-
formance, especially on vector supercomputers, (3) advanced algo-
rithms, including FFT-based multiplication and quadratically con-
vergent algorithms for π, exp and log, and (4) extensive self-checking
and debug facilities that permit the package to be used as a rigorous
system integrity test.

This paper describes the routines in the MPFUN package and in-
cludes discussion of the algorithms employed, the implementation
techniques, performance results and some applications. Notable
among the performance results is that the MPFUN package runs
up to 14 times faster than another widely used package on a RISC
workstation, and it runs up to 153 times faster than the other pack-
age on a Cray supercomputer.

Bailey’s paper includes discussions of applications to testing of the transcen-
dence of certain mathematical constants, the computation of π to high precision,
and the role of the FFT (fast Fourier transform) in real and complex arithmetic.

In any case, given such a thorough package and excellent documentation,
the more appealing approach for using MPFUN programs from Lisp is to set
up a collection of communication functions, and access the subroutine library
via “foreign-function” calls. Since MPFUN naturally uses the Fortran/C data
model, some interfaces are necessary to make it convenient to use from Lisp.

3 A brief tangent on program models

One of the major issues in merging language facilities is reconciling different
views of data and control. We are faced with such a situation here, and so we
discuss it briefly.

4Could Bailey’s suite of routines be completely rewritten in Lisp? Yes, see Appendix A.
But we would like to build on Bailey’s shoulders, not his toes.
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3.1 State-transition vs. functional programming

Lisp and Fortran programmers generally prefer different styles, as emphasized
in their the programming environments. Crudely speaking, the idiomatic Lisp
programmer views most programs as compositions of functions. The Fortran
programmer views most programs as incremental alterations of some global
state.

In using MPFUN from Lisp, some bridging of these two models may be
helpful, and so we explain the distinction in greater detail.

3.2 The State-Transition / Fortran Model

MPFUN code provides subroutines to be used typically from a FORTRAN
main program in a sequences of CALL statements. These affect the contents of
memory (the computer’s “state”) in various ways. For example, the form CALL
MPADD(A,B,C) adds MP (multiple-precision) numbers A and B and stores the
resulting MP sum into location C. Another example is CALL MPCSSN(A,PI,X,Y)
which computes both the cosine and sine of the MP number A and returns the
two MP results in X and Y, respectively. PI is the MP value of π computed by
a previous call to MPPI.

Note that this code uses the call-by-reference convention that allows values
to be returned through arguments.

3.3 The Functional / Lisp Model

Using the functional style of programming in Lisp means that one computes
r:=a*x+b by writing (setf r (+ (* a x) b)). Let us say that a, b, and x
are all MP numbers. Then one functional-style interface to MPFUN would be
to extract from the 3-argument state-changing functions like MPADD and MPMUL,
corresponding functions mp+ and mp+, each of which takes two arguments, and
returns the MP result. Then we utter the computation as:

(setf r (mp+ (mp+ a x) b)) (1)

Of course, even in Lisp we could hew more closely to MPFUN’s conventions,
and use a sequence of statements. The two statements multiply, add and store
results, and use two temporaries. The FORTRAN program

CALL MPMUL(A,X,TEMP1)
CALL MPADD(TEMP1,B,R)

would be rendered in Lisp as

(progn (mpmul a x temp1)
(mpadd temp1 b r)) (2)

In the program (1) the system must implicitly allocate some temporary space
(comparable to temp1 in version (2), for the temporary storage of a · x). This
may be both inconvenient and a major blow to efficiency if in fact what happens
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is that Lisp allocates a (perhaps substantial) section of memory for the single-
time temporary use of this computation. This section of memory will remain
in use until memory is filled and a Lisp garbage collection algorithm notices
that this temporary value is inaccessible; it then is deallocated and returned to
available storage. This is a very safe approach: indeed the recently designed
Java language relies on it. But there are some potential efficiency losses relative
to other allocation methods. Version (2) also seems to have that problem,
except here we have provided a name, temp1. In reality we can allocate a
collection of temporary locations – comparable to floating point registers, or
a stack of floating point locations, for use by these programs. We can recycle
the temporary location such as temp1 by remembering that we have used it,
and when it is no longer needed, we use temp1 for something else. This is
not much different from an assembly-language programmer keeping track of
registers. Running out of registers, or mistakenly re-using a register when it is
still in use, is a danger.

In fact, if you know that you are going to need some of these objects again
(sooner or later), but don’t want to remember their names, then they can be
kept around in a a collection (or resource) and recycled. A short (18 line!)
Lisp program/macro is given by Norvig [16] which provides a framework for
any resource (say: bigfloat buffer) allocating and deallocating such buffers; cre-
ating new ones when all are in use, and recycling old ones when appropriate.
The with-resource construction illustrated below allocates, computes and then
deallocates with a minimum of fuss.

