
Functional Graph Editing

Richard J. Fateman
John L. Chen

Computer Science Division
University of California, Berkeley

ABSTRACT
Applications of mathematics occasionally
produce models that are best understood and
visualized, and manipulated as directed or
undirected graphs. Computer aids to graphical
modeling for mathematicians can contribute to
the understanding and communication of this
information, especially if integrated into the
problem-solving working environment of the
investigators.
This particular set of programs was prompted
by discussions with a colleague, Alberto
Grünbaum concerning a paper on 3-
dimensional tomography [1]. The particular
need in this paper is to describe a directed graph
relating input and output states via a matrix of
probabilities. For even the small example graph
shown in the paper, appropriate
“comprehensible” display required careful
rearrangement.

Introduction and Examples

Key to understanding a complicated graph can
be modifying the display to reflect
considerations “outside” the mathematics that
provide cues to the human observer about non-
obvious properties of the graph. For example,
there may be certain patterns or symmetries.
Moving, labeling, coloring nodes or edges are
possible actions that can emphasize such
properties and make it feasible to explain issues
to other observers.
To illustrate some of the simple ideas for
display and modification, consider Figures 1—
4. This example graph in figure 1 is the
complete undirected graph of 8 nodes arranged
on a circle.
Our programs provide this as the result of
calling a program with one parameter (the
number of nodes). All other considerations of
window size, circle size, etc. can be left as
default values, or changed. Other initial
configurations could be computed, for example
a regular grid layout, with nearest-neighbors
connected on the plane, or nodes in a tree, or

some other geometry. Or one could start with a
blank sheet and add nodes and edges one at a
time.

Figure 1

Figure 2 illustrates the effect of a simple
program with only one action, moving a node.
You can do this by first moving a mouse near a
node, in this case the node labeled n2; next,
pushing the left-button down moves the cursor
exactly to n2. While holding the button down,
n2 may be moved anywhere on the canvas, with
the edges attached to it working like rubber
bands. Releasing the mouse button leaves the

Figure 2

node in its new location, and updates the data
structure of the graph internally. That is, it
changes the program’s notion of edges and
nodes for the graph. This last comment is key
to what we are doing: We intend for the result
of the changes in the graph to take effect
immediately, (subject perhaps to “undoing”)
and for programs that operate on the graph
functionally in the implementation system (Lisp
or a computer algebra system) to be able to
immediately recomputed any properties of the
graph. In particular, we prefer not to have to
write the graph out to a file, send it through a
UNIX pipe, convert it to XML or some graph
language, etc. For the program illustrated in
figure 2, the only other activities possible in the
program are enlarging or shrinking the window,
moving the window on the display, shrinking
the window to an icon, or deleting the window.
These are all performed by the conventional
mechanisms, and in fact are all inherited from
the standard definition of windows.

Figure 3

Sometimes it is difficult to see the edges, even
after the nodes have been rearranged. One
option for improvement used by Grünbaum was
to selectively curve the edges. This can improve
the visibility, and in particular avoid situations
in which edges appear to lead to a node, but in
reality only pass nearby. Figure 3 is the same
as figure 2, and is based on the same data
structures. We have instructed the display
program to omit node labels. We have also
changed the edges so that instead of start/end
pairs, the edges each have two extra Bezier

control points. (The total number of points is
3n+1 where n is an integer, n=1 by default). We
have instructed the program to display the
Bezier points. These points (including the
nodes themselves) can be moved anywhere,
using the same convention as in the figure 1
transformation. A mouse down-move-up
relocates a point. A possible result is illustrated
by figure 4. We have instructed the program to
NOT display the Bezier points in figure 4;
actually they cease to be very helpful … they
deviate far from the line they control in the case
of relative sharp bends.

