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Abstract

The speed of modern computers can be increased by organizing
computations so that memory access patterns correspond more closely
to the memory cache-loading patterns implemented in the hardware.
Rearranging code and data are each possible. Here we concentrate on
automatic rearrangement of data, and examine the belief, common in
some technical circles, that modern generational copying garbage col-
lectors (GC) will improve data caching by relocating and compressing
data, as a matter of normal processing. Since GC routines tend to
be very well-tested and quite robust, if this belief can be confirmed
by benchmarks, a GC could be a “free” way of reliably speeding up
programs in practice.

In fact, our tests show this speedup phenomenon can be measured
in some but not all sample Lisp programs. A novelty in our tests (at
least when this paper was written) was using a full Lisp system linked
to free software (PAPI) to access hardware machine registers. PAPI
allows us to count cache misses during full-speed computation. We
conclude that after a GC cache misses may be significantly reduced
in some examples. Reorganization by GC speeds up computation by
as much by a factor of 4, but in some cases the effect is negligible (or
may even slow computation slightly). In any case, no extra effort is
required of the programmer or user to take advantage of the potential
speedup.
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1 Introduction

The Lisp programming language uses linked lists of cons cells (two pointers
each) as a fundamental data constructor. Current computer architectures
(and memory systems) are slow at following links, so it would seem that
using these elements would be a poor choice in achieving highest computing
performance. Cache memories thrive on sequential memory accesses which
appear to be the antithesis of the “typical” model of Lisp: following list
pointers from one “random” location to another in working memory. Ma-
jor efforts in improving hardware implementations such as out-of-order or
speculative execution, multiple execution units, etc. tend to be ineffective
with a computation model where nearly each step requires another pointer-
following memory access. In the worst case cache memory could be totally
defeated by the sequence of pointers.

In fact it is quite possible to allocate cells in a linked list in sequential
locations in memory. Each cell then contains a pointer-sized datum that
merely points to the next cell. If a cell contains only 2 pointers, as is the
case for a Lisp cons cell, half of memory is consumed by “next” pointers1,
and so such a program appears to require twice as much data cache to store
a sequence compared to a sequential non-linked-list allocation.

Why would a programmer waste half the data cache? Consider that in
past when memory was far more expensive, people invented, and persisted
in using, linked lists. There must be a perceptible payoff in some form, for
example, programmer convenience.

Oddly enough there can also be a memory locality payoff for using linked
lists. In particular we have seen a pleasant result in a typical modern im-
plementation of Lisp; an improvement in speed by memory reorganization
may require no specific effort by the programmer or any change to the source
code. It is done by the storage reclaimation activity of a copying garbage
collector (GC), and as the GC runs normally without being explicitly called,
this improvement usually requires no human effort. The effect of the garbage
collector is to follow the links of live data structures and rearrange them, in
order, in adjacent memory space. If the program traversing this data uses a
similar path, the cache behavior can be quite improved compared to some
random allocation. In a linear list, there is not much question of the order
of traversal, and so the GC and the usual traversal agree.

There are other earlier papers on re-organization of memory; a good
1Special purpose Lisp architectures have been designed with various tricks to overcome

this apparent space waste by using short pointers, but we will not pursue this here.
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survey is contained in the paper by Mowry and Luk on memory forwarding
[3]. (This paper advocates a hardware solution to the problem of locality:
compress storage and as a safety measure plant a forwarding pointer, marked
by an extra hardware bit in the old location, in case there are any left-over
references. This technique is necessary in undisciplined languages in which
there is no guarantee that one can identify all pointers to a cell. Lisp does
not have this problem.) A more recent paper by Chilimbi and Larus [2]
specifically addresses some of the same issues as we do, extending the range
of applicability by suggesting how profiling and rearranging object storage in
memory can attain better performance. They conclude that such techniques
may help narrow, or even reverse, the performance gap between high-level
languages such as Lisp, and low-level languages. Unfortunately this paper
[2] has benchmarks on only a single architecture and a relatively unknown
language, Cecil. Their references provide useful pointers into the literature.

2 A simple test

We constructed a suite of simple tests to determine if we were in fact bene-
fiting from garbage collection improving memory locality.

Each of the tests below should be executing essentially the same num-
ber of data access instructions, namely enough to follow 109 pointers in
succession. In order to vary the locality we vary the number of different
pointers. That is, this could be done by following the links in a list of length
105 repeatedly 104 times, or any other combination of 109 repetitions and
lengths.

Let us start with a Lisp list R consisting of 32,000 random single-word
integers.

There are three computations of interest, and since the data seems to
vary substantially from run to run, in some cases we repeated a peculiar
result to see if it was somehow influenced by external activities on the system
being timed.