(with-resource (temp1 bigfloatbuffer)
(mpmul a x temp1)
(mpadd temp1 b r)) (3)

So we see that there is a problem with functional programming only if it
were the sole paradigm for dealing with large structures. The cost of creating
and discarding objects seems to be easily finessed5.

The MPFUN design departs from a strict functional approach in other ways.
Functional programs forbid global data. If we were to insist on such an envi-
ronment it is necessary to pass along every consideration that might affect the
result of a computation as a parameter, and to return as part of the result every
change in the environment. Given such orthodoxy with respect to MPFUN, it
would be necessary to pass into programs like MPADD or its functional correspon-
dent, the following information (and more) that is set up in MPFUN’s common:
idb, a debug flag normally set to 0. If idb is set to other values up to 10,
various debugging information will be printed. lbd is the “logical unit number”
in Fortran lingo for output of debug and error messages. This is normally set
to 6. Another flag, discussed later, is ird which controls the rounding. The

5a collection of bigfloat buffers has a somewhat more complicated structure if items are
not all some fixed size: if the user increases precision, the buffer objects must increase in size.
The wrong size buffers can be ignored and the garbage collection algorithm will eventually
recycle them if needed.
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action of a program in case of an error is affected by a “mask” ker – an array
of integers which can inhibit messages and/or allow for conditional execution
resumption for each of 72 routines.

The result of each computation is theoretically a composite of the MP num-
bers in the returned fields and ier, an integer error flag which is changed from
its initial value of 0 if any unmasked errors occur.

Thus we would see (mpplus x y idb lbd ird) returning a pair (result . ier).
Since MPFUN supports the state-based model, it seems reasonable to pass

all this functionality on to the user, at least as one option, but to provide the
mostly functional “Lisp-like” model for those who find it a convenience, and for
whom the inefficiencies are not significant in the face of a preferred programming
style.

The user can program in either style. Programming in a mixture of the
two styles is also possible, and even convenient sometimes, but the programmer
must guard against conflicts in the use of MP registers.

3.4 Functional vs. Network

An alternative view that has emerged in the last several years (see Lakshman,
Char, Johnson [8]) is the direction of building a PSE from a collection of com-
municating components. These components can plausibly be operating on dif-
ferent computers (e.g. a supercomputer, a distributed network of computers,
a front-end client, a file-server). One approach is to provide a generic server
component that wraps agents such as computer algebra systems, compilers, etc.
with wrappers providing control and communication support. By building upon
a commercially distributed and supported object implementations or protocols
(in the case of the cited work, variations on Java Beans/RMI and CORBA) it is
the intention to ease the problem of software re-use in builidng problem-solving
environments. It appears to us that the complexity of building using the cur-
rent level of component software may present to the programmer/user both a
conceptual as well as a practical barrier in software re-use. By contrast, a single
language model which hides the transition between operating systems, support
languages, distributed computers, etc. is more appealing. Our initial prefer-
ence is for a functional style, but we are not doctrinaire regarding this. Indeed,
Lisp supports other styles as well, and we recognize that the scientific program-
ing experience in practice today admittedly has developed a different thrust,
based on transformations of state: overwriting data stored in arrays. In fact we
have proposed (with Alan Edelman of MIT and Parry Husbands of NERSC)
to further pursue a model (math*P) in which we copy the model underlying
the Matlab system but extend it for parallel (MPI) computation. Only superfi-
cial changes to the language are needed in many examples. Even a state-based
model is conceptually simply compared to a distributed and possibly unreliable
network of interacting agents. Should this become the dominant PSE paradigm,
the need to drive it from a simple model will, we predict, re-emerge. The read-
eval-print loop model of interaction as provided in Lisp is simply superior to
edit-recompile-link-debug. To the extent that the latter model exhibits rather
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than conceals non-deterministic effects caused by distributed computing, it will
be counterproductive to the programmer, who would presumably no more wish
to deal with this matter than the world-wide-web users wish to know about
transitory transmission errors in TCP/IP.

4 The Implementation

Here we provide a brief survey of Bailey’s design; a full description is given by
Bailey [3] [1].

4.1 MP Data Types

This description is taken from Bailey’s documentation [3] with only minor
change. An MP number is represented by a single precision floating point array.
The sign of the first word is the sign of the MP number. The magnitude of the
first word is the number of mantissa words. The second word of the MP array
contains the exponent, which represents the power of the radix bdx = 224. The
succeeding words beginning with the third word in the array contain the man-
tissa. Mantissa words are floating point whole numbers between 0 and bdx - 1.
For MP numbers with zero exponent, the “decimal” point is assumed after the
first mantissa word. For example, the number 3 can be represented exactly in the
MP format by the three-long array #(1.0 0.0 3.0). An MP zero is represented
by the two-long array #(0.0 0.0). The number 224 is #(1.0 1.0 1.0). The
number 1012 is #(2.0 1.0 59604.0 1.0817536e+7) because (+ (* (expt 2
24) 59604) 10817536) = 1.0e+12. The number of mantissa words may be
larger than necessary to store the values. For example, the number three in
precision 16 would then be the length-18 array #(16.0 0.0 3.0 0.0 ...).