 Figure 4

Functions
One of our goals in designing this graphing
utility was to include the most useful functions
in an intuitive manner, but without adding the
kind of daunting complexity that we have seen
in some other programs. We wanted users to be
able to use this program “right out of the box.”
With this in mind we set out only to add a few
basic functions from those needed for our
example application. At the click of the right
mouse button you will be exposed to all the
major functions of this utility. The node
operations include addition, deletion and
renaming. The operation for edges is to
construct new edges between chosen nodes.

Adding a node
Being able to add to and expand on an existing
graph is essential to a graph editor. With the
click of the right mouse button, a pop-up menu

will appear with the following options, ‘Add
Node,’ ‘Delete,’ Draw Edge’ and ‘Rename’
(Figure 5.1). By selecting the ‘Add Node’
option, you will have effectively added a node
at the location where the right mouse button
was clicked (Figure 5.2).

Figure 5.1

Figure 5.2

Renaming a node
The name of a newly created node will be
generated using the number of nodes currently
on the graph and in most cases you will want to

be able to rename it. To do so, it is quite
simple. All you have to do is right click on the
node you wish to rename (Figure 6.1), and then
select the corresponding option. By doing so,
you will be able edit the name in its respective
box (Figure 6.2).

Figure 6.1

Figure 6.2

Adding edges
There are currently two ways you can add edges
to the graph: (1) you can add edges from node

A to all the other nodes on the graph or (2) you
can add a single edge from node A to another
node that you are currently not connected to.
To do so you right click on the node you wish
to add an edge to (Figure 7.1). Then select
‘Draw Edge’ and you will get another pop-up
window consisting of ‘None,’ ‘All’ and a list of
all possible nodes you can connect to (Figure
7.2). Select the one you wish to connect to and
you’re done!

Figure 7.1

Figure 7.2

Deleting
When you wish to delete a node or an edge, you
start by clicking on the right mouse button on
the item that you wish to delete and then
selecting the ‘Delete’ option. As a result, you
will be giving a choice of either a node or an
edge that may be delete. If you are close to
both a node and an edge, then you will be given
the choice of both (Figure 8.1). However, if
you are by far closer to a node then you will
only have that option (Figure 8.2).

Figure 8.1

Figure 8.2

Menu Options

Currently, there are two menu options, (1)
Bezier Points and (2) Undo. Bezier points are
the control points that are present on each edge.
Under this option, the default setting is on
“Show them!” (Figure 9.1) However, you can
change the setting to “Don’t Show Them …” by
clicking on the corresponding option or by
pressing CRTL-D, which will effectively
remove all the control points from the window
(Figure 9.2). If you wish to bring the Bezier
points back, just select that option form the
menu or press CRTL-S.

Figure 9. 1

Another menu option that is available is
‘Undo,’ which restores the graph the way it was
before the most recent change.

As we have stated before, we wanted to keep
this editor clean and simple, easy to learn and
use within a few minutes after being exposed to
the controls. It is trivial for our purposes (and
with the experience gained by writing this code)
to add more functionality. Making the program
public means that others may reasonably easily
suggest additional functionality and add it
themselves.

What other programs can we anticipate writing?

Figure 9.2

Programs to write labels on the edges (trivial if
the edges are straight lines).
Programs to select particular edges for higher-
order Bezier curves.
Variations on these programs for directed
graphs.

It did not seem initially attractive to re-
implement the substantial number of interesting
algorithms that operate on graphs for the
automation of layout based on constraints. An
attempt to do so would necessarily be
duplicative, and we would hope to take
advantage of existing programs written by
others. Graph drawing is explored at
http://www.graphdrawing.org with numerous
links, including references to two full-length
monographs on the topic, an on-line tutorial for
GDTools and BLAG, a batch layout program.
A brief perusal shows that this package includes
some 10 layout algorithms. There are also a
number of sets of benchmarks (for example,
388 undirected graphs, with up to a few
hundred nodes), information on annual
conferences, and competitions. While we have
not exhaustively evaluated the possible
opportunities for using existing code, among
other projects with layout algorithms, we have
looked most carefully at AT&T Research’s
GraphViz. It appears that, if one is willing to
live with a UNIX style ascii pipe interface or
the alternative as files, a clear mechanism, at
least for algorithms terminating normally, is

provided. These programs could be run as
separate processes.

