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ABSTRACT 
Applications of mathematics occasionally 
produce models that are best understood and 
visualized, and manipulated as directed or 
undirected graphs. Computer aids to graphical 
modeling for mathematicians can contribute to 
the understanding and communication of this 
information, especially if integrated into the 
problem-solving working environment of the 
investigators. 
This particular set of programs was prompted 
by discussions with a colleague, Alberto 
Grünbaum concerning a paper on 3-
dimensional tomography [1]. The particular 
need in this paper is to describe a directed graph 
relating input and output states via a matrix of 
probabilities.  For even the small example graph 
shown in the paper, appropriate 
“comprehensible” display required careful 
rearrangement. 
 
Introduction and Examples 
                                 
Key to understanding a complicated graph can 
be modifying the display to reflect 
considerations “outside” the mathematics that 
provide cues to the human observer about non-
obvious properties of the graph. For example, 
there may be certain patterns or symmetries. 
Moving, labeling, coloring nodes or edges are 
possible actions that can emphasize such 
properties and make it feasible to explain issues 
to other observers. 
To illustrate some of the simple ideas for 
display and modification, consider Figures 1—
4. This example graph in figure 1 is the 
complete undirected graph of 8 nodes arranged 
on a circle.  
Our programs provide this as the result of 
calling a program with one parameter (the 
number of nodes).  All other considerations of 
window size, circle size, etc. can be left as 
default values, or changed. Other initial 
configurations could be computed, for example 
a regular grid layout, with nearest-neighbors 
connected on the plane, or nodes in a tree, or 

some other geometry.  Or one could start with a 
blank sheet and add nodes and edges one at a 
time. 
 

Figure 1 

Figure 2 illustrates the effect of a simple 
program with only one action, moving a node.  
You can do this by first moving a mouse near a 
node, in this case the node labeled n2; next, 
pushing the left-button down moves the cursor 
exactly to n2. While holding the button down, 
n2 may be moved anywhere on the canvas, with 
the edges attached to it working like rubber 
bands.  Releasing the mouse button leaves the 

Figure 2 



node in its new location, and updates the data 
structure of the graph internally.  That is, it 
changes the program’s notion of edges and 
nodes for the graph.  This last comment is key 
to what we are doing: We intend for the result 
of the changes in the graph to take effect 
immediately, (subject perhaps to “undoing”) 
and for programs that operate on the graph 
functionally in the implementation system (Lisp 
or a computer algebra system) to be able to 
immediately recomputed any properties of the 
graph. In particular, we prefer not to have to 
write the graph out to a file, send it through a 
UNIX pipe, convert it to XML or some graph 
language, etc.  For the program illustrated in 
figure 2, the only other activities possible in the 
program are enlarging or shrinking the window, 
moving the window on the display, shrinking 
the window to an icon, or deleting the window. 
These are all performed by the conventional 
mechanisms, and in fact are all inherited from 
the standard definition of windows. 

Figure 3 

Sometimes it is difficult to see the edges, even 
after the nodes have been rearranged.  One 
option for improvement used by Grünbaum was 
to selectively curve the edges. This can improve 
the visibility, and in particular avoid situations 
in which edges appear to lead to a node, but in 
reality only pass nearby.  Figure 3 is the same 
as figure 2, and is based on the same data 
structures.  We have instructed the display 
program to omit node labels.  We have also 
changed the edges so that instead of start/end 
pairs, the edges each have two extra Bezier 

control points. (The total number of points is 
3n+1 where n is an integer, n=1 by default). We 
have instructed the program to display the 
Bezier points.  These points (including the 
nodes themselves) can be moved anywhere, 
using the same convention as in the figure 1 
transformation.  A mouse down-move-up 
relocates a point.  A possible result is illustrated 
by figure 4.  We have instructed the program to 
NOT display the Bezier points in figure 4; 
actually they cease to be very helpful … they 
deviate far from the line they control in the case 
of relative sharp bends.  

