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Abstract 

The entry of mathematics into a computer system 
is important in some contexts: computer algebra 
systems, programming for scientific computing, 
educational training, and publishing.  Different 
designs based on different user models may be 
appropriate.  We survey some of the past 
approaches and suggest how new technology will 
(or will not) make these tasks easier. 

Introduction 

 

Computer systems have become central tools in 
education, science, and technology for data 
storage, presentation, and communication. Text is 
routinely counted as “bytes” being stored 
digitally, images are being captured in bitmaps, 
and ideas are being exchanged through electronic 
media. While computers are able to ingest, 
interpret, and transcribe a vast amount of 
knowledge in textual form, they present barriers 
for humans to represent and express mathematics.  

First of all, there exists a dichotomy between the 
appearancs or presentation of math and the 
semantic meaning underlying the notation. 
Expressions appearing identical can have 
drastically different meanings in different 
contexts (dx as in the derivative with respect to x 
or dx as in d times x). Formulas that have 
equivalent meanings can have different 
appearances (ln x and logex). This presents an 
additional level of ambiguity that is not always 
recognized by computer scientists.  The linguist 
studying natural language may view “Time flies 
like an arrow.” as interpretable in several ways, 
but one is still able to identify the separate words 
and provide a concise explanation of the 
possibilities.  In mathematical utterances the 
meanings may require reference to the enclosing 
context for definitions and notational conventions 
in a manner that is inherently difficult.  

To proceed on the path towards digitizing 
mathematical information, many groups will 
benefit from the ability to create and store 
electronic versions of scientific documents. These 
include publishers of journals, software 
publishers for document analysis, software 

publishers for assessing document semantics, 
electronic libraries, and individual users who try 
to access the libraries4. In fact, we can extend the 
benefits of a good math input and representation 
system to a wider range of users. We will 
specifically assess three groups of users, K-8 
students, high school students and 
undergraduates, and advanced researchers.  

Being able to represent math in a computer really 
starts with the capability to enter math into such a 
system. There are several different models for 
math entry in existing programs which we will 
explore and evaluate. With the technology of 
tablet PC’s on the rise, we explore the ability to 
incorporate this new technology into the existing 
models. And lastly, after examining the tradeoffs 
between different models, we will try to design a 
potential model which will combine features from 
the different existing models in an attempt to 
maximize each of their strengths. 

 

Classification of Input Models 

 

Many mathematical computer systems that 
require math input provide the user with an 
interface that can be categorized into one of the 
four types of models: handwriting recognition, 
template and palettes, keyboard command entry, 
and typesetting systems such as TeX. 

 

Handwriting Recognizers 

The handwritten recognition model provides a 
natural, nonrestrictive way of entering 
mathematics into a computer system. It does not 
require you to learn a new convention for 
conveying math. Also, Arvo [1] argues that 
handwriting math allows you to enter math 
without having to “mentally parse” the expression 
as you are writing. This seems to us not especially 
well supported, however. 

Handwritten mathematics recognizers capable of 
handling simple expressions are fairly easy to 
build, and are often written as neat demonstration 
programs for new stylus-like input devices.  In 
reality the evidence is that such systems do not 



easily scale up and are limited in accuracy and 
robustness.  

In a typical system the recognition process 
consists of two main phases, the symbol 
recognition phase and the structural parsing 
phase. Each phase contributes to a high error rate. 
Misidentification of only one symbol in ten would 
seem to be a low error rate at first blush, but 
consider that to correct one symbol requires (a) 
correct identification and positioning of the “rub-
out” symbol (b) correct recognition and 
placement of the new symbol. Thus on average to 
enter ten symbols one will have to enter twelve or 
more. Some symbols have multiple strokes. This 
is irritating. 

Misidentification of symbols is difficult to avoid 
given apparent similarities of symbols. Notice the 
overlap in characteristics of sloppily written 
different symbols as {l, 1, |, [} or  {C, Õ} or 
{α,¶,∂} or {p, r}. This problem is compounded 
by the wide range of variations among users’ 
handwriting style; most handwriting recognizers 
need to be trained on a per-user basis. 