We expect our programs to be used through a
computer algebra system (CAS). A rather large
one (Macsyma) is conveniently already written
in the same Lisp system in which these
programs are written, and was a host system for
Grünbaum’s calculations. An initial
computation to produce a graph (perhaps
mapping a connection matrix to a graph)
requires a command structure of some sort. We
have begun exploring options for a suitable
“high level” CAS mathematical descriptive
language for specifying these graphs, or at least
roughing them out so that a human can easily
remedy shortcomings in the design through
interactive editing on a “canvas”. Another
possibility which may be appealing is to lay out
a graph in a spreadsheet program, either as a
connection matrix, or probably more compactly
as a collection of nodes and edges. We have
already written links between Lisp and Excel,
and there are also links to other CAS. This
would not be our first choice since Excel does
not really supply “symbolic” data except as
strings.

It should not be difficult to provide auxiliary
programs to convert these graphs to printer
forms (postscript), or to standard file formats,
especially if we take advantage of the GraphViz
[2] facilities in Dotty, which provides
numerous alternative graphical formats.

A natural question to ask is how many nodes
and edges can be handled by these programs?
Clearly the amount of computation to display
any of these graphs increases with the
complexity of the graph. The actual “screen real
estate” occupied by the graph is not a severe
limit since both horizontal and vertical scrolling
can be used. I suspect that some of the
operations could be made more efficient, since
we could “cache” unchanging parts of images
instead of recomputing everything in the graph
during “rubber-banding.” It is unclear how
large a graph could be and still be usefully
edited by a human in an attempt to aid visual
comprehension. A purely computational
representation, say as a sparse connection
matrix, may be as useful as an image if there
are thousands of points and edges.

The advantage of these programs is that for
modest size graphs, it may be possible to

display attractive symmetries, useful clustering,
or other properties. Furthermore, algorithms
which are intended to automatically transform
the visual appearance of graphs (say by
applying “repulsive” forces on the nodes to
spread them out) can be easily tested.

Novelty?
As far as we know, none of these ideas are new.
The novelty, if there is any, is in making them
available as a very compactly implemented
suite of functions, in Lisp, to be called by a
CAS.

 There are numerous “competing” packages
centrally concerned with graph drawing. These
usually have elaborate interfaces, imposing a
burden on the casual user to learn the menus
and controls of each of them. From our
perspective more significantly, the burden is to
learn how to convey information to the “home
base” in which the rest of the computation is
done. How should this be implemented?
Placing a diagram on a clipboard, or writing it
out to a file in some “standard” form does not
get the graph back into a standard scientific
computational environment. Requiring the user
of the CAS to re-parse the data is unreasonable:
if this must be done, it should be done by
system builders, not end users.

There are also competing features among the
computer algebra systems. For example, recent
versions of Macsyma and Mathematica provide
a (3-d) drawing system in which nodes and
edges can be displayed in arbitrary positions.
They can then be viewed from various angles
and perspectives. On the other hand, one
cannot do what the simplest graph-drawing
program allows, namely point to a node and
delete it.

Why Functional?
Our approach has been to come up with a
reasonable representation for a graph within the
Lisp system, as a list of nodes with their names
and locations, plus a list of edges with any
relevant information on bends. We can say that
a graph G is a pair [nodes, edges]. Up to this
point we have used “single minded” imperative
commands like G' = MoveNodesAround(G), a
situation which takes us from figure 1 to figure
2. Or G '' = BendSomeEdges(G) going from
figure 3 to figure 4. Or we can select such
transformations with interactive mouse input.

As we have written them so far, these are not
functional in the programming language sense:
they are imperative or object-oriented programs
that change the (one) copy of the graph G
which is their argument. We could easily
(although we do not currently) make a copy of
G, and feed/return that version from the
imperative command. This provides a simple
approach for an “undo” command.