Each of the three versions does the same computation: compute the
length of R 109/32000=31,240 times.

In version a, 99.99% of pointers are to the next cell, as they are just
allocated. This is our “good cache behavior” layout, and traversing data in
the form should be as fast as possible.

In version b, the cells are randomly ordered (99% of pointers are to
addresses over 215 bytes away). This is our effort to provoke bad cache
behavior in our data.
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For version c, we start with the cells arranged as in version b, but trig-
ger the GC which in effect returns the memory to an arrangement in which
99.99% of the pointers are to the next cell, resembling version a. (Does this
include the time for the GC? It doesn’t matter since this time is negligible2.
In a real-world application the GC time tends to be 5 percent or so of pro-
cessing time overall; clearly for our test we are revisiting the same locations
repeatedly, so the cost for moving them (once) is relatively small compared
to the rest of the computation.)

Most of our tests are on a Pentium III with a total L1 cache size of 32
Kbytes. This is divided into 16 Kbytes each for instructions and data, and a
256 Kbyte L2 cache, 8-way set associative. Additional tests were performed
on a Sun Microsystems SunBlade 100. Tests can be performed with the
same code on any Allegro Common Lisp system on any architecture. The
cache counts show below also require PAPI 3 as well. PAPI [1] runs on many
computers.

Occasionally when a recorded benchmark time seemed to be implausible,
(perhaps caused by other activity on the computer system), or we re-tested
the data point for other reasons and found a significant variation, we indi-
cate the repeated time as well. The results for the 2,000 word test differ in
nature from most of tests, but since the 2,000 cons cells just exactly fits the
16Kbyte data cache, we suspect we are seeing the effect of minor alignment
differences, which in this case can make the “random” distribution of point-
ers better than the systematic and perhaps “counter-cache” access pattern.
All cpu times are in seconds. Recall that each of the tests is essentially
traversing the number of pointers (109), and in a cache-less machine would
take the same time. The table below shows a variation between 3.6 and 112
seconds.

For 32,000 word-long lists traversed 31,250 times

L1 misses L2 misses cpu time

a 2.54e8 1.22e8 18.7
b 9.57e8 1.15e8 22.7
c 2.25e8 0.72e8 13.0
c repeat 2.52e8 0.48e8 10.1

2In these tests the GC times are 16-32 ms. Even for a 100,000 word list, the GC need
only scan the data structure once and copy it to “new space”.

3http://icl.cs.utk.edu/projects/papi/
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We show one larger, and then several smaller tests.
For 100,000 word-long lists traversed 10,000 times

a 2.56e8 2.52e8 34.0
b 10.23e8 7.55e8 112.0
c 2.56e8 2.52e8 34.0

for 2,000 word-long lists traversed 500,000 times

a 6.64e6 2.31e5 5.9
b 11.02e6 2.17e5 4.8 ?
b repeat 8.84e6 2.36e5 6.46
c 6.02e6 2.35e5 6.3 ?

for 1,000 word-long lists traversed 1,000,000 times
a 1.10e6 2.23e5 3.6
b 1.64e6 2.67e5 5.4
c 2.03e6 2.15e5 4.8

For 500 words or below, no consistent differences are apparent since our
artificially generated data is likely to be all cache-resident, even if jumbled.
An actual computation in which 500 “good” data points were slowly accu-
mulated over many conses would probably show better performance after
GC.

Note that, 106 L1 cache misses is about 0.1% of the data accesses.
For the Sunblade-100, a 500Mhz system with a 256Kbyte L2 cache, we

have the following data which illustrates that there is a sharp break: once
a list requires 32,000 or more 8-byte cells, the cache misbehaves if the list
is not in order. We found one anomaly in the 2000 word list, where the
sorted version takes twice as long; this is presumably due to an interaction
of the cache association mechanism and memory locations. The problem is
overcome with a slightly different size, as shown with the 2003 or 2011 word
list.

For each of the following benchmarks on the Sun, we give three times,
in seconds for tests {a,b,c}. In a non-cache-memory world,
the {a,b,c} times would be the same.

List Length Number of Times in Seconds
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in words iterations

100 10,000,000 {6.48, 6.47, 6.50}
1,000 500,000 {6.06, 6.07, 6.07}
2,000 500,000 {6.03, 6.04, 15.90 ??}
2,003 499,251 {6.05, 6.05, 6.05}
2,011 497,265 {6.05, 6.05, 6.05}
5,000 200,000 {16.1, 19.6, 16.0}
10,000 100,000 {16.1, 18.8, 15.9}
30,000 33,333 {16.6, 20,8, 17.7}
32,000 31,250 {18.4, 31.3, 18.4}
50,000 20,000 {28.6, 101.2, 28.7}

Further notes on the tests:
The Lisp system we were using (Allegro Common Lisp 6.1) has a generation-

scavenging copying/compacting garbage collector that has evolved over years.
Its basic operation of copying data into new space in the first GC after being
allocated is similar to most contemporary Common Lisp implementations.
When a list R is allocated space from the Lisp free list it is probably com-
posed of cons cells in sequential memory locations. R may not be entirely
contiguous, but there should be only a few breaks in memory sequence. A
typical measurement shows that for 99.9% or more of a newly constructed
list, each pointer refers to an adjacent cell in memory.