After character recognizer is finished, the math 
expression needs to be structurally parsed. (In 
fact, recognition and parsing may be profitably 
interwoven. Recognition of symbols may be 
dependent on expectations of a parser: is a 
horizontal line a divide bar or a minus sign?). 
Parsing of conventional mathematics is difficult 
because it tends to be ambiguous, even when 
given on a single line. Unambiguous 
“programming language” versions of 
mathematics are, contrary to the popular view 
among computer scientists, a small subset of the 

richness of the usual mathematical notation. Add 
to this the need to disambiguate what amounts to 
subtle errors of misplacement (Is that a 
subscript?) and the possible number of parses 
grows substantially.  It is not that the parser will 
take too long.  It is that there are (perhaps 
exponentially many) alternative parses. 

Building a handwritten math recognizer that can 
handle the needs of advanced mathematicians is a 
much more difficult task than building one which 
suffices for grade school students. 

We must build in convenient correction 
technology. For example, allowing deletion of 
erroneous strokes, listing/chosing alternative 
interpretations, and learning from common 
mistakes help minimize the amount of extra work 
users must carry out in order to undo the mistakes 
of the recognizer.  User feedback is crucial for the 
correction process and should be integrated with 
system learning. Since recognition errors in 
current prototypes (all we seem to have are 
prototypes!) are still fairly common, correction 
procedures should at least be more convenient 
than if the user were to just type in the expression 
into Emacs for a typesetting system like TeX.  

Below is an illustration of a handwriting 
recognizer. It has a window area large enough for 
pen written strokes. There are methods to modify 
misplaced or wrongly written strokes. Most of the 
programs allow for selection of sub-expressions 
and moving the selected areas. The process of 
recognition in this case generates input for the 
typesetting language LaTeX which is then 
processed and displayed. 

 

 
A prototype of a handwriting based math entry system10 

 
Templates and Palettes 

 
A less natural and more constrained model of 
entering math is by means of interactive 

construction using structured templates and 
palettes. These are windows resembling 
palettes which have buttons that represent 
predefined structures of basic math 



operations such as fractions, exponents, 
integrals, square roots, summations, etc. The 
operands of these functions are left for the 
user to fill in using either keyboard 
commands or more buttons. 

 
An example of a template from Mathematica 

 
One advantage of a template model is this 
forced-entry guarantees well-formed 
expressions. Also, it allows the system to 
easily add new symbols and functions by just 
adding a new palette or extending an existing 
one. The disadvantages of this model pertain 
to ease of use. Manipulation of templates 
requires most users to switch between the 
keyboard and the mouse; although there may 
be keyboard shortcuts that can make certain 
commands more efficient, the number of 
entries is daunting. Also, finding the 
appropriate palette and the entry within the 
palettes in order to enter one expression may 
be frustrating for the user. For a touch-typist 
capable of 80 words per minute (400 
characters/minute or more than 6 characters 
per second) typing \Gamma takes one 
second. Can you even find the G symbol in 
the template above in one second? 
Features can be incorporated in programs 
using the template model to compensate for 
the model’s inherent weakness and 
emphasize on its strength. For example, to 
make navigation as efficient as possible, 
commonly used expressions of calculus such 
as integrals, derivatives, infinity sign, 
superscript and subscript for the limits should 
be organized on one palette. In fact, common 
commands that could be used in most any 
math expression may be grouped together. 

These include superscript/subscript, fractions, 
square root, exponent, etc.  

Constraining the users to enter only valid math 
expressions may be confusing for those who do 
not grasp what some well-formed expressions 
look like. Indeed, some intermediate stages that 
would eventually become well-formed cannot be 
entered this way: consider 1/(a+b) with prefixes 
{1, 1/, 1/(, 1/(a, 1/(a+, 1/(a+b) } most of which 
are ill-formed, but valid prefixes.  
Annotated assistance for what each palette button 
means and what operands are required may help, 
(certainly some of the Mathematica choices are 
obscure), but they still cannot make up for user 
expectations that do not match the template mode. 
 