 Figure 4 
 
 
Functions 
One of our goals in designing this graphing 
utility was to include the most useful functions 
in an intuitive manner, but without adding the 
kind of daunting complexity that we have seen 
in some other programs.  We wanted users to be 
able to use this program “right out of the box.”  
With this in mind we set out only to add a few 
basic functions from those needed for our 
example application.  At the click of the right 
mouse button you will be exposed to all the 
major functions of this utility. The node 
operations include addition, deletion and 
renaming. The operation for edges is to 
construct new edges between chosen nodes. 
 
Adding a node 
Being able to add to and expand on an existing 
graph is essential to a graph editor.  With the 
click of the right mouse button, a pop-up menu 



will appear with the following options, ‘Add 
Node,’ ‘Delete,’ Draw Edge’ and ‘Rename’ 
(Figure 5.1).  By selecting the ‘Add Node’ 
option, you will have effectively added a node 
at the location where the right mouse button 
was clicked (Figure 5.2). 
 
 

 

Figure 5.1 

 

Figure 5.2  

 
 
Renaming a node 
The name of a newly created node will be 
generated using the number of nodes currently 
on the graph and in most cases you will want to 

be able to rename it.  To do so, it is quite 
simple.  All you have to do is right click on the 
node you wish to rename (Figure 6.1), and then 
select the corresponding option.  By doing so, 
you will be able edit the name in its respective 
box (Figure 6.2). 
 

 
Figure 6.1 

       

 
Figure 6.2  

 
 

 
Adding edges 
There are currently two ways you can add edges 
to the graph: (1) you can add edges from node 



A to all the other nodes on the graph or (2) you 
can add a single edge from node A to another 
node that you are currently not connected to.  
To do so you right click on the node you wish 
to add an edge to (Figure 7.1).  Then select 
‘Draw Edge’ and you will get another pop-up 
window consisting of ‘None,’ ‘All’ and a list of 
all possible nodes you can connect to (Figure 
7.2).  Select the one you wish to connect to and 
you’re done! 
 
 

 
Figure 7.1 

      

 
Figure 7.2  

 

 
Deleting 
When you wish to delete a node or an edge, you 
start by clicking on the right mouse button on 
the item that you wish to delete and then 
selecting the ‘Delete’ option.  As a result, you 
will be giving a choice of either a node or an 
edge that may be delete.  If you are close to 
both a node and an edge, then you will be given 
the choice of both (Figure 8.1).  However, if 
you are by far closer to a node then you will 
only have that option (Figure 8.2). 
 
 

 
Figure 8.1 

            

 
Figure 8.2  

 
Menu Options 



Currently, there are two menu options, (1) 
Bezier Points and (2) Undo.  Bezier points are 
the control points that are present on each edge.  
Under this option, the default setting is on 
“Show them!” (Figure 9.1)  However, you can 
change the setting to “Don’t Show Them …” by 
clicking on the corresponding option or by 
pressing CRTL-D, which will effectively 
remove all the control points from the window 
(Figure 9.2).  If you wish to bring the Bezier 
points back, just select that option form the 
menu or press CRTL-S. 

 
 

Figure 9. 1 

Another menu option that is available is 
‘Undo,’  which restores the graph the way it was 
before the most recent change.  
 
As we have stated before, we wanted to keep 
this editor clean and simple, easy to learn and 
use within a few minutes after being exposed to 
the controls.  It is trivial for our purposes (and 
with the experience gained by writing this code) 
to add more functionality. Making the program 
public means that others may reasonably easily 
suggest additional functionality and add it 
themselves. 
 
What other programs can we anticipate writing?   
 

 
Figure 9.2  

Programs to write labels on the edges (trivial if 
the edges are straight lines). 
Programs to select particular edges for higher-
order Bezier curves. 
Variations on these programs for directed 
graphs. 
 