For most tests we used a Pentium-III 933MHz workstation, although
results should not differ qualitatively from other speed, cache sizes, or other
popular cache organizations4. Thanks to the PAPI project these benchmarks
can be performed simply by calling programs to read the registers before and
after each run. The benchmarks can be run on any other (unaltered) Lisp
program using a half-page of “foreign function” declarations. Since there
are PAPI bindings for other languages, similar tests could be performed on
other systems.

The second timed (b) test of each sequence required randomizing the
links. This was done by sorting the list “in place” by changing pointer values.
(setf R (mergesort R)). Since the list was initially allocated as a list
of pseudo-random numbers, this sort randomized the sequence of memory
locations when the list cells were sorted by value. (We had to fuss to make

4We were also able to measure the L1 Instruction/ Data cache miss data, although not
on the same exact run, since we can use only two hardware counters at the same time on
our Pentium III.
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sure that no garbage collection was triggered during sorting since, as will
be seen in a moment, that would spoil the randomization. Consequently
we wrote our own in-place list sorting routine rather than using the built-in
one).

Before executing the third test (c), we forced a garbage collection. This
had the effect of copying the list R so that it not only had sequential values
but was stored in sequential memory locations. In this third test, the speed
of scanning R is similar to the time required to scan the the original list.
As shown above, for size 100,000, it becomes over three times faster than
scanning the scrambled list.

3 Why is the random list slower?

In a Pentium III each 32-byte cache line can hold 4 cons cells. If they are
stored in memory that is sequentially accessed, starting at the beginning of
a loaded cache line we will get 3 cache hits then a miss. If a sufficiently
large non-repeating set of them is located in memory randomly accessed,
essentially each reference will give us a cache miss. Under totally-random
pointer assumptions we should expect about 3 times more misses.

The Lisp copying/generation scavenging garbage collector has effectively
reorganized the memory to regenerate locality in this test. (We hesitate
to call this “automatic optimization” although it is clearly improved and
certainly automatic.)

4 Can lists be better than arrays?

Some applications are more conveniently programmed with lists since one
can insert or delete elements at a given location in O(1) time, rather than
having to re-copy elements. On the downside, a conventional linked list
does use storage for the links. Furthermore the typical management of such
storage is more tedious: compare a whole array that could be freed in one
step to linked list cells which are individually managed.

Lists are not inevitably associated with GC systems, but it has become
more plausible for technical reasons, given the large amounts of memory
available at low cost, as well as fashion: it is used in the popular language
Java.

The obvious comparison data structure, with the nice property that it
takes less space (no pointers), is the array. By contrast with the list, the
advantage of the array is one can index into the middle of it in O(1) time.
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To see how this might compare on tests on the same computer, we examined
comparable minimal processing of information in an array sequential storage
structure. We allocated 16,000 single-word numbers in an array. This array
could have the same contents as a 32,000 word list in memory, since the array
does not need space for pointers. But they both are within the 256Kbyte
cache.

Traversing the list and the array the same number of times gives us this
data:

Time (sec) L1 misses L2 misses object traversed

5.48 1.26e8 1.90e5 array of 16,000
4.54 2.51e8 6.07e5 list of 16,000 organized
7.27 9.06e8 3.33e5 list of 16,000 randomized

Note that organized list traversal is faster.
If we double the size of the array and the list, we reach a cache limit

with the list, but not with the array. Here array indexing is much faster.

5.23 1.26e8 2.26e5 array of 32,000
18.85 2.52e8 1227.14e5 list of 32,000 organized
27.37 2.54e8 1954.60e5 list of 32,000 randomized

The cache behavior of the array is not affected by sorting, but at least
at the sub-L2 cache size, and comparing Lisp’s compiled array accesses to
Lisp’s following links, the array storage – even given fewer cache misses – is
still slightly slower. The advantage of the array storage is that it goes about
twice as far before hitting the cache-miss wall.

We can push the array past that wall as well. A solution to this may be
to proceed to buy the next CPU in the sequence, with twice the L2 cache
size!