Keyboard Command Inputs 
 
Some (most) programs allow users to enter math 
using strictly the keyboard. Since the characters 
that appear in a math expression do not all exist 
on the keyboard, sequential combinations of 
keystrokes convey the special math-related 
symbols.  
Users familiar with keyboard-based editors such 
as Emacs are likely to be accustomed to learning 
new keyboard commands and typing combination 
strokes, perhaps with command-completion so 
they may find such systems easy to operate. 
However, there are still some disadvantages to 
this model. Users must coordinate between typing 
commands and typing math. Unlike the typical 
text editor entry task where most of the time is 
spent typing in text and less time is used to issue 
Emacs commands, entering a math expression 
will generally require a higher percentage of 
positioning commands to manipulate the raw 
symbol input. In this kind of editing, we should 
point out, the typing results in a WYSIWYG 
display: typing something like xÆy+z∞ will be 
seen as xy+z  The intervening keyboard strokes 
may not be visible, may be difficult to select, 
delete or correct. This may require substantial 
learning to use effectively. Unlike the template 
model, using keyboard commands allow you to 
freely enter inputs that do not guarantee well-
formed results. 
Features that could accommodate some of the 
disadvantages of such models are provide a 
command that will undo previous inputs or 
commands to help you recover from mistakes. 
Also, allowing copy and paste of previous entered 
data can expedite similar or repeated entries of an 
expression. 
 
Typeset Systems: TeX input 
 



Math typesetting languages such as the math 
mode in TeX are text-based formula description 
languages.  
Advantages of typesetting languages provide the 
major advantage of being essentially formal 
programming mechanisms which are well-defined 
and (certainly in the case of Knuth’s TeX) well-
documented. They are robust in handling 
complicated math. There is also the added bonus 
of the expert appearance of the typical TeX 
display. Disadvantages can be the steep learning 
curve that is required in order to get started, and 
the long time to master the syntax of the 
language. “TeXperts” find it relatively easy to 
express themselves using the language. Our 
example from the previous section would be 
rendered as $x^{y+z}$ in TeX. 
A useful feature that is not usually incorporated in 
a typeset system, but certainly would be useful 
(see next section, though) would advantage of the 
typeset display of TeX by allowing you to copy 
and paste from them to reuse in other expressions. 
 
 
Symbolic Computation Systems  
 
Most computer algebra systems (Maple, 
Mathematica, Macsyma, MuPad, Reduce,) 
themselves have their own user-input parser with  
thousands of separate operators, but are willing to 
change them to TeX for display purposes. Such 
systems can create new and more elaborate 
formulas by computation, selection, 
rearrangements and combinations, making some 
of the tedious and error-prone entry of large 
expressions unnecessary. In other ways such 
systems are no different from the categories 
above: most are typically driven by keyboard 
input.  Seasoned computer programmers who 
constantly code in.  
 
User Classification 
 
When considering models of interaction between 
people and mathematical computer systems, we 
should take into account the different purposes of 
usage and familiarity with the subject of the user. 
Therefore, we break down the types of users into 
3 groups, and describe and analyze some features 
of a mathematical input model accordingly. The 
main objective for all groups is of course to enter 
math expression into a computer program. 
 
K-8 Math and Science students 
 
For this group of younger users, the main purpose 
for a mathematical computer system might be to 

learn mathematics, including arithmetic or 
elementary geometry. Students’ familiarity with 
the subject will be none to sufficient; mostly at 
the elementary level. At such a level, the students 
possess less knowledge of math which may lead 
to more frequent mistakes in input. Also, younger 
users may have illegible handwriting which 
makes handwritten inputs more prone to errors. 
Since K-8 students are not familiar with math, 
mistakes in recognition may confuse the user and 
may be overlooked. However, the less 
complicated mathematical expressions may make 
recognition simpler. 
Taking into account the context of young and 
inexperienced users, we can build in features that 
accommodate their preferences. The main idea is 
to minimize the errors that could be introduced. 
Templates may be a good idea which will provide 
a guide for younger users who may often make 
mistakes in writing math. Younger users probably 
learn to input math via calculator before using a 
computer, so math input programs that model 
calculator input may be more receptive. Mouse-
based operations may be easier for younger users 
(K-3) because pointing and clicking is a simpler 
skill than typing on a keyboard. An added benefit 
that a math computer system can provide at the 
high end of the age group is providing 
visualization of manipulation steps in elementary 
algebra. 
 