It did not seem initially attractive to re-
implement the substantial number of interesting 
algorithms that operate on graphs for the 
automation of layout based on constraints.  An 
attempt to do so would necessarily be 
duplicative, and we would hope to take 
advantage of existing programs written by 
others. Graph drawing is explored at 
http://www.graphdrawing.org with numerous 
links, including references to two full-length 
monographs on the topic, an on-line tutorial for 
GDTools and BLAG, a batch layout program. 
A brief perusal shows that this package includes 
some 10 layout algorithms. There are also a 
number of sets of benchmarks (for example, 
388 undirected graphs, with up to a few 
hundred nodes), information on annual 
conferences, and competitions. While we have 
not exhaustively evaluated the possible 
opportunities for using existing code, among 
other projects with layout algorithms, we have 
looked most carefully at AT&T Research’s 
GraphViz.  It appears that, if one is willing to 
live with a UNIX style ascii pipe interface or 
the alternative as files, a clear mechanism, at 
least for algorithms terminating normally, is 



provided.  These programs could be run as 
separate processes. 
 
We expect our programs to be used through a 
computer algebra system (CAS). A rather large 
one (Macsyma) is conveniently already written 
in the same Lisp system in which these 
programs are written, and was a host system for 
Grünbaum’s calculations. An initial 
computation to produce a graph (perhaps 
mapping a connection matrix to a graph) 
requires a command structure of some sort. We 
have begun exploring options for a suitable 
“high level” CAS mathematical descriptive 
language for specifying these graphs, or at least 
roughing them out so that a human can easily 
remedy shortcomings in the design through 
interactive editing on a “canvas”. Another 
possibility which may be appealing is to lay out 
a graph in a spreadsheet program, either as a 
connection matrix, or probably more compactly 
as a collection of nodes and edges.  We have 
already written links between Lisp and Excel, 
and there are also links to other CAS.  This 
would not be our first choice since Excel does 
not really supply “symbolic” data except as 
strings. 
 
It should not be difficult to provide auxiliary 
programs to convert these graphs to printer 
forms (postscript), or to standard file formats, 
especially if we take advantage of the GraphViz 
[2] facilities in Dotty,  which provides 
numerous alternative graphical formats. 
 
A natural question to ask is how many nodes 
and edges can be handled by these programs?  
Clearly the amount of computation to display 
any of these graphs increases with the 
complexity of the graph. The actual “screen real 
estate” occupied by the graph is not a severe 
limit since both horizontal and vertical scrolling 
can be used.  I suspect that some of the 
operations could be made more efficient, since 
we could “cache” unchanging parts of images 
instead of  recomputing everything in the graph 
during  “rubber-banding.”  It is unclear how 
large a graph could be and still be usefully 
edited by a human in an attempt to aid visual 
comprehension. A purely computational 
representation, say as a sparse connection 
matrix, may be as useful as an image if there 
are thousands of points and edges. 
 
The advantage of these programs is that for 
modest size graphs, it may be possible to 

display attractive symmetries, useful clustering, 
or other properties.  Furthermore, algorithms 
which are intended to automatically transform 
the visual appearance of graphs (say by 
applying “repulsive” forces on the nodes to 
spread them out) can be easily tested. 
 
 
Novelty?  
As far as we know, none of these ideas are new. 
The novelty, if there is any, is in making them 
available as a very compactly implemented 
suite of functions, in Lisp, to be called by a 
CAS.  
 
 There are numerous “competing” packages 
centrally concerned with graph drawing. These 
usually have elaborate interfaces, imposing a 
burden on the casual user to learn the menus 
and controls of each of them. From our 
perspective more significantly, the burden is to 
learn how to convey information to the “home 
base” in which the rest of the computation is 
done.  How should this be implemented?  
Placing a diagram on a clipboard, or writing it 
out to a file in some “standard” form does not 
get the graph back into a standard scientific 
computational environment.  Requiring the user 
of the CAS to re-parse the data is unreasonable: 
if this must be done, it should be done by 
system builders, not end users. 
 
There are also competing features among the 
computer algebra systems. For example, recent 
versions of Macsyma and Mathematica provide 
a (3-d) drawing system in which nodes and 
edges can be displayed in arbitrary positions. 
They can then be viewed from various angles 
and perspectives.  On the other hand, one 
cannot do what the simplest graph-drawing 
program allows, namely point to a node and 
delete it. 
 