17.58 1.27e8 1.26e8 array of 128,000
34.05 2.54e8 2.53e8 list of 128,000 organized
120.65 10.06e8 8.18e8 list of 128,000 randomized

5 Conclusion

Here are two different ways to make better use of data cache.
(a) The (by now) traditional one: Find a compact representation that

works well with appropriate algorithms to provide rapid access and modifi-
cation, using sequential access. This suggests a design that doesn’t “waste
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space” for pointers etc. (like a packed array). Developing tools for opti-
mization of data layouts with respect to cache performance for instructions
and data are popular topics in the architecture and programming language
research communities. [1, 2].

(b) The one suggested here: Leave data in lists and allow the system (or
provoke the system) to perform a copying GC. In an ideal case the layout
of the data in the copied list as traversed by the GC (following cdrs before
cars will mirror the data access pattern of the associated program, and
there may be substantial automatic improvement in locality.

The second of these possibilities, although probably obvious to persons
writing garbage collectors, appears to be not so well-known generally, Com-
ments on this possibility appeared in the literature at least as early as 1980
[4], and are discussed in the literature [3].

In order to break away from memory band-width limits on the transfer
between the caches and memory it seems that the programmer as well as the
designer of the generational GC system should consider the size of the caches,
(for the Pentium III or the SPARC Sunblade-100, unless one is dealing with
very small sets of data, the most relevant one would be the L2 256Kbyte
cache). In general the programmer can look at ways of updating already
allocated memory, but this may not be advantageous. A newly allocated
list can be compressed more easily than one that has been “tenured” in a
generational GC system. Detailed suggestions can be found in Wilson’s 1992
paper [5].

The predicted continuing divergence between the speed of main memory
and cache speed makes it even more important to try to make best use of
cache. Fortunately we now have new tools such as PAPI and the hardware
counters that make it possible to test programs in real-time rather than
through painful simulation. Tests like these can be done to help compare
data structures, and perhaps make critical choices via profiling [2] or even
later at run-time, to improve throughput.

These tests do not directly bear on other data structures in Lisp, nor
even on trees or graphs constructed of cons cells. Such linked structures,
which may in any case be traversed in any number of ways, may not benefit
by the GC restructuring. The trick here may be to try to deal with with
a sufficiently small working set of not-necessarily contiguous list structure.
In our case with lists of 500 or fewer elements, cache performance may not
be the limiting factor in speed: we see essentially no difference once all the
data is in L1 cache.

In any generalizations about program performance on today’s compli-
cated processors, and projecting to future processors, “your mileage may
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vary,” but in this admittedly simple benchmark, use of a GC can speed the
computation substantially.
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Appendix: Selected program listings and notes.

(defun mrl(n) ;;make random list
(let ((ans nil))
(dotimes (j n ans)
(push (random (random #.(truncate most-positive-fixnum 4)))

ans))))

(defun lengthm(l m) ;compute length of list l m times
(dotimes (j m)

(declare (fixnum j))
(mylength2 l 0)))

(defun mylength2(a n) ;fast small no-checking version of length
(cond ((null a) n)(t (mylength2 (cdr a)(1+ n)))))

;;; an in-place mergesort to randomize a list

;;; split at least 2
(defun split (x) ;; break the list x into two parts, odd and even

(cond ((null x)(values nil nil))
((null (cdr x))(values x nil))
(t
(let((a x)

(b (cdr x))
(c (cddr x)))

(setf (cdr a) nil)
(setf (cdr b) nil)
(split1 c a b)))))

(defun split1(x y z)
(cond((null x))

((null (cdr x))(setf (cdr x)(cdr y)) (setf (cdr y) x))
(t

(let((a x)
(b (cdr x))
(c (cddr x)))

(setf (cdr a) (cdr y))
(setf (cdr y)a)
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(setf (cdr b) (cdr z))
(setf (cdr z)b)
(split1 c a b))))

(values y z))

(defun mymerge(x y);; faster version of merging, destructively (cf. CL version)
(cond ((null x) y)

((null y) x)
((>= (car x)(car y))
(setf (cdr x)(mymerge (cdr x) y))
x)
(t (mymerge y x))))

;; the sort function itself

(defun mergesort(r)
(cond ((null r) nil)

((null (cdr r)) r)
(t(multiple-value-bind

(x y)
(split r)
;;(merge ’list (mergesort x)(mergesort y) #’<)
(mymerge (mergesort x)(mergesort y))
))))

(defun lengtha(a m)
;;compute touch each element in array a m times
(declare (type (simple-array t (*)) a)
(fixnum m) )
(let ((r 0))
(dotimes (j m)

(declare (fixnum j))
(dotimes (k (length a))

(declare (fixnum k))
(setf r (aref a k))))))
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