High School and College Math students 
 
Math students at the high school and college level 
already possess a decent fundamental 
understanding of advanced topics. The objective 
for this group of users is to help them visualize 
new concepts, aid in doing homework, and 
perhaps allow them to use computer systems to 
print out assignments for more legibility. College 
students in science areas are likely to have some 
exposure to computer algebra systems, most 
commonly Mathematica and Maple. Many 
calculus classes are now incorporating computer 
lab workshops in addition to regular classroom 
learning. The problem that arises is that students 
fail to find the introduction of these systems to be 
enriching; more likely they find learning how to 
use these computer algebra system an additional 
burden!  We want to make math entry and 
manipulation on these program more natural and 
convenient.  
One approach is to define a context for each 
individual specializing in a domain at any given 
time. For example, calculus students most likely 
need to use algebra, trigonometry, plotting, and 



integrals, derivatives. By contrast, linear algebra 
students need to manipulate matrices.  
An educational setting is fairly clear, and students 
already make use of this.  The questions at the 
end of Chapter 10 use (mostly) the techniques in 
Chapter 10. Never the methods of Chapter 11, 
and rarely earlier chapters.  The possibility exists 
to provide special templates for each chapter, so 
that the math input needed for entering 
expressions will be presented in some form 
(template, previously composed example 
expressions) so that users can copy expressions 
with minimal technical or typographic errors. 
A handwriting-based formula recognizer can also 
benefit from context: a sloppy vertical line could 
be an integral sign, a part of an absolute value 
sign, a digit 1, or “evaluated at”.  In a linear 
algebra setting a vertical line could be a mark on a 
determinant, or a matrix bracket. 
 
Advanced Mathematical Researchers 
 
Researchers and advanced students in the 
mathematics and science fields rely on 
mathematical computer systems to provide 
assistance in calculations and typesetting math 
formulas for inclusion in publications. The 
subject knowledge among this group of users is 
much deeper, and the demands on a math input 
system more substantial.  
Users at this level will need to be able to enter 
fairly complicated expressions and they may use a 
wide range of conventional math symbols, 
additional alphabets such as Greek and additional 
obscure symbols6. TeX is often a standard 
supported by some publications, and popular 
among (some) authors.  Alternatives would have 
to have some advantages in learning, efficiency, 
or some other metric. A handwriting recognizer 
will need to be extra robust, or trained on this 
larger class of symbols (perhaps on a per-task 
basis). Template input systems will need more 
palettes or extensible palettes to represent a wider 
variety of functions and symbols. Unlike the K-8 
students, it is more likely that mistakes in 
recognition will spotted soon; correction methods 
may need to be more sophisticated.   
There is a need for recognizing long expressions 
with multiple levels of groupings which will 
require sufficient input surface. A possibility is to 

introduce lines as guides for multi-level inputs 
such as fractions, sub/super scripts etc. 
 
 
Existing Programs 
There are a variety of systems developed in 
research institutions, some of which are cited in 
the references. For our purposes we first choose 
one handwriting-based program which has the 
major advantage of being packaged for 
portability, and hence there is at least a chance of 
our using it for our own experimentation. 
 
 
FFES – Freehand Formula Entry System10 
 
FFES is a handwriting based equation editor. The 
user writes the expression in the window space 
provided, editing as needed using the undo 
option, selection, and the delete command. The 
recognized result is displayed using the TeX 
typesetting system. 
 

 
The creators of FFES argue against text-based 
equation description languages such as TeX and 
formulation of expressions using structure 
templates. Their argument is that these require the 
user to mentally parse the expression and this is 
not normally part of the equation writing process1.  
 
Although the authors claim that users don’t need 
to mentally parse math expression when they are 
writing it down, it does not mean everything gets 
written from left to right. People often go back to 
add or match parentheses which create sub-
expressions. Also, when writing a large fraction, 
we may draw the division line first and then go 
back to fill in the numerator and denominator. So, 
it could be argued that the user does think ahead 
and do some mental parsing even when writing 
freehand math on paper. 
 
The authors admit that parsing the mathematical 
expression is still the slowest and least accurate 
part of the program1, hence reflecting the trade off 
between having a system that is easier and more 
natural to use versus one that is faster and has a 
higher rate of recognition accuracy.



 
A screenshot of the FFES interface10  

 
 
 
Recognition of Handwritten Mathematical 
Expressions by Nicholas E. Matsakis 
In this thesis the author describes an on-line 
approach for converting handwritten 
mathematical expressions into an equivalent 
expression in a typesetting command language 
such as TEX or presentation MathML. This 

system provides you a pen-based interface. You 
write with a stylus by in the space provided inside 
the program’s window. There is a simple set of 
buttons at the top of the window. “Interpret” starts 
the processing of the handwritten input. “Clear” 
clears the screen. “Delete stroke” erases the last 
entered stroke. “Set Preferences” allows you to 
adjust parameters such as rejection threshold and 
combination weighting and displaying options. 

