
Survey of User Input Models for
Mathematical Recognition: Keyboards, Mice, Tablets, Voice

Lucy Zhang and Richard Fateman
Computer Science Division

University of California
Berkeley CA, 94720-1776

Abstract

The entry of mathematics into a computer system
is important in some contexts: computer algebra
systems, programming for scientific computing,
educational training, and publishing. Different
designs based on different user models may be
appropriate. We survey some of the past
approaches and suggest how new technology will
(or will not) make these tasks easier.

Introduction

Computer systems have become central tools in
education, science, and technology for data
storage, presentation, and communication. Text is
routinely counted as “bytes” being stored
digitally, images are being captured in bitmaps,
and ideas are being exchanged through electronic
media. While computers are able to ingest,
interpret, and transcribe a vast amount of
knowledge in textual form, they present barriers
for humans to represent and express mathematics.

First of all, there exists a dichotomy between the
appearancs or presentation of math and the
semantic meaning underlying the notation.
Expressions appearing identical can have
drastically different meanings in different
contexts (dx as in the derivative with respect to x
or dx as in d times x). Formulas that have
equivalent meanings can have different
appearances (ln x and logex). This presents an
additional level of ambiguity that is not always
recognized by computer scientists. The linguist
studying natural language may view “Time flies
like an arrow.” as interpretable in several ways,
but one is still able to identify the separate words
and provide a concise explanation of the
possibilities. In mathematical utterances the
meanings may require reference to the enclosing
context for definitions and notational conventions
in a manner that is inherently difficult.

To proceed on the path towards digitizing
mathematical information, many groups will
benefit from the ability to create and store
electronic versions of scientific documents. These
include publishers of journals, software
publishers for document analysis, software

publishers for assessing document semantics,
electronic libraries, and individual users who try
to access the libraries4. In fact, we can extend the
benefits of a good math input and representation
system to a wider range of users. We will
specifically assess three groups of users, K-8
students, high school students and
undergraduates, and advanced researchers.

Being able to represent math in a computer really
starts with the capability to enter math into such a
system. There are several different models for
math entry in existing programs which we will
explore and evaluate. With the technology of
tablet PC’s on the rise, we explore the ability to
incorporate this new technology into the existing
models. And lastly, after examining the tradeoffs
between different models, we will try to design a
potential model which will combine features from
the different existing models in an attempt to
maximize each of their strengths.

Classification of Input Models

Many mathematical computer systems that
require math input provide the user with an
interface that can be categorized into one of the
four types of models: handwriting recognition,
template and palettes, keyboard command entry,
and typesetting systems such as TeX.

Handwriting Recognizers

The handwritten recognition model provides a
natural, nonrestrictive way of entering
mathematics into a computer system. It does not
require you to learn a new convention for
conveying math. Also, Arvo [1] argues that
handwriting math allows you to enter math
without having to “mentally parse” the expression
as you are writing. This seems to us not especially
well supported, however.

Handwritten mathematics recognizers capable of
handling simple expressions are fairly easy to
build, and are often written as neat demonstration
programs for new stylus-like input devices. In
reality the evidence is that such systems do not

easily scale up and are limited in accuracy and
robustness.

In a typical system the recognition process
consists of two main phases, the symbol
recognition phase and the structural parsing
phase. Each phase contributes to a high error rate.
Misidentification of only one symbol in ten would
seem to be a low error rate at first blush, but
consider that to correct one symbol requires (a)
correct identification and positioning of the “rub-
out” symbol (b) correct recognition and
placement of the new symbol. Thus on average to
enter ten symbols one will have to enter twelve or
more. Some symbols have multiple strokes. This
is irritating.

Misidentification of symbols is difficult to avoid
given apparent similarities of symbols. Notice the
overlap in characteristics of sloppily written
different symbols as {l, 1, |, [} or {C, Õ} or
{α,¶,∂} or {p, r}. This problem is compounded
by the wide range of variations among users’
handwriting style; most handwriting recognizers
need to be trained on a per-user basis.

