## EE227BT Discussion Section \#8

Exercise 1 (Sum Of Squares) Let $\mathbb{R}[x]_{2 d}:=\{p \in \mathbb{R}[x] \mid \operatorname{deg}(p) \leq 2 d\}$ be the vector space of univariate polynomials of degree at most $2 d$.

Let $P_{2 d}:=\left\{p \in \mathbb{R}[x]_{2 d} \mid p(x) \geq 0\right.$, for all $\left.x \in \mathbb{R}\right\}$ be the set of univariate polynomials of degree at most $2 d$ which are nonnegative.

Let $\Sigma_{2 d}:=\left\{p \in \mathbb{R}[x]_{2 d} \mid p(x)=\sum_{i=1}^{m} q_{i}(x)^{2}, m \in \mathbb{N}, q_{i} \in \mathbb{R}[x]_{d}\right\}$ be the set of univariate polynomials of degree at most $2 d$ which can be written as a sum of squares.

1. Show that

$$
\Sigma_{2 d}=\left\{\left.p=\left[\begin{array}{lll}
c_{0} & \ldots & c_{2 d}
\end{array}\right]^{\top} \in \mathbb{R}[x]_{2 d} \right\rvert\, c_{i}=\sum_{k+l=i} Y_{k l}, i=0, \ldots, 2 d, \text { for some } Y \in \mathbb{S}_{+}^{d+1}\right\}
$$

2. Prove that $P_{2 d}=\Sigma_{2 d}$.
3. Let $p=\left[\begin{array}{llll}c_{0} & c_{1} & \ldots & c_{2 d}\end{array}\right]^{\top} \in \mathbb{R}[x]_{2 d}$. Formulate the optimization problem $\min _{x \in \mathbb{R}} p(x)$ as a semidefinite program.
4. Show that $P_{2 d}$ is a proper cone.
5. Show that $P_{2 d}^{*}=K_{\text {han }}$, where

$$
K_{\text {han }}:=\left\{\mu \in \mathbb{R}^{2 d+1} \mid H(\mu) \succeq 0\right\}
$$

and

$$
H(\mu):=\left[\begin{array}{cccccc}
\mu_{0} & \mu_{1} & \mu_{2} & \ldots & \mu_{d-1} & \mu_{d} \\
\mu_{1} & \mu_{2} & \mu_{3} & \ldots & \mu_{d} & \mu_{d+1} \\
\mu_{2} & \mu_{3} & \mu_{4} & \ldots & \mu_{d+1} & \mu_{d+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\mu_{d-1} & \mu_{d} & \mu_{d+1} & \ldots & \mu_{2 d-2} & \mu_{2 d-1} \\
\mu_{d} & \mu_{d+1} & \mu_{d+2} & \ldots & \mu_{2 d-1} & \mu_{2 d}
\end{array}\right]
$$