 

 
A screen shot of the prototype2 

 



 
Some foreseeable problems with this model of 
input are that its error correction entails erasing 
strokes by scribbling back and forth over the 
stroke to delete. This may not work correctly if 
there are overlapping or clustered strokes because 
it’s hard to precisely cross out a single stroke. The 
user may end up erasing wrong strokes which 
need to be re-written. One solution may be an 
extension of an existing feature of the system. 
Currently, the user is able to delete the last stroke 
written. A possible idea is to keep a history of 
strokes written. Then we can provide the user the 
option of deleting the ith stroke written. Maybe 
the number of history strokes to keep in the 
system can be set by the user depending on the 
complexity of the expression they will be 
entering. 

 
The system also uses bounding boxes as a way of 
error detection. If the bounding box interpreted by 
the system is incorrect then users should be able 
to delete that bounding box. Also, there should be 
a user assisted way of indicating correct grouping 
of sub-expression. For example, being able to 
drag a box around sub-expression may suggest to 
the system to generate a bounding box around 
those sub-expressions. 
 
LiveMath 
 
LiveMath is a template-based editor. Using the 
palette shown below along with highlighting sub-
expressions, clicking, and dragging, you can 
control the entry of math.  

 

 
A palette from LiveMath11 

 
LiveMath allows you to build interactive math 
notebooks where you can manipulate the 
equations by selecting and dragging variables or 
expressions. The result of a manipulation will be 
evaluated and displayed. This program is suitable 
for elementary and high school students who want 

to learn the steps involved when solving a math 
problem. It also provides a nice legible way of 
submit math assignments. Whereas most 
computer algebra systems only return the answer 
to the problem, LiveMath illustrates the steps of 
derivation. 

 

 

Other CAS (Mathematica) 
Integrate[x^2 * Sin[x] {x,-

Pi,Pi}] 

LiveMath output vs. Other CAS11 
 
 
 
EzMath 
EzMath is a mathematical markup language used 
for embedding mathematical expressions in 
WebPages. It is inspired by the way expressions 
are spoken aloud. This provides us with some 
insight on how expression should be spoken. 

EzMath focuses on the semantics of mathematical 
notation rather than how it appears on paper. The 
structure of each math expression when written 
using EzMath will be internally stored by the 
syntax of the markup language. EzMath was 
developed by Dave Raggett and Davy Batsalle.

 



 
A screen shot of EzMath Editor  

 

The Ezmath for the expression in the figure above is:  

a^m over a^n = either a^{m-n} when m > n 
or 1 when m = n or 1 over a^{n-m} when m < n 
 
By pasting the above markup language into html, math will be display on a web page like the expression in 
the screenshot.  
 
 
MacKichan Software 
 
MacKichan is another template based math entry system which also gives the user of using only special 
keyboard strokes to input expressions. 
 

Entering an integral using the mouse 
Step  Action Result 

1. 
Click   

2. 
Click   

3. 
Type x, click , type 2  

4. 
Click in the denominator box, click   

5. Repeat step #3, click to the right 
 

6. Type -9, click to the far right 
 

7. Type dx 



Using the mouse to enter an expression in MacKihan’s math editor14 
 

Entering an integral using the keyboard 
Step  Type Result  

1 Ctrl+i 
 

2 Ctrl+f 
 

3 x, Ctrl+up 
arrow, 2  

4 space Moves the insertion point out of the 
exponent 

5 Tab Moves the insertion point to the 
denominator 

6 Ctrl+r 
 

7 
Repeat 
steps 3 and 
4  

8 -9 
 

9 space 
space 

Moves the insertion point out of the 
radical, then the fraction 

    10 Dx 
 

Using the keyboard to enter an expression in MacKichan’s math editor14 
 
Biscotti 
 
This is a Java applet that has been an 
experimental prototype for input of mathematics 
both as a stand-alone “graphing calculation” and 

was later re-targeted as an input form for Tilu.  
Written by Eric Heien and Gifford Cheung at UC 
Berkeley, it provides the user with two panels and 
a collection of binary or unary operators to use to 
elaborate on the expressions. There is also another 
facility (not illustrated in this figure) to move a 
focus point into and around an existing 
expression.  The 2-d display is computed using a 
program called Glyph-D by Ka-Ping Yee. 
 