After character recognizer is finished, the math
expression needs to be structurally parsed. (In
fact, recognition and parsing may be profitably
interwoven. Recognition of symbols may be
dependent on expectations of a parser: is a
horizontal line a divide bar or a minus sign?).
Parsing of conventional mathematics is difficult
because it tends to be ambiguous, even when
given on a single line. Unambiguous
“programming language” versions of
mathematics are, contrary to the popular view
among computer scientists, a small subset of the

richness of the usual mathematical notation. Add
to this the need to disambiguate what amounts to
subtle errors of misplacement (Is that a
subscript?) and the possible number of parses
grows substantially. It is not that the parser will
take too long. It is that there are (perhaps
exponentially many) alternative parses.

Building a handwritten math recognizer that can
handle the needs of advanced mathematicians is a
much more difficult task than building one which
suffices for grade school students.

We must build in convenient correction
technology. For example, allowing deletion of
erroneous strokes, listing/chosing alternative
interpretations, and learning from common
mistakes help minimize the amount of extra work
users must carry out in order to undo the mistakes
of the recognizer. User feedback is crucial for the
correction process and should be integrated with
system learning. Since recognition errors in
current prototypes (all we seem to have are
prototypes!) are still fairly common, correction
procedures should at least be more convenient
than if the user were to just type in the expression
into Emacs for a typesetting system like TeX.

Below is an illustration of a handwriting
recognizer. It has a window area large enough for
pen written strokes. There are methods to modify
misplaced or wrongly written strokes. Most of the
programs allow for selection of sub-expressions
and moving the selected areas. The process of
recognition in this case generates input for the
typesetting language LaTeX which is then
processed and displayed.

A prototype of a handwriting based math entry system10

Templates and Palettes

A less natural and more constrained model of
entering math is by means of interactive

construction using structured templates and
palettes. These are windows resembling
palettes which have buttons that represent
predefined structures of basic math

operations such as fractions, exponents,
integrals, square roots, summations, etc. The
operands of these functions are left for the
user to fill in using either keyboard
commands or more buttons.

An example of a template from Mathematica

One advantage of a template model is this
forced-entry guarantees well-formed
expressions. Also, it allows the system to
easily add new symbols and functions by just
adding a new palette or extending an existing
one. The disadvantages of this model pertain
to ease of use. Manipulation of templates
requires most users to switch between the
keyboard and the mouse; although there may
be keyboard shortcuts that can make certain
commands more efficient, the number of
entries is daunting. Also, finding the
appropriate palette and the entry within the
palettes in order to enter one expression may
be frustrating for the user. For a touch-typist
capable of 80 words per minute (400
characters/minute or more than 6 characters
per second) typing \Gamma takes one
second. Can you even find the G symbol in
the template above in one second?
Features can be incorporated in programs
using the template model to compensate for
the model’s inherent weakness and
emphasize on its strength. For example, to
make navigation as efficient as possible,
commonly used expressions of calculus such
as integrals, derivatives, infinity sign,
superscript and subscript for the limits should
be organized on one palette. In fact, common
commands that could be used in most any
math expression may be grouped together.

These include superscript/subscript, fractions,
square root, exponent, etc.

Constraining the users to enter only valid math
expressions may be confusing for those who do
not grasp what some well-formed expressions
look like. Indeed, some intermediate stages that
would eventually become well-formed cannot be
entered this way: consider 1/(a+b) with prefixes
{1, 1/, 1/(, 1/(a, 1/(a+, 1/(a+b) } most of which
are ill-formed, but valid prefixes.
Annotated assistance for what each palette button
means and what operands are required may help,
(certainly some of the Mathematica choices are
obscure), but they still cannot make up for user
expectations that do not match the template mode.