In Lisp it is easy to add some sugar to this structure: for example a header
that says “this is a multiple-precision number” so that printing routines (etc.)
can be automatically invoked, and so that the Lisp system can unequivocally
determine that the object being examined is of type MP, and not, say, some
other array of single-floats. We have refrained from doing so for the moment. If
our universe of numbers is sufficiently constrained so that arrays of single-floats
are not used for anything else, we can consider this as “manifestly typed” to
indicate MP’s type signature. As for printing MPs, it is unclear how anyone
really wants to see very long integers. Common Lisp would return a result that
looks like an array, but would provide an option (especially if used with CLOS)
for other kinds of default or specific printing.

The MPC data type (multiple-precision complex) is represented in MPFUN
by an array of length 2n + 4 (or possibly more) where the first n + 2 words
are a real MP number (composed of n mantissa words plus the length/exponent
words). Next there are two empty words (used by MPFUN internally for round-
ing), followed by n+ 2 words for the imaginary part. Because there are various
ways of breaking up this array if the numbers are shorter than the maximum,
it is necessary to keep track of the inter-component spacing. Thus in Lisp it
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is natural (and here we have succumbed to what is natural in Lisp), to use a
structure of two parts, L, the spacing which is usually n + 4 and the array of
length 2n+ 4 with the components inserted in the appropriate places.

4.2 Setting Parameters in Common

The Lisp package provides the opportunity to set any of the parameter in For-
tran Common directly, as well as to read them. The one that is of primary
interest is nw or the maximum number of mantissa words used for a newly cre-
ated MP number. Not all MP numbers will use this number of words: if the
value can be represented exactly with fewer words, we will normally use only
that number. nw should be set in the main calling program to 1+nd/7.225
where nd is the desired maximum precision level in decimal digits. This number
can be changed, and will affect the results of future computations, but will not
affect the previously generated results. There is a practical maximum nw that
is unfortunately set at Fortran-compile time. It has to do with the allocation of
scratch space for some of the routines. For the basic (non-advanced) routines,
a scratch space pre-allocated at 1024 words allows for over 7000 decimal digits.
For routines such as sine and cosine, the need for extra scratch space restricts
the number of decimal digits to about 780. This can be expanded by allocating
more space in a Common area; such inflexibility is a hallmark of Fortran’s storage
mechanism and an alternative (having Lisp allocate more storage and passing it
to Fortran) could alleviate this problem; it would require changing the Fortran
code in substantial ways. Rewriting the code in C, with C’s flexibility for alloca-
tion and deallocation is another solution. This opens up enormous possibilities
for programming errors compared to automatic storage control with garbage
collection, but also provides a level of efficiency that may be welcome.

A model of how one can bridge the gap to Fortran is represented by our
approach. We have provided Lisp programs to read and write in common: setcom
sets one value in common mpcom1 e.g. by (setcom nw 16), and returns the
old value. If nw is increased, then the MP “registers” mpreg1 to mpreg4 and
mpregx in Lisp are also enlarged if necessary. The mpregx register is used by
“internal” programs; unless otherwise documented, the programmer is free to
use the others. We keep track of their “high water mark” mpreghwm and never
shrink the registers. We also provide registers mpl2 for loge 2 and mppi for π.
For the complex number system we have a set of (distinct) registers mpcreg1 to
mpcreg4 and mpcregx for temporary computations.

It is also possible (and probably more stylish in Lisp) to use the idiom (setf
(mpcom1 nw) 16) for changing nw, and if the complex registers are going to be
used, executing (enlarge-mpcregs (mpcom1 nw)) is advisable.

We adopt the same treatment as MPFUN for dealing with errors: “Common
block MPCOM2 contains an integer array ker of length 72. This array controls
the action taken when one of the MP routines detects an error condition, such
as an attempted divide by zero. If the entry corresponding to a particular error
number is zero, the error is ignored and execution resumes, although the routine
that detects the condition is often exited. If the entry is one, then a message
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is output on unit ldb, ier is set to the error number (an integer between 1
and 72), and execution resumes, although subsequent calls to MP routines are
immediately exited (i.e. control is quickly returned to the user program). If the
entry is two, a message is output and execution is immediately terminated. All
entries of ker are initially 2.” [3] And yes, messages output to the default unit
ldb appear as Lisp standard output.

5 Additional Utilities for MP in Lisp

5.1 Input

A single Lisp program reads any normal Lisp number and converts to a MP
form. The conversion from usual types provides input as an integer (in which
case enough precision is provided to record all the digits correctly), any pre-
existing floating-point format, and any ratio (Lisp supports numbers like 1/3).
Numbers that are not exactly representable (like 1/3) have NW “mantissa” words
of precision. Reading of some other formats can be handled by combinations of
these conversions. For example (mp* (into-mp 123) (mppower mpten 40))
computes a representation for 123.0e40.

