Contents

1 Introduction
 I

1.1 Motivating examples 1
1.2 Optimization problems 5
1.3 Important classes of optimization problems 10
1.4 History 14

I Linear algebra models 19

2 Vectors and functions 21
2.1 Vector basics 21
2.2 Norms and inner products 28
2.3 Projections onto subspaces 37
2.4 Functions 43
2.5 Exercises 53

3 Matrices 55
3.1 Matrix basics 55
3.2 Matrices as linear maps 61
3.3 Determinants, eigenvalues, and eigenvectors 64
3.4 Matrices with special structure and properties 75
3.5 Matrix factorizations 82
3.6 Matrix norms 84
3.7 Matrix functions 87
3.8 Exercises 91
4 Symmetric matrices 97
4.1 Basics 97
4.2 The spectral theorem 103
4.3 Spectral decomposition and optimization 107
4.4 Positive semidefinite matrices 110
4.5 Exercises 118
5 Singular value decomposition 123
5.1 Singular value decomposition 123
5.2 Matrix properties via SVD 127
5.3 SVD and optimization 133
5.4 Exercises 145
6 Linear equations and least squares 151
6.1 Motivation and examples 151
6.2 The set of solutions of linear equations 158
6.3 Least-squares and minimum-norm solutions 160
6.4 Solving systems of linear equations and LS problems 169
6.5 Sensitivity of solutions 173
6.6 Direct and inverse mapping of a unit ball 177
6.7 Variants of the least-squares problem 183
6.8 Exercises 193
7 Matrix algorithms 199
7.1 Computing eigenvalues and eigenvectors 199
7.2 Solving square systems of linear equations 206
7.3 QR factorization 211
7.4 Exercises 215
II Convex optimization models 221
8 Convexity 223
8.1 Convex sets 223
8.2 Convex functions 230
8.3 Convex problems 249
8.4 Optimality conditions 268
8.5 Duality 272
8.6 Exercises 287
9 Linear, quadratic, and geometric models 293
9.1 Unconstrained minimization of quadratic functions 294
9.2 Geometry of linear and convex quadratic inequalities 296
9.3 Linear programs 302
9.4 Quadratic programs 311
9.5 Modeling with LP and QP 320
9.6 LS-related quadratic programs 331
9.7 Geometric programs 335
9.8 Exercises 341
10 Second-order cone and robust models 347
10.1 Second-order cone programs 347
10.2 SOCP-representable problems and examples 353
10.3 Robust optimization models 368
10.4 Exercises 377
viii

11 Semidefinite models 381

11.1 From linear to conic models 381
11.2 Linear matrix inequalities 383
11.3 Semidefinite programs 393
11.4 Examples of SDP models 399
11.5 Exercises 418

12 Introduction to algorithms 425
12.1 Technical preliminaries 427
12.2 Algorithms for smooth unconstrained minimization 432
12.3 Algorithms for smooth convex constrained minimization 452
12.4 Algorithms for non-smooth convex optimization 472
12.5 Coordinate descent methods 484
12.6 Decentralized optimization methods 487
12.7 Exercises 496

III Applications 503

13 Learning from data 505
13.1 Overview of supervised learning 505
13.2 Least-squares prediction via a polynomial model 507
13.3 Binary classification 511
13.4 A generic supervised learning problem 519
13.5 Unsupervised learning 524
13.6 Exercises 533

14 Computational finance 539
14.1 Single-period portfolio optimization 539
14.2 Robust portfolio optimization 546
14.3 Multi-period portfolio allocation 549
14.4 Sparse index tracking 556
14.5 Exercises 558
15 Control problems 567
15.1 Continuous and discrete time models 568
15.2 Optimization-based control synthesis 571
15.3 Optimization for analysis and controller design 579
15.4 Exercises 586
16 Engineering design 591
16.1 Digital filter design 591
16.2 Antenna array design 600
16.3 Digital circuit design 606
16.4 Aircraft design 609
16.5 Supply chain management 613
16.6 Exercises 622
Index 629