Keyboard Command Inputs

Some (most) programs allow users to enter math
using strictly the keyboard. Since the characters
that appear in a math expression do not all exist
on the keyboard, sequential combinations of
keystrokes convey the special math-related
symbols.
Users familiar with keyboard-based editors such
as Emacs are likely to be accustomed to learning
new keyboard commands and typing combination
strokes, perhaps with command-completion so
they may find such systems easy to operate.
However, there are still some disadvantages to
this model. Users must coordinate between typing
commands and typing math. Unlike the typical
text editor entry task where most of the time is
spent typing in text and less time is used to issue
Emacs commands, entering a math expression
will generally require a higher percentage of
positioning commands to manipulate the raw
symbol input. In this kind of editing, we should
point out, the typing results in a WYSIWYG
display: typing something like xÆy+z∞ will be
seen as xy+z The intervening keyboard strokes
may not be visible, may be difficult to select,
delete or correct. This may require substantial
learning to use effectively. Unlike the template
model, using keyboard commands allow you to
freely enter inputs that do not guarantee well-
formed results.
Features that could accommodate some of the
disadvantages of such models are provide a
command that will undo previous inputs or
commands to help you recover from mistakes.
Also, allowing copy and paste of previous entered
data can expedite similar or repeated entries of an
expression.

Typeset Systems: TeX input

Math typesetting languages such as the math
mode in TeX are text-based formula description
languages.
Advantages of typesetting languages provide the
major advantage of being essentially formal
programming mechanisms which are well-defined
and (certainly in the case of Knuth’s TeX) well-
documented. They are robust in handling
complicated math. There is also the added bonus
of the expert appearance of the typical TeX
display. Disadvantages can be the steep learning
curve that is required in order to get started, and
the long time to master the syntax of the
language. “TeXperts” find it relatively easy to
express themselves using the language. Our
example from the previous section would be
rendered as x^{y+z} in TeX.
A useful feature that is not usually incorporated in
a typeset system, but certainly would be useful
(see next section, though) would advantage of the
typeset display of TeX by allowing you to copy
and paste from them to reuse in other expressions.

Symbolic Computation Systems

Most computer algebra systems (Maple,
Mathematica, Macsyma, MuPad, Reduce,)
themselves have their own user-input parser with
thousands of separate operators, but are willing to
change them to TeX for display purposes. Such
systems can create new and more elaborate
formulas by computation, selection,
rearrangements and combinations, making some
of the tedious and error-prone entry of large
expressions unnecessary. In other ways such
systems are no different from the categories
above: most are typically driven by keyboard
input. Seasoned computer programmers who
constantly code in.

User Classification

When considering models of interaction between
people and mathematical computer systems, we
should take into account the different purposes of
usage and familiarity with the subject of the user.
Therefore, we break down the types of users into
3 groups, and describe and analyze some features
of a mathematical input model accordingly. The
main objective for all groups is of course to enter
math expression into a computer program.

K-8 Math and Science students

For this group of younger users, the main purpose
for a mathematical computer system might be to

learn mathematics, including arithmetic or
elementary geometry. Students’ familiarity with
the subject will be none to sufficient; mostly at
the elementary level. At such a level, the students
possess less knowledge of math which may lead
to more frequent mistakes in input. Also, younger
users may have illegible handwriting which
makes handwritten inputs more prone to errors.
Since K-8 students are not familiar with math,
mistakes in recognition may confuse the user and
may be overlooked. However, the less
complicated mathematical expressions may make
recognition simpler.
Taking into account the context of young and
inexperienced users, we can build in features that
accommodate their preferences. The main idea is
to minimize the errors that could be introduced.
Templates may be a good idea which will provide
a guide for younger users who may often make
mistakes in writing math. Younger users probably
learn to input math via calculator before using a
computer, so math input programs that model
calculator input may be more receptive. Mouse-
based operations may be easier for younger users
(K-3) because pointing and clicking is a simpler
skill than typing on a keyboard. An added benefit
that a math computer system can provide at the
high end of the age group is providing
visualization of manipulation steps in elementary
algebra.