 
 
AsteR – Audio System for Technical Readings13 

 
AsTeR is a computer system for rendering 
technical documents in audio. Aster is spoken 
output, but nevertheless worthy of mention since 
it provides a mapping between 2-d and 1-d math. 

It takes in as input a LaTeX expression and 
produces an audio formatted output. Although it 
is in the wrong direction and the 1-d is verbal, it 
provides insight on the different ways math can 
be conveyed. 
 
Speech Recognition Input 
 
A fairly unexplored area of mathematical input 
methods is using speech recognition. An inherent 
problem with using speech to input math is that 
math is not generally spoken, at least without an 
accompanying written presentation. It is difficult 
to verbalize lengthy and convoluted structured 
expressions without making mistakes. For 



example, sometimes people even stutter when 
reading a 10 digit phone. Also, it may be hard for 
user to force the habit of including certain 
phrases, i.e. saying “area code” before speaking 
the digits.  While some voice recognition 
programs guess that any 10 decimal digit 
sequence is a phone number and should be 
“recognized” as (xxx)yyy-zzzz, this might in 
fact be incorrect.  In the math recognition 
problem, we believe that analogous guesses will 
be less likely to work, even though they would be 
even more required.  
 
In practice voice recognition of math requires 
symbol recognition probably beyond the current 
state of the art; it does not solve ambiguities 
already present in linear expressions (“A plus B 
over C plus D” versus “A plus B all over C plus 
D” etc.). Unintentional pauses and interjections of 
‘ums and ahs’ are potentially more distressing in 
that in the math context they can change the 
positions of the next symbols, not just their 
identity. 
 
Another idea we expect to be worth pursuing if 
voice recognition becomes faster and more 
accurate is to use speech as a correction method 
for handwriting input systems or to select from a 
template.  This latter method is already used in 
some systems (e.g. Microsoft Office XP “voice 
command” mode). The mix of input channels 
seems to be an intriguing way of entering, 
confirming, or correcting handwriting.   
 
Alternative Design Suggestions  
 
Tapping and dragging 
 
For handwriting recognizers, it is essential to 
have a convenient way for you to modify or 
correct input. One design is to have you enter a 
symbol, and after the system recognizes it, it 
becomes a moveable box. At this point you can 
point, copy and drag it if it is misplaced 
structurally. After constructing an expression 
press “recognize expression” to process the input 
so far. The result will now appear in another 
moveable box and can therefore be placed and 
used as a sub-expression. This is a kind of 
customized template of pieces. 
 
Colored Ink 
 
If we can create a recognizer that distinguishes 
among colors, we can use color to specify 
groupings. i.e. sin x+y vs. sin x+y. This may help 
grouping ambiguities, and it may help with 

semantic ambiguities such as the expression dx 
which can be: dx (the derivative) or dx (2 
variables multiplied together). Instead of 
providing a palette of symbols and sub-
expression, we can utilize a palette of various 
colors which the user can use to disambiguate 
structural uncertainty. Stylus “color” and other 
attributes such as pressure or buttons may be 
used. 
 
Handwriting Recognizer with Templates 
 
Given an expression to write, first write the 
symbols of the expression without worrying about 
the structure. The recognizer will process each 
symbol separately. After all needed symbols have 
been entered, point and drag them into a 
structured template. Template can be altered 
structurally to fit the structure of the expression. 
Then you can point and drag the symbols already 
created into the corresponding slots of the empty 
template. This separates the character recognition 
step and the structural parsing stage of the 
process. Also, manipulating the structure so it fits 
the expression you want to enter is entirely 
dependent on you: although the system can 
impose some force entry requirements. That is, 
specifying a fraction requires  three parts: a 
numerator slot (a default fraction line) and a 
forced denominator slot. This helps enforce well-
formed expressions as well as speedup of the 
structure organization step for the user. So, in a 
sense, this is a mixture of the template/palette 
model. Here instead of a palette we use a symbol 
recognizer to input the symbols. Palettes may be 
hard to navigate when writing the symbol we 
need is much easier. A more detailed description 
of this design is in a separate draft paper, “State 
Transition Chart for Handwriting & Template 
Math Entry System”. 
 