5.2 Output

Several programs are provided. The simplest, mpprint will take a single MP
argument and print it to the default user output stream in the form exactly as
produced by MPFUN, a form which is practical but may seem rather stilted for
people used to using Lisp. For example, MPPI is

10 ^ 0 x 3.1415926535897932384626433832795\
028841971693993751058209749445923078164062862089986\
2803482534211706798214808612566

The programmer can use obtain this kind of information as a string by
(mp2string mppi). A more conventional version (mppr mppi) provides a print-
out of

3.1415926535897932384626433832795028841971693993751\
0582097494459230781640628620899862803482534211706798\
214808612566x10^0

and we provide a more flexible program for reformatting or printing numbers at
your leisure: (mp2triple mp) takes an MP number and returns 3 integer values:
the sign (either 1 or -1), an integer representing the (base 10) exponent, and
an integer representing the fraction. The fraction will have an implied decimal
point to the left of its first digit.

All outputs are computed from the results from the MPFUN output con-
version subroutine mpoutc which computes how many decimal digits are mean-
ingful, assuming the given number is precise to the currently set nw number of
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mantissa words. It then rounds to the nearest decimal number, and omits trail-
ing 0’s (or rounds up 9’s) when these can be seen as artifacts of the conversion
from binary to decimal.

If MP numbers are not printed with such programs, they will look like vectors
of single-precision floats. For example, mppi is

MPFUN(76): mppi
#(16.0 0.0 3.0 2375530.0 8947107.0 578323.0 1673774.0
225395.0 4498441.0 3678761.0 ...)

Since the source code for the printing functions (as well as other programs)
is available, it is possible to make special formats as needed. Especially long
integers are rarely useful as normally printed, since the human eye needs more
help than is provided by a stream of digits.

5.3 Conversions

Converting an MP number m to the usual Lisp form is done by (mp2rational
m). If it happens to be an integer then the expression (mp2integer m) will
evaluate to the nearest (rounded) integer equivalent. You may not want to
actually see the result of either of these programs since it is visually hard to
understand large strings of digits or rational fractions; it is probably preferable
to print m as a decimal number instead, using (mppr m). If you want to be more
specific about the format, use mpstringdecom as described above.

We provide a Lisp function that returns a (new) freshly rounded result
(mpround m). It is based on the MPFUN routine (mproun m) which destruc-
tively rounds the MP number to the current precision, using the current setting
of the rounding flag ird. mproun can be used directly only if m is already an
MP array of length nw+4 or more (or precision nw+2). The extra two words are
needed in-place for guard digits in the rounding arithmetic.

The function (mpcopy m) creates a fresh copy of an MP number of the
current size. (mpmove m n) moves m into n destroying n’s previous contents.

Changing the number of mantissa words should be done by (setf (mpcom1
nw) k) where k is an integer. The equivalent number of decimal digits is about
7.225 times k.

6 Sample Code

Here’s how we wrote some simple routines to call MPFUN.

;;(mp+ a b :target c) does c:=a+b
;;(mp+ a b) returns a+b

(defun mp+ (x y &key (target mpreg1 supplied) )
"add 2 MP numbers and optionally store in target"
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(unless
(and *typecheckmp*

;;is typechecking turned on? if so, check ..
(mpp x)(mpp y) (mpp target)
;;check types of input
(<= (mpcom1 nw) (+ 2 (length target))))
;; is target large enough?

(error
"MPFUN mp+ called with incorrect
arguments ~s ~s ~s"
x y target))

(mpadd x y target)
;;call MPFUN Fortran subroutine MPADD

(cond ((zerop (mpcom1 ier))
;; if no error happened in the Fortran part,

(if supplied target
;; and if target supplied, return it else

;;copy out the result and return new object
(subseq target 0

(+ 2 (truncate (abs (aref mpreg1 0)))))))

;; otherwise, if there was an error in mpadd
;; it will already be reported by MPFUN;
;; we add our message too

(t (error "MPFUN ier= ~s from mpadd" (setcom ier 0))
;; return the value of ier and reset it to 0

)))

(defun mpev (a x)
"Evaluate a polynomial a[0]*x^n+ ...+a[n-1]
with real multiple precision coefficients
at a real mp argument."

(unless (mpp x) (setf x (into-mp x)))
(let* ((p (mpbuf))

(n (1- (length a))))
(mpadd (aref a 0) p p)
(do ((j 1 (1+ j)))

((> j n) p)
;; use a register model rather than

;; functional, to save mem. alloc
(mpmul x p mpreg1) ; x*p -> r1
(mpadd (aref a j) mpreg1 p)))) ; r1+a[j]-> p
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A simple modification to this code would always convert the inputs regardless
of their original (presumably numerical) type, to MF numbers: Just insert the
line (setf x (into-mp x) y (into-mp y)) as the first executable statement.