High School and College Math students

Math students at the high school and college level
already possess a decent fundamental
understanding of advanced topics. The objective
for this group of users is to help them visualize
new concepts, aid in doing homework, and
perhaps allow them to use computer systems to
print out assignments for more legibility. College
students in science areas are likely to have some
exposure to computer algebra systems, most
commonly Mathematica and Maple. Many
calculus classes are now incorporating computer
lab workshops in addition to regular classroom
learning. The problem that arises is that students
fail to find the introduction of these systems to be
enriching; more likely they find learning how to
use these computer algebra system an additional
burden! We want to make math entry and
manipulation on these program more natural and
convenient.
One approach is to define a context for each
individual specializing in a domain at any given
time. For example, calculus students most likely
need to use algebra, trigonometry, plotting, and

integrals, derivatives. By contrast, linear algebra
students need to manipulate matrices.
An educational setting is fairly clear, and students
already make use of this. The questions at the
end of Chapter 10 use (mostly) the techniques in
Chapter 10. Never the methods of Chapter 11,
and rarely earlier chapters. The possibility exists
to provide special templates for each chapter, so
that the math input needed for entering
expressions will be presented in some form
(template, previously composed example
expressions) so that users can copy expressions
with minimal technical or typographic errors.
A handwriting-based formula recognizer can also
benefit from context: a sloppy vertical line could
be an integral sign, a part of an absolute value
sign, a digit 1, or “evaluated at”. In a linear
algebra setting a vertical line could be a mark on a
determinant, or a matrix bracket.

Advanced Mathematical Researchers

Researchers and advanced students in the
mathematics and science fields rely on
mathematical computer systems to provide
assistance in calculations and typesetting math
formulas for inclusion in publications. The
subject knowledge among this group of users is
much deeper, and the demands on a math input
system more substantial.
Users at this level will need to be able to enter
fairly complicated expressions and they may use a
wide range of conventional math symbols,
additional alphabets such as Greek and additional
obscure symbols6. TeX is often a standard
supported by some publications, and popular
among (some) authors. Alternatives would have
to have some advantages in learning, efficiency,
or some other metric. A handwriting recognizer
will need to be extra robust, or trained on this
larger class of symbols (perhaps on a per-task
basis). Template input systems will need more
palettes or extensible palettes to represent a wider
variety of functions and symbols. Unlike the K-8
students, it is more likely that mistakes in
recognition will spotted soon; correction methods
may need to be more sophisticated.
There is a need for recognizing long expressions
with multiple levels of groupings which will
require sufficient input surface. A possibility is to

introduce lines as guides for multi-level inputs
such as fractions, sub/super scripts etc.

Existing Programs
There are a variety of systems developed in
research institutions, some of which are cited in
the references. For our purposes we first choose
one handwriting-based program which has the
major advantage of being packaged for
portability, and hence there is at least a chance of
our using it for our own experimentation.

FFES – Freehand Formula Entry System10

FFES is a handwriting based equation editor. The
user writes the expression in the window space
provided, editing as needed using the undo
option, selection, and the delete command. The
recognized result is displayed using the TeX
typesetting system.

The creators of FFES argue against text-based
equation description languages such as TeX and
formulation of expressions using structure
templates. Their argument is that these require the
user to mentally parse the expression and this is
not normally part of the equation writing process1.

Although the authors claim that users don’t need
to mentally parse math expression when they are
writing it down, it does not mean everything gets
written from left to right. People often go back to
add or match parentheses which create sub-
expressions. Also, when writing a large fraction,
we may draw the division line first and then go
back to fill in the numerator and denominator. So,
it could be argued that the user does think ahead
and do some mental parsing even when writing
freehand math on paper.

