EE227BT Discussion Section \#6

Exercise 1 (Relative Entropy Minimization) Let $q \in \Delta_{n}$, and consider the problem of finding the closest probability distribution to q, in the Kullback-Liebler divergence sense, under some linear constraints

$$
\begin{array}{rl}
\min _{p \in \mathbb{R}_{+}^{n}} & D(p \| q) \\
\text { s.t. } & A p=b \\
& e^{\top} p=1
\end{array}
$$

where $A=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right] \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$.
Derive the Lagrange dual of this problem and simplify it to get

$$
\max _{\lambda \in \mathbb{R}^{m}} b^{\top} \lambda-\log \sum_{i=1}^{n} q_{i} e^{a_{i}^{\top} \lambda}
$$

Exercise 2 (Minimizing A Quadratic) Find the optimal solution of the following optimization problem

$$
p^{*}=\min _{x \in \mathbb{R}^{n}} x^{\top} A x+2 b^{\top} x+c
$$

where $A \in \mathbb{S}^{n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}$. We do not assume that $A \succeq 0$, so in general we have to deal with a non convex optimization problem.