7 About Accuracy

Most programmers prefer a rather unsophisticated approach to numerical anal-
ysis. That is, use as little as possible. Often one hopes that a wrong answer
will somehow look suspicious, in which case re-doing the calculation in double-
precision may fix the result. This does not always work however. For an alter-
native approach using ever-increasing precision, see Richman’s paper [18].

Even a good understanding of fixed-precision floating-point numbers does
not necessarily imply an understanding of the subtleties of variable-precision
floating-point errors. Especially considering that with a package such as MP-
FUN it is possible to ask for computations over an absurdly large exponent
range (at least 10±14,000,000) and well as potentially high accuracy (about 16
million decimal digits).

Consider how you would deal with a request for a certain accuracy over an
arbitrary input. Usually, if you want an absolute error of d in computing sinx,
you will need at least log10(|x|) + log10(|1/d|) decimal digits of π. That is, to
get sin(10000) right to 0.0001, you will need π to 7 digits.

More commonly you might expect a routine to be described as having a
relative error of d. Then it needs to do more work. Consider sin(31415926).
If you only knew 8 digits of π, you might reduce the argument modulo π to 0,
then compute sin(0) = 0.0000. But the correct answer is about−0.5106. So the
relative error in the answer 0 is quite high, and it is certainly not good to 8
decimal places.

8 For details on MPFUN

We do not attempt to reproduce the details given in the excellent documen-
tation of MPFUN [1]. In fact, we encourage users except of the most casual
sort, to obtain full documentation for reference. The principal support is for
arithmetic, but also log, exponential, sin/cos, sinh/cosh, angle (related to arc-
tan and arcsin), square-root, cube-root, polynomial zero-finding, searching for
an integer relation (A typical application of this routine is to “determine if a
given computed real number r is the root of any algebraic equation of degree
n− 1 with integer coefficients.” [1].
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9 Various details

The program is loaded by typing :ld mpfunext into Lisp in the appropriate
environment.

The number of words used in the mantissa of MP numbers is initially 16.
This can be changed to, say, 20 by (setf(mpcom1 nw) 20).

Converting another number known to Lisp, say an ordinary floating-point
number, an integer, or a rational number x is done by (into-mp x). The
conversion is done exactly for integers, even if it requires more than nw words.
The conversion for rationals may be inexact. For sufficient MP precision, the
conversion from single or double floats is exact.

Arithmetic routines mp+, mp*, mp-, mp/ all work about the same way:
they each take two required input arguments. a third keyword :target is op-
tional. The common usage would be something like (setf x (mp+ a b)) but
a “more efficient” one would be (mp+ a b :target x). Each of these usages
“returns” the same value, but in the second case, the inside of the value of x
have been changed. It is, in that case, necessary that x already be an MP rep-
resentation of the appropriate length (mantissa length nw). If x is some other
quantity, say NIL or a normal Lisp number, using this latter form is an error.

If you wish to use :target arguments to avoid memory allocation costs,
but don’t have any special places allocated for these temporaries, you may
use mpreg1 through mpreg4 for your purposes. These will always be the right
length for the current value of nw, since they are stretched automatically if nw
is increased.

The predicate (mpp m) returns t if m is an MP. The predicate (mpzerop m)
returns t if m is an MP zero.

The program (enlarge-mppi n) computes a higher precision value for π
unless it already has stored sufficient precision for n words of mantissa. The
value mppi is the current value of π. Thus (mpprint mppi) will show you an
approximation to π in decimal. You may wish to have a higher-precision value
for π than for other numbers because this value is used in range-reduction for
the trigonometry programs.

The program (enlarge-mpl2 n) computes a higher precision value for loge 2
unless it already has stored sufficient precision for n words of mantissa. The
value mpl2 is the current value of loge 2. Thus (mpprint mpl2) will show you
an approximation to loge 2 in decimal. You may wish to have a higher-precision
value for loge 2 than for other numbers because this value is used in range-
reduction for exponential and logarithm programs.

The value of mpeps is the value of one ulp (unit in the last place) for the
current MP precision. It is the smallest positive number that when added to 1
gives a number different from 1. This value is useful for computing error bounds
or stopping criteria for iterations.

The functions for log and exponential, as well as the trigonometry func-
tions are supplied in a someone more primitive state, corresponding to the MP-
FUN routines: (mpexp a log2 b) has the effect of computing ea and storing
it in b which had better be an MP number representation, and of the appro-
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priate length. If you have already computed an appropriate value of log 2 as
mpl2 you could do this: (mpexp a mpl2 mpreg1) and then copy the resulting
value (if you so desire) from mpreg1 to some other place. This can be done by
(setf ea (mpcopy mpreg1)). Or the same result can be computed by (setf
ea (mpbuf))(mpexp a mpl2 ea).