The authors admit that parsing the mathematical
expression is still the slowest and least accurate
part of the program1, hence reflecting the trade off
between having a system that is easier and more
natural to use versus one that is faster and has a
higher rate of recognition accuracy.

A screenshot of the FFES interface10

Recognition of Handwritten Mathematical
Expressions by Nicholas E. Matsakis
In this thesis the author describes an on-line
approach for converting handwritten
mathematical expressions into an equivalent
expression in a typesetting command language
such as TEX or presentation MathML. This

system provides you a pen-based interface. You
write with a stylus by in the space provided inside
the program’s window. There is a simple set of
buttons at the top of the window. “Interpret” starts
the processing of the handwritten input. “Clear”
clears the screen. “Delete stroke” erases the last
entered stroke. “Set Preferences” allows you to
adjust parameters such as rejection threshold and
combination weighting and displaying options.

A screen shot of the prototype2

Some foreseeable problems with this model of
input are that its error correction entails erasing
strokes by scribbling back and forth over the
stroke to delete. This may not work correctly if
there are overlapping or clustered strokes because
it’s hard to precisely cross out a single stroke. The
user may end up erasing wrong strokes which
need to be re-written. One solution may be an
extension of an existing feature of the system.
Currently, the user is able to delete the last stroke
written. A possible idea is to keep a history of
strokes written. Then we can provide the user the
option of deleting the ith stroke written. Maybe
the number of history strokes to keep in the
system can be set by the user depending on the
complexity of the expression they will be
entering.

The system also uses bounding boxes as a way of
error detection. If the bounding box interpreted by
the system is incorrect then users should be able
to delete that bounding box. Also, there should be
a user assisted way of indicating correct grouping
of sub-expression. For example, being able to
drag a box around sub-expression may suggest to
the system to generate a bounding box around
those sub-expressions.

LiveMath

LiveMath is a template-based editor. Using the
palette shown below along with highlighting sub-
expressions, clicking, and dragging, you can
control the entry of math.

A palette from LiveMath11

LiveMath allows you to build interactive math
notebooks where you can manipulate the
equations by selecting and dragging variables or
expressions. The result of a manipulation will be
evaluated and displayed. This program is suitable
for elementary and high school students who want

to learn the steps involved when solving a math
problem. It also provides a nice legible way of
submit math assignments. Whereas most
computer algebra systems only return the answer
to the problem, LiveMath illustrates the steps of
derivation.

Other CAS (Mathematica)
Integrate[x^2 * Sin[x] {x,-

Pi,Pi}]

LiveMath output vs. Other CAS11

EzMath
EzMath is a mathematical markup language used
for embedding mathematical expressions in
WebPages. It is inspired by the way expressions
are spoken aloud. This provides us with some
insight on how expression should be spoken.

EzMath focuses on the semantics of mathematical
notation rather than how it appears on paper. The
structure of each math expression when written
using EzMath will be internally stored by the
syntax of the markup language. EzMath was
developed by Dave Raggett and Davy Batsalle.

A screen shot of EzMath Editor

The Ezmath for the expression in the figure above is:

a^m over a^n = either a^{m-n} when m > n
or 1 when m = n or 1 over a^{n-m} when m < n

By pasting the above markup language into html, math will be display on a web page like the expression in
the screenshot.

MacKichan Software

MacKichan is another template based math entry system which also gives the user of using only special
keyboard strokes to input expressions.