Indeed the obvious method for an “arbitrary
undo” facility is to keep a list of all previous
versions of a graph. With memory being
relatively cheap, and also with shared
substructure that is normally part of Lisp, this
seems quite practical except for truly huge
graphs. In this case something like G=f(G) will
allow the garbage collector to remove “old”
versions of G as soon as possible.

We are experimenting more with a design for a
functional approach in which our graph
programs are not usually interactive: take an
existing graph G and create a new graph G' =
addnode(G,name,location,edges). This allows
both G and G' to exist without having to make a
copy of G. Of course if there are no more
references to G, the Lisp garbage collector will
remove any structure unique to G. Our intention
is to complete a suite of programs so that
functionally-oriented constructive methods for
graph creation from collections of nodes, edges,
and other graphs can be easily used from a
computer algebra system programmatically.
The notion of immutable objects seems more
natural in a computer algebra system:
modifying existing formulas has no parallel in
usual math, and system builders generally avoid
this (just as programmers are cautioned against
using self-modifying code): rather, a new
formula with substituted sub-parts is the normal
mode of thinking. For some reason it has
become conventional for matrices and
sometimes lists to violate this convention:
assignment to a matrix location or list location
may modify the (single) list copy. Where
should graphs fit? (Arguably either place, but
we would like to give the functional approach
more weight.) At appropriate times the graphs
would be displayed along with the opportunity
to modify them interactively.

 The programs used to produce the figures are
(all together) 217 lines of Lisp code, where
many of the lines consist of declarations of
methods associated with windows and

interaction, as well as calls to a Common
Graphics library, a set of object-oriented tools
in Allegro Common Lisp. We must admit that
the programs were not obvious to write because
we had to learn about the existing graphics
routines, mouse controls, menus, etc.
Extensions would be rather simpler than the
first “demo” version. Although we are using a
commercial Lisp system, the free “trial” version
of Allegro CL is quite sufficient to run these
examples and develop substantial extensions. If
and when interaction with elaborate layout
algorithms become advisable, the Lisp base
should be sufficient to direct such interactions.

Conclusions
The programs (available from the authors)
represent a number of simple steps to attaching
a computer algebra system to an interactive
graphics system for graph drawing. Additional
work on (for example) storage formats,
interchange formats to other graph drawing
systems could easily be warranted if the
applications demand it. The system as it exists
can take input from Macsyma, produce
reasonably attractive window displays capable
of supporting interactive editing. With small
additional effort we could provide printed high-
quality graphs, or interfaces to some of the
rather ambitious graph-centric programs
available.

Additional idea for important applications of
graph drawing abound. We would like to
explore how ideas specifically in symbolic
mathematical computing may emerge. We can
see others drawing on sparse matrix
representation applications, data analysis
(relevance matching) in queries, representation
of chemical drawings, circuits, flowcharts or
other graphics in biological, physical, financial,
social systems.

Acknowledgments
This research was supported in part by NSF
grant CCR-9901933 administered through the
Electronics Research Laboratory, University of
California, Berkeley, and by an Undergraduate
Research Opportunities grant from the UCB
College of Engineering supporting John Chen.
We also thank Ken Cheetham of Franz Inc. who
took some inspiration from our initial clumsy
efforts and showed us how to use pieces of the
common graphics package the way they were
intended, also removing inefficiencies.

References
1. F. Alberto Grünbaum, “Nonlinear

inverse problem inspired by three-
dimensional diffuse tomography”
Inverse Problems 17 (2001) 1907-
1922.

2. Eleftherios Koutsofios, Stephen North,
Editing graphs with dotty,
http://www.research.att.co
m/sw/tools/graphviz/.

3. Michael Himsolt, The Graphscript
Language,
http://www.infosun.fmi.uni
-
passau.de/Graphlet/graphsc
ript/

4. Franz Inc. Allegro Common Lisp
Common Graphics.
http://www.franz.com