If you do not have an appropriate value for log 2, you can do this:

(enlarge-mpl2 n) ;; where n>= nw, most likely
(setf ea (mpbuf))
(mpexp a mpl2 ea)}

The program (mpcssh a mpl2 x y) stores cosh a in x and sinh a in y.
The program (mpcssn a mppi x y) stores cosh a in x and sinh a in y.
If you do not have an appropriate value for π, and you need only sine for

further work (and thus do not wish to save the cosine and can leave it in a
register) do this:

(enlarge-mppi n) ;; where n>= nw, most likely
(setf si (mpbuf))
(mpssn a mppi si mpreg1)}

Notice that the alternatives to providing a value of π as input to the sine/cosine
routine are not entirely satisfactory. For example, one could (perhaps itera-
tively) find a good-enough value of π to provide the requested precision with
full accuracy (done, for example, by Macsyma [9]) or refuse to provide a re-
sult for an argument of very large size (loss of precision in range reduction).
Many systems implement this latter option. Perhaps it is unreasonable request
sin(10100) if you are only carrying 100 digits of precision.

The program (mpang x y mppi a) computes the MP angle A subtended by
the MP pair (X, Y) considered as a point in the x-y plane. This is more useful
than an arctan or arcsin routine, since it places the result correctly in the full
circle, i.e. −π < a ≤ π.

The polynomial evaluation program given above is not part of the Fortran
MPFUN package. The program (mpev a x) evaluates a real polynomial in MP
at the real MP (or other Lisp number) point, x. The argument a must be an
array of coefficients, each of which is an MP number. This array can be created
in a variety of ways, but the simplest may be to use a program we provide. For
example (make-mpfa 10 20 3 0) creates an appropriate data structure for the
polynomial 10x3 +20x2 +3x. The program mpmpeval takes the same arguments
as mpev but returns 4 values. The first is the polynomial value (same as mpev),
the second is a bound on the error in that value. The next two values are useful
in iterating to a root of the polynomial using Laguerre iteration. For details,
see the code.

(mpcompare a b) returns -1, 0, or 1 in ic as a < b, a = b or a > b. Built
upon this are the programs mp>, mp<, mp= with obvious semantics.

(mpabs m) is the absolute-value function. If a target location is preferred
in case m is negative, there is an optional second argument: (mpabs m r) in
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which case r will be altered to contain m or a copy of m with a sign change. If
r is not supplied and m is negative, a new (sign-changed) copy of m is returned,
otherwise m itself is returned, not a copy.

(mpsqrt a b) is the MPFUN square-root. We haven’t encumbered it (yet)
with Lisp: Normally, the MP b is changed to

√
a, but if the argument is negative,

this is what happens:

*** MPSQRT: Argument is negative.
*** MPABRT: MPFUN cannot continue, err code = 71

and all subsequent calls to MPFUN routines will be “no-ops”. To correct
this, one must reset the error code by (setf (mpcom1 ier) 0) as illustrated
in the sample code for mp+ above.

9.1 Extra Speed for High Precision

Bailey has provided a suite of routines for extra-high precision using FFT-
based algorithms. These generally require that the number of mantissa words
be rounded up to a power of two, and that certain initializations are performed
by mpinix Rather than provide the details, we direct the interested reader to
the source code provided for this as well as Bailey’s documentation.

9.2 Complex MP subroutines

A suite of complex MP routines is also part of the MPFUN package. We have
provided analogous routines such as into-mpc, mpc+, mpc* etc. Their usage
is described in the program documentation.

10 Extensions

It is natural to use MP numbers as the end-points of intervals. Although Lisp
provides exact rational numbers, and these can be used as rational endpoints
bounding any kinds of real operations, the sizes (lengths of numerators and
denominators) tend to grow rather dramatically (e.g. doubling on many oper-
ations). As their sizes grow, the cost of the operations grow, and therefore a
complicated computation may result in intervals whose endpoints are needlessly
elaborate. One can sometimes periodically widen intervals with rational end-
points in order to take advantage of nearby “easy-to-represent” rational num-
bers (e.g. those with denominators that are powers of 2 [13]) but in fact this is
approximately equivalent to conservative-rounding of floating-point numbers.

Building a real-interval package on top of an existing arithmetic is another
example [7] of a task easily undertaken in Lisp. In fact, MPFUN has provided a
handle, although not a complete solution for one of the essential controls: (setf
(mpcom1 ird) n) sets the rounding mode in MPFUN. When ird is 0 the last
mantissa word is the same as the result of truncating a higher precision result.
When ird is 1 the last word is rounded up if the next (“guard”) word would
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have been 223 or more. (This is assuming that the word size of 24 bits is used,
and that therefore this represents the half-way point for numbers up to 224− 1)
When ird is 2, the last word is rounded up if the guard word is non-zero. The
default is ird=1. This is tested in only one place (Fortran subroutine mfroun)
and could be replaced or augmented by additional settings for ird such as round
toward ±∞ or round toward/away from zero, or round to nearest even.