Entering an integral using the mouse
Step Action Result

1.
Click

2.
Click

3.
Type x, click , type 2

4.
Click in the denominator box, click

5. Repeat step #3, click to the right

6. Type -9, click to the far right

7. Type dx

Using the mouse to enter an expression in MacKihan’s math editor14

Entering an integral using the keyboard
Step Type Result

1 Ctrl+i

2 Ctrl+f

3 x, Ctrl+up
arrow, 2

4 space Moves the insertion point out of the
exponent

5 Tab Moves the insertion point to the
denominator

6 Ctrl+r

7
Repeat
steps 3 and
4

8 -9

9 space
space

Moves the insertion point out of the
radical, then the fraction

 10 Dx

Using the keyboard to enter an expression in MacKichan’s math editor14

Biscotti

This is a Java applet that has been an
experimental prototype for input of mathematics
both as a stand-alone “graphing calculation” and

was later re-targeted as an input form for Tilu.
Written by Eric Heien and Gifford Cheung at UC
Berkeley, it provides the user with two panels and
a collection of binary or unary operators to use to
elaborate on the expressions. There is also another
facility (not illustrated in this figure) to move a
focus point into and around an existing
expression. The 2-d display is computed using a
program called Glyph-D by Ka-Ping Yee.

AsteR – Audio System for Technical Readings13

AsTeR is a computer system for rendering
technical documents in audio. Aster is spoken
output, but nevertheless worthy of mention since
it provides a mapping between 2-d and 1-d math.

It takes in as input a LaTeX expression and
produces an audio formatted output. Although it
is in the wrong direction and the 1-d is verbal, it
provides insight on the different ways math can
be conveyed.

Speech Recognition Input

A fairly unexplored area of mathematical input
methods is using speech recognition. An inherent
problem with using speech to input math is that
math is not generally spoken, at least without an
accompanying written presentation. It is difficult
to verbalize lengthy and convoluted structured
expressions without making mistakes. For

example, sometimes people even stutter when
reading a 10 digit phone. Also, it may be hard for
user to force the habit of including certain
phrases, i.e. saying “area code” before speaking
the digits. While some voice recognition
programs guess that any 10 decimal digit
sequence is a phone number and should be
“recognized” as (xxx)yyy-zzzz, this might in
fact be incorrect. In the math recognition
problem, we believe that analogous guesses will
be less likely to work, even though they would be
even more required.

In practice voice recognition of math requires
symbol recognition probably beyond the current
state of the art; it does not solve ambiguities
already present in linear expressions (“A plus B
over C plus D” versus “A plus B all over C plus
D” etc.). Unintentional pauses and interjections of
‘ums and ahs’ are potentially more distressing in
that in the math context they can change the
positions of the next symbols, not just their
identity.

Another idea we expect to be worth pursuing if
voice recognition becomes faster and more
accurate is to use speech as a correction method
for handwriting input systems or to select from a
template. This latter method is already used in
some systems (e.g. Microsoft Office XP “voice
command” mode). The mix of input channels
seems to be an intriguing way of entering,
confirming, or correcting handwriting.

Alternative Design Suggestions

Tapping and dragging

For handwriting recognizers, it is essential to
have a convenient way for you to modify or
correct input. One design is to have you enter a
symbol, and after the system recognizes it, it
becomes a moveable box. At this point you can
point, copy and drag it if it is misplaced
structurally. After constructing an expression
press “recognize expression” to process the input
so far. The result will now appear in another
moveable box and can therefore be placed and
used as a sub-expression. This is a kind of
customized template of pieces.

Colored Ink

If we can create a recognizer that distinguishes
among colors, we can use color to specify
groupings. i.e. sin x+y vs. sin x+y. This may help
grouping ambiguities, and it may help with

semantic ambiguities such as the expression dx
which can be: dx (the derivative) or dx (2
variables multiplied together). Instead of
providing a palette of symbols and sub-
expression, we can utilize a palette of various
colors which the user can use to disambiguate
structural uncertainty. Stylus “color” and other
attributes such as pressure or buttons may be
used.

Handwriting Recognizer with Templates

Given an expression to write, first write the
symbols of the expression without worrying about
the structure. The recognizer will process each
symbol separately. After all needed symbols have
been entered, point and drag them into a
structured template. Template can be altered
structurally to fit the structure of the expression.
Then you can point and drag the symbols already
created into the corresponding slots of the empty
template. This separates the character recognition
step and the structural parsing stage of the
process. Also, manipulating the structure so it fits
the expression you want to enter is entirely
dependent on you: although the system can
impose some force entry requirements. That is,
specifying a fraction requires three parts: a
numerator slot (a default fraction line) and a
forced denominator slot. This helps enforce well-
formed expressions as well as speedup of the
structure organization step for the user. So, in a
sense, this is a mixture of the template/palette
model. Here instead of a palette we use a symbol
recognizer to input the symbols. Palettes may be
hard to navigate when writing the symbol we
need is much easier. A more detailed description
of this design is in a separate draft paper, “State
Transition Chart for Handwriting & Template
Math Entry System”.

Speech Recognition using Groupings

Math entry using speech recognition faces the
obstacle of verbal mistakes by the user especially
when the expression being spoken is long and
complicated. To add to the problem, the way
math is naturally verbalized can have ambiguous
meanings. For example, when we say “x plus y
over z”, this sentence conveys two different
interpretations. It could mean (x + y)/z or x + y/z.
One method of disambiguating the uncertainty is
to introduce extra pauses, but this seems quite
unreliable. More plausible is the use of keywords
or voice commands added to the spoken language
of mathematics. For example, to signify that
everything spoken so far should be grouped, the

user must say the keyword “all” to instruct the
grouping. Therefore, the first expression, (x +
y)/z, would be spoken as “x plus y all over z”. If
“all” is not used, then the previous standalone
sub-expression is used as in the case for the
second expression in the above example. Another
possibility is to vocalize the second form as x and
plus y over z. Both “and” and “all” could be
repeated as kinds of traversals up an algebraic tree
representing the expression.
 As you can see, the introduction of keywords
creates an even longer and complex spoken
language for the user to learn. Though the
keywords will help the speech recognizer parse
the spoken words, it leads to a more error prone
manner of vocalization for the user.
Another solution to this is grouping sub-
expressions, naming the sub-expressions, and
building bigger expressions with these labeled
sub-expressions. Using spoken commands such as
“group” and “end group” we can instruct the
speech recognizer to group certain sub-
expressions. After grouping a sub-expression, the
user can voice the command “name as” to assign
a name to the sub-expression such as “expression
1”. The advantages of this method are:

• Since we group and save sub-
expressions, they are ready for reuse in future
expressions.
• By breaking down the construction of a
complex expression into smaller sub-
expressions, we put fewer burdens on the
speech recognizer which will now be required
to handle simpler structures.

Using grouping commands allows the users to
build up a complex expression in a straight-
forward and organized fashion.

So now to input the expression (x + y)/z, we say
“x plus y group, name as expression 1 , expression
1 over z”. To input the expression x + y/z would
still be “x plus y over z”, but we can group it as a
sub-expression by saying “name as expression 2”.
This allows the usage of this expression in later
expressions. For example, if we need to input the
expression, sqrt(x + y/z), we say “square root of
expression 2.”
Yet another approach would be to have the
computer display the possible choices in an
indexed list. To continue, you would have to
choose which interpretation is correct.

Alternative Uses of a Tablet for Math

A simple usage of a tablet is to input math with a
pen and save it as an image. This ability is helpful
in many applications. Oftentimes users may need
to convey math to other (humans) through an
electronic device such as email or instant
messenger. These situations do not require any
internal representation of the math. This can
provide a convenient way for people to discuss
math over the internet.

Tablets vs. Mice

Operating a handwriting math recognition system
by using a tablet and pen is a different experience
than using a mouse. First off, tablets often have
touch sensitivity up to 512 levels of pressure
sensitivity. Also, some tablets have surface
coating to diminish glare and to simulate paper-
like feel9. In a study done to evaluate input
devices, usage of a stylus was compared to that of
a mouse. The results revealed that a stylus was
slower in dragging than a mouse7. The reason for
this may be the kind of “automatic transmission”
in the mouse software that is rate sensitive, and
will change gears for long moves. However, with
a stylus, the movement of the hand from point A
to point B is the same distance as the migration of
the pointer.
When dragging a mouse, the mouse button must
be depressed. With a stylus, the user must
maintain pressure on the stylus. Pressing a button
is a discrete operation. It is either pressed down or
not. However, applying pressure on a tablet is a
“continuous” movement. If the pressure falls
below a threshold, the dragged object may be
dropped. This is similar to pressing a mouse
button vs. tabbing on the touch pad on a laptop.
So, it is logical that dragging with a stylus is more
prone to dropping errors.
Based on the conclusions of this study, designs of
tablet systems for math may benefit from having
multiple modes: distinguish between pointing
/dragging or other selection commands in one
mode, and writing in another. Human factors
experiments may be the best way to identify
winning strategies.
Acknowledgments

This research was supported in part by NSF grant
CCR-9901933 administered through the
Electronics Research Laboratory, University of
California, Berkeley. Lucy Zhang was supported
in part by an undergraduate research grant from
the College of Engineering, UC Berkeley.

References

[1] James Arvo, Kevin Novins, Steve Smithies. A
Handwriting-Based Equation Editor.
 http://www.cs.queensu.ca/drl/ffes

[2] Nicholas E. Matsakis. “Recognition of
Handwritten Mathematical Expressions,”
Department of Electrical Engineering and
Computer Science, MIT, 1999
http://www.ai.mit.edu/people/viola/research/publi
cations/matsakis-MS-99.pdf

[3] Kam-Fai Chan and Dit-Yan Yeung.
Mathematical Expression Recognition: A Survey.
Technical Report HKUST-CS99-04, April 1999.

[4] Richard Fateman. More Versatile Scientific
Documents. University of California, Berkeley.
http://www.cs.berkeley.edu/~fateman/MVSD.htm
l

[5] Zhao Xuejun, Liu Xinyu, Zheng Shengling,
Pan Baochang and Yuan Y. Tang. Online
Recognition of Handwritten Mathematical
Symbols. ICDAR 97

[6] An Automated Conversion of Structured
Documents into SGML. Distributed Object
Computation Testbed, Technical Report.

[7] Scott MacKenzie, Abigail Sellen, and William
Buxton (1991). A comparison of input devices in
elemental pointing and dragging tasks.
Proceedings of the CHI `91 Conference on
Human Factors in Computing Systems , pp. 161-
166. New York: ACM.

[9] Wacom Americas.
http://www.wacom.com/lcdtablets/index.cfm

[10] Free Formula Entry System.
http://www.cs.queensu.ca/drl/ffes/

[11] LiveMath. http://www.livemath.com.

[12] EzMath.
http://www.w3.org/People/Raggett/EzMath/

[13] AsTeR.
http://www.cs.cornell.edu/Info/People/raman/aste
r/demo.html

[14] MacKichan Software Inc.
http://www.mackichan.com

[15] J-Y Toumit, S. Garcia-Salicetti, H. Emptoz,
“A Hierarchical and Recursive Model of
Mathematical Expressions for Automatic Reading
of Mathematical Documents,” ICDAR 99 119-
122.

[16] R.Fukuda, Sou I, F. Tamari, X. Ming, M.
Suzuki, “ A Technique of Mathematical
Expression Structure Analysis for the
Handwriting Input System,” ICDAR 99, 131-
134.

[17] TILU: Table of Integrals Look-up.
http://torte.cs.berkeley.edu:8010/tilu

[18] C. Faure, References on math formula
recognition
http://www.tsi.enst.fr/~cfaure/math.html

[19] S. Lavirotte and L Pottier, Optical Formula
Recognition,
http://www-
sop.inria.fr/cafe/Stephane.Lavirotte/Ofr/root.html
also, ICDAR 97

