EE227BT Discussion Section \#5

Exercise 1 (Almost Optimal Prefix Free Codes) Let $p \in \Delta_{n}$ be a probability distribution. Our goal is to approximately solve the integer program

$$
\min _{l \in \mathbb{N}^{n}} p^{\top} l: \sum_{i=1}^{n} 2^{-l_{i}} \leq 1
$$

In order to so we relax the integrability constraints to

$$
\min _{l \in \mathbb{R}_{+}^{n}} p^{\top} l: \sum_{i=1}^{n} 2^{-l_{i}} \leq 1
$$

1. Find the optimal solution of the convex relaxation of the integer program.
2. Suggest a rounding scheme for the optimal solution of the convex relaxation and give an approximation guarantee.

Exercise 2 (Dual Of Square-Root LASSO) Let $A=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right] \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, \lambda \in$ \mathbb{R}_{++}. Consider the square-root LASSO problem

$$
p^{*}=\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}+\lambda\|x\|_{1}
$$

1. Derive the dual of the square-root LASSO problem.
2. Show that if $\left\|a_{k}\right\|_{2} \leq \lambda$, then we can set $x_{k}^{*}=0$ at optimum.