There is no guarantee for most of the routines that all the digits produced are
correct, however the detailed documentation for MPFUN gives an approximate
bound on each of the non-trivial routines. However, carrying additional words
in the mantissa can provide, with extremely high probability, a result correct to
within rounding error, for most of the routines if the results are computed to
one or two extra mantissa words of precision and then rounded before further
use. The answers to addition and multiplication are accurate to all digits given,
subject to the rounding mode.

An extension to MP that might also be useful is to provide a closer model to
that of IEEE-754 binary floating-point arithmetic. Such possible modifications
include encoding of not-a-number forms, infinities, and signed zeros. Perhaps a
natural way of encoding this is to use the exponent word in the MP format: a
reserved operand in that position could be used as a key to a reserved MP. A
negative zero could be signalled by a negatively signed zero in that same word.
Most of this could be done in the Lisp interface, although small changes in the
Fortran would be the easiest way to include new rounding modes (e.g. round
toward/away from zero).

We expect that the treatment of roundings would be less critical to most
MPFUN applications since (many) additional guard bits are relatively easy to
specify: (setf (mpcom1 nw) (1+ nw)) gives you 24 more bits.

Based on our experience with Lisp, we would encourage the design a treat-
ment of arithmetic in the language that includes a smooth transition from hard-
ware floating-point to software arbitrary-precision, and that integrates smoothly
with existing Lisp types (like rationals, complex integers, etc). There is a po-
tential for using CLOS to put together extensions to intervals, polynomials,
matrices, etc., for a more uniform approach to numeric objects.

Another direction for extension is to provide a more friendly (i.e. algebraic
language) user interface. For this purpose, we have instrumented a parser (writ-
ten in Lisp) that accepts an infix language based to interpret simple arithmetic
expressions and directives for changed precision, as commands to MPFUN. This
system can be contrasted with computer algebra interactive systems in terms
of speed, accuracy, or other utility.

For a sample speed comparison: we computed 725 decimal digits of π The
time6 to square this and store the result in a pre-allocated MP register was 1.15
milliseconds (ms). Storing the result in a newly-allocated array raised the ap-
parent cost to 1.35 ms, a figure which excludes garbage collection. We repeated

6Times were computed over many trials, and results exclude the cost of the “empty loop”.
Times were on a Sun Microsystems SPARC1+ processor.
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the test until we provoked two garbage collections, each of which cost 500 ms.,
and observed that they occurred about every 600 multiplies. Amortizing the
GC cost over each multiplication raises the total cost to about 2.5 ms.

For Pari 1.35.01 the time for a comparable multiplication and storage of the
result was about 15 ms., for Mathematica 2.2 about 29 ms., for Maple V about
83.5 ms. For Macsyma, we observed two timings, one for a local version of the
system7 which took 85 ms. and a system compiled in Ibuki/Kyoto Common Lisp
(Macsyma Inc.’s Macsyma 417.100) which took about 302 ms. We believe that
the faster underlying built-in implementation of “bignums” in Allegro accounts
for the 3.5 factor speedup. Thus a direct link of the existing Macsyma code to
MPFUN could bring the time down considerably, assuming that arithmetic on
rather large bigfloats was a common activity in a given calculation.

11 The multiple-language paradigm

Lisp as a controlling framework for programs written in other languages (almost
always C or Fortran) is a fairly common in the Lisp word. In particular, most
Lisp implementations are dependent on libraries for input/output, mathemat-
ical functions, and operating system activities written in other languages, and
so have essentially “from birth” used some standard linkages for dealing with
calling conventions, storage, stack management, etc.

Based on this foundation, most Lisp systems have a user-visible foreign-
function system on which other building projects seem quite plausible. We pick
a few recent numerical-oriented projects, each of which utilizes numeric chunks
of computation that can be moved to already-proven technology.

11.1 Matlisp

Matlisp is a public-domain package for Common Lisp for handling matrices with
real-valued or complex-valued elements. BLAS is used for elementary matrix
operations and LAPACK is used for linear algebra routines [15].

Why would one bother? After all there are numerous interactive systems
which provide access to the same or similar routines fo eigenvalue computations,
etc. (Matlab and its freeware equivalent Octave come to mind). In Lisp’s favor:
one can use any of the well-supported data types and CLOS. Compare this to
Matlab in which you have your choices constrained to (essentially) matrix, or
perhaps one of the odd after-market attempts to add data structures.