Speech Recognition using Groupings 
 
Math entry using speech recognition faces the 
obstacle of verbal mistakes by the user especially 
when the expression being spoken is long and 
complicated. To add to the problem, the way 
math is naturally verbalized can have ambiguous 
meanings. For example, when we say “x plus y 
over z”, this sentence conveys two different 
interpretations. It could mean (x + y)/z or x + y/z. 
One method of disambiguating the uncertainty is 
to introduce extra pauses, but this seems quite 
unreliable. More plausible is the use of keywords  
or voice commands added to the spoken language 
of mathematics. For example, to signify that 
everything spoken so far should be grouped, the 



user must say the keyword “all” to instruct the 
grouping. Therefore, the first expression, (x + 
y)/z, would be spoken as “x plus y all over z”. If 
“all” is not used, then the previous standalone 
sub-expression is used as in the case for the 
second expression in the above example. Another 
possibility is to vocalize the second form as x and 
plus y over z. Both “and” and “all” could be 
repeated as kinds of traversals up an algebraic tree 
representing the expression. 
 As you can see, the introduction of keywords 
creates an even longer and complex spoken 
language for the user to learn. Though the 
keywords will help the speech recognizer parse 
the spoken words, it leads to a more error prone 
manner of vocalization for the user.  
Another solution to this is grouping sub-
expressions, naming the sub-expressions, and 
building bigger expressions with these labeled 
sub-expressions. Using spoken commands such as 
“group” and “end group” we can instruct the 
speech recognizer to group certain sub-
expressions. After grouping a sub-expression, the 
user can voice the command “name as” to assign 
a name to the sub-expression such as “expression 
1”. The advantages of this method are: 

• Since we group and save sub-
expressions, they are ready for reuse in future 
expressions. 
• By breaking down the construction of a 
complex expression into smaller sub-
expressions, we put fewer burdens on the 
speech recognizer which will now be required 
to handle simpler structures. 

 
Using grouping commands allows the users to 
build up a complex expression in a straight-
forward and organized fashion. 
 
So now to input the expression (x + y)/z, we say 
“x plus y group, name as expression 1 , expression 
1 over z”. To input the expression x + y/z would 
still be “x plus y over z”, but we can group it as a 
sub-expression by saying “name as expression 2”. 
This allows the usage of this expression in later 
expressions. For example, if we need to input the 
expression, sqrt(x + y/z), we say “square root of 
expression 2.”  
Yet another approach would be to have the 
computer display the possible choices in an 
indexed list. To continue, you would have to 
choose which interpretation is correct. 
 
 
 
 
 

Alternative Uses of a Tablet for Math 
 
A simple usage of a tablet is to input math with a 
pen and save it as an image. This ability is helpful 
in many applications. Oftentimes users may need 
to convey math to other (humans) through an 
electronic device such as email or instant 
messenger. These situations do not require any 
internal representation of the math. This can 
provide a convenient way for people to discuss 
math over the internet.  
 
Tablets vs. Mice 
 
Operating a handwriting math recognition system 
by using a tablet and pen is a different experience 
than using a mouse. First off, tablets often have 
touch sensitivity up to 512 levels of pressure 
sensitivity. Also, some tablets have surface 
coating to diminish glare and to simulate paper-
like feel9. In a study done to evaluate input 
devices, usage of a stylus was compared to that of 
a mouse. The results revealed that a stylus was 
slower in dragging than a mouse7. The reason for 
this may be the kind of “automatic transmission” 
in the mouse software that is rate sensitive, and 
will change gears for long moves. However, with 
a stylus, the movement of the hand from point A 
to point B is the same distance as the migration of 
the pointer. 
When dragging a mouse, the mouse button must 
be depressed. With a stylus, the user must 
maintain pressure on the stylus. Pressing a button 
is a discrete operation. It is either pressed down or 
not. However, applying pressure on a tablet is a 
“continuous” movement. If the pressure falls 
below a threshold, the dragged object may be 
dropped. This is similar to pressing a mouse 
button vs. tabbing on the touch pad on a laptop. 
So, it is logical that dragging with a stylus is more 
prone to dropping errors.  
Based on the conclusions of this study, designs of 
tablet systems for math may benefit from having 
multiple modes: distinguish between pointing 
/dragging or other selection commands in one 
mode, and writing in another.  Human factors 
experiments may be the best way to identify 
winning strategies. 
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