Why Functional? 
Our approach has been to come up with a 
reasonable representation for a graph within the 
Lisp system, as a list of nodes with their names 
and locations, plus a list of edges with any 
relevant information on bends. We can say that 
a graph G is a pair [nodes, edges]. Up to this 
point we have used “single minded” imperative 
commands like G' = MoveNodesAround(G), a 
situation which takes us from figure 1 to figure 
2.  Or G '' = BendSomeEdges(G) going from 
figure 3 to figure 4.  Or we can select such 
transformations with interactive mouse input.  



As we have written them so far, these are not 
functional in the programming language sense: 
they are imperative or object-oriented programs 
that change the (one) copy of the graph G 
which is their argument.  We could easily 
(although we do not currently) make a copy of 
G, and feed/return that version from the 
imperative command. This provides a simple 
approach  for an “undo” command. 
 
Indeed the obvious method for an “arbitrary 
undo” facility is to keep a list of all previous 
versions of a graph. With memory being 
relatively cheap, and also with shared 
substructure that is normally part of Lisp, this 
seems quite practical except for truly huge 
graphs.  In this case something like G=f(G) will 
allow the garbage collector to remove “old” 
versions of G as soon as possible. 
 
We are experimenting more with a design for a 
functional approach in which our graph 
programs are not usually  interactive: take an 
existing graph G and create a new graph G' = 
addnode(G,name,location,edges). This allows 
both G and G' to exist without having to make a 
copy of G. Of course if there are no more 
references to G, the Lisp garbage collector will 
remove any structure unique to G. Our intention 
is to complete a suite of programs so that 
functionally-oriented constructive methods for 
graph creation from collections of nodes, edges, 
and other graphs can be easily used from a 
computer algebra system programmatically.  
The notion of immutable objects seems more 
natural in a computer algebra system: 
modifying existing formulas has no parallel in 
usual math, and system builders generally avoid 
this (just as programmers are cautioned against 
using self-modifying code): rather, a new 
formula with substituted sub-parts is the normal 
mode of thinking.  For some reason it has 
become conventional for matrices and 
sometimes lists to violate this convention: 
assignment to a matrix location or list location 
may modify the (single) list copy. Where 
should graphs fit?  (Arguably either place, but 
we would like to give the functional approach 
more weight.) At appropriate times the graphs 
would be displayed along with the opportunity 
to modify them interactively.  
 
 The programs used to produce the figures are 
(all together) 217 lines of Lisp code, where 
many of the lines consist of declarations of 
methods associated with windows and 

interaction, as well as calls to a Common 
Graphics library, a set of object-oriented tools 
in Allegro Common Lisp.  We must admit that 
the programs were not obvious to write because 
we had to learn about the existing graphics 
routines, mouse controls, menus, etc. 
Extensions would be rather simpler than the 
first “demo” version.  Although we are using a 
commercial Lisp system, the free “trial” version 
of Allegro CL is quite sufficient to run these 
examples and develop substantial extensions. If 
and when interaction with elaborate layout 
algorithms become advisable, the Lisp base 
should be sufficient to direct such interactions. 
 
Conclusions 
The programs (available from the authors) 
represent a number of simple steps to attaching 
a computer algebra system to an interactive 
graphics system for graph drawing. Additional 
work on (for example) storage formats, 
interchange formats to other graph drawing 
systems could easily be warranted if the 
applications demand it.  The system as it exists 
can take input from Macsyma, produce 
reasonably attractive window displays capable 
of supporting interactive editing. With small 
additional effort we could provide printed high-
quality graphs, or interfaces to some of the 
rather ambitious graph-centric programs 
available. 
 
Additional idea for important applications of 
graph drawing abound.  We would like to 
explore how ideas specifically in symbolic 
mathematical computing may emerge. We can 
see others drawing on sparse matrix 
representation applications, data analysis 
(relevance matching) in queries, representation 
of chemical drawings, circuits, flowcharts or 
other graphics in biological, physical, financial, 
social systems. 
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