11.2 Lambda-Shift

A more complete example of how Lisp can be integrated into other support lan-
guages is provided in Lambda-SHIFT [20]. a very complicated language devel-
oped over years to solve difficult modeling problems with simulation semantics
for hybrid dynamic systems. This has been under development at Berkeley in

7based on William Schelter’s “Maxima” code, but compiled in Allegro Common Lisp
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the automated highway program, but the tools are being used for other control
systems (robot helicopters for example). LAMBDA-SHIFT is the next gener-
ation of this language. The implementation has emerged from the morass of
C-code and is now implemented by using the Common Lisp Meta Object Pro-
tocol for bringing semantic definitions to components implemented in SHIFT.
Lambda-SHIFT is once again a program heavily reliant on LAPACK routines
for numerical computation.
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13 Appendix: If MPFUN were written for or in
Lisp

It is natural to ask how the design for MPFUN would differ if it were written
from scratch (or re-written) for use from Lisp or written with Lisp as its source
language.

In fact, the source code could have been written in Lisp, since it requires
facilities available in any Common Lisp: floating-point arrays. However, for
high speed, the Lisp would have to be compiled into code as efficient as that
from FORTRAN. Most Lisp compilers are not as sophisticated as FORTRAN
in manipulating arrays; FORTRAN compiler implementations are likely to be
more sophisticated in taking advantage of the substantial parallel or pipe-lined
components of MPFUN.

If we grant for the moment that the code will be in FORTRAN or C, how
could we change it to make it “better” for our purposes in accessing it from
Lisp?

1. Memory management. The primary difference would be in memory al-
location for scratch space. Scratch space for calculations in the Fortran
version of MPFUN is allocated in a shared, named, statically allocated
Fortran common module. It is therefore fixed in size at compile-time, and
cannot be extended except by re-compilation. Attempting to exceed the
available space produces an “allocation error” message from MPFUN.

While it is possible to continue computing in Lisp, or even to make further
calls to MPFUN routines, it probably is necessary to reduce the number
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of mantissa words nw being carried before continuing to use MPFUN. If
the computation needs to be done to that precision the only alternative is
to follow the instructions in the error message to change two parameters
in the Fortran code, followed by re-compiling and re-loading MPFUN. In
the C version of MPFUN, a larger allocation may be made at run time,
but their may be an overhead of an extra memory indirection to find that
space. (The C version was not available when we first wrote our own tests,
and we haven’t tried to use it).

Inflexibility is one of the prices one pays to write in portable Fortran,
compared to Lisp, C, or even a modern dialect of Fortran (e.g. Fortran
90 [2]).

2. Complex numbers. MPCs in MPFUN are represented as single arrays with
the real and imaginary parts placed in adjacent places with a given offset.
That is one vector V with the real part starting at V(1) and the imaginary
part starting at V(L). If the real part is “full length”, then L is NW+4 or
more where NW, an integer stored in common, is the number of mantissa-
words in the representation of an MP number. Thus the value of L must be
passed around, and all arguments to complex functions must have the same
spacing. In Lisp, a more normal approach would be to treat a complex
MP as a pair of MP vectors, simplifying the programming. Although this
would cost an extra word in the worst case, it could save considerable
space where some of the arguments are short. This ordinarily happens
when the arguments are exact—there is no need to use NW mantissa words
to represent 1/2 or 2.

3. Functional vs. State-modification programming. Arguably, the functional
versions would be provided as the fundamental routines, and the com-
piler would have to optimize a construction like (setf z (mp+ x y)) into
(mpadd x y z). The compiler would have to be told that x and y were mp
representations, and also assure that z was previously allocated an array
of suitable length and type.

4. Better abstraction. Arguably, one would construct MP numbers (via
defstruct or as a class in CLOS) so that the “type” of the MP data
type would be part of the datum, to distinguish it from other vectors of
single-floats; indeed, a “structure” could be established to identify type,
sign, actual mantissa length M, exponent (an integer), and a vector of
M single-floats. This would cost a few extra words for each number, but
would make the programming simpler and less error-prone. In particular,
the association of a printing function with the MP type could be done
automatically.

5. Using “bignums” for fractions. Arguably, one might represent a mantissa
as an arbitrary-precision integer, and hope that this data type is handled
well by the Lisp system. Alternatively one might choose a larger (inte-
ger) radix than currently in use. The requirement of a full-precision fast
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unsigned 32 by 32 multiply to get a 64-bit result can be met on some
machines, but even so it is likely that the speed of integer multiplication
will be substantially lower than the speed of floating-point multiplication.
Indeed, some RISC machines do not even have an integer multiply in-
struction, yet the floating-point multiplication is pipelined. While the
packing of bits will save space and can in principle speed up computation
in very long arithmetic, it will probably be difficult to see this advantage
in practice.

6. Better error handling. It might be possible to use the idea of a “Not-a-
Number” present in IEEE-754 floating-point standard, in MP. This could
be done by returning a reserved operand of some sort rather than leav-
ing an error flag ier set in common. The notion of having to check and
reset ier after each operation is sufficiently much of a pain that program-
mers might easily neglect it. Unfortunately, the operation of the MPFUN
routines is such that a non-zero ier effectively prevents any further com-
putation in the MPFUN package – all routines immediately return with
their arguments unchanged